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Abstract.    Separation bubble and conical vortices on a large-span flat roof were observed in this study 
through the use of flow visualization. The results indicated that separation bubble occurred when the flow 
was normal to the leading edge of the flat roof. Conical vortices that occur under the cornering flow were 
observed near the leading edge, and their appearance was influenced by the wind angle. When the wind 
changed from along the diagonal to deviating from the diagonal of the roof, the conical vortex close to the 
approaching flow changed from circular to be more oblong shaped. Based on the measured velocities in the 
conical vortices by flow visualization, a proposed two-dimensional vortex model was improved and 
validated by simplifying the velocity profile between the vortex and the potential flow region. Through 
measured velocities and parameters of vortices, the intensities of conical vortices and separation bubble on a 
large-span flat roof under different wind directions were provided. The quasi-steady theory was corrected by 
including the effect of vortices. With this improved two-dimensional vortex model and the corrected 
quasi-steady theory, the mean and peak suction beneath the cores of the conical vortices and separation 
bubble can be predicted, and these were verified by measured pressures on a larger-scale model of the flat 
roof. 
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1. Introduction 
 

Two types of damaging vortices, known as separation bubbles and conical vortices, are 
well-known for their destructive effect on large-span roofs. The worst suction from these 
damaging vortices is generated at the leading edges and windward corners of the roofs. Suction 
induced by conical vortices is larger and more destructive than that of separation bubbles because 
the vorticity in separation bubble attenuates downstream. However, conical vortices have a 
velocity component along the leading edge that balances the dissipation of the vorticity. Therefore, 
conical vortices are stable and continuous, and the induced suction is more intense. Many studies 
have described examples of serious damage from suction induced by conical vortices (Kawai and 
Nishimura 1996, Lin et al. 1995). This suction falls beyond the provisions and predictions stated 
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by wind-resistant design codes and traditional theories of wind engineering, and model-scale 
experiments in wind tunnels cannot adequately simulate the larger suctions beneath conical 
vortices. Tieleman (1996) pointed out that less satisfactory model and full-scale agreement exists 
between the fluctuating pressures in separation and reattachment regions. Theoretical numerical 
models, such as the Gaussian model, can be used for prediction only in a few particular cases 
because of the complexity of wind-structure aerodynamic interactions generated by the “blunt 
form” of structures (Gioffre and Grigoriu, 2001). Banks (2000) wrote that the quasi-steady theory 
ignores the contribution to peak suction by random vortex motion and random changes in vortex 
strength. 

To control and predict the peak suction at the leading edges and corners of the roof, current 
research projects have investigated the mechanism by which the conical vortices induced suction 
on roofs. Marwood and Wood (1997) conducted simultaneous pressure-velocity measurements to 
assess the effect of instantaneous conical vortex position on roof suction. The results indicated that 
the position of the conical vortex varied significantly, and fluctuation pressures on the roof are 
closely linked to this variation. The peak suction is always located beneath the vortex cores. Wu et 
al. (2001) revealed that the horizontal wind angle predominantly determines the formation and 
configuration of conical vortices. The vertical wind angle modifies the configuration and 
movement of conical vortices, and sporadically large and fast excursions of the vertical angle can 
significantly change the configuration of vortices and subsequently generate extremely high 
suction on roofs. Kawai (2002) found that when large-scale gust attacks a building instantly from a 
particular direction in any mean wind direction, peak suction is induced by the vortices. 
Synchronized measurements of the incident wind and the pressure were conducted by Zhao at 
Texas Tech University (TTU) (Zhao 1997). The results showed that the instantaneous peak suction 
beneath conical vortices is related to the instantaneous gust with a magnitude larger than the mean 
velocity. However, most studies explain the cause of larger suction from a qualitative point of view. 
To control the larger suction induced by vortices, the mechanism by which the vortex induced 
suction on roofs and the quantitative relationship between the upstream flow, the vortex and the 
roof suction should be given. Some exploratory research has been carried out on this issue. Kawai 
(1997) clarified the structure of conical vortices through velocity measurement with a hot-wire 
probe, implying that the lateral component of the approaching turbulence amplifies the sway of the 
vortices and induces much greater fluctuation in suction on the roof.  Based on a Rankine vortex, 
Banks (2000) developed a flow model through synchronized flow visualization and pressure 
measurement that gives an index to describe the intensity of a conical vortex and explains the 
mechanism by which a vortex transfers the local flow velocity to roof suction. Tryggeson (2010) 
constructed an analytical model of the conical flow derived from a solution to the non-linear 
vorticity transport equation, predicting the resulting flow. This flow is then used to calculate 
suction on the attached surface. 

In summary, the studies of the cause-and-effect relationship between the incident wind, the 
conical vortices and the induced roof suction are concentrated on qualitative assessments. 
Although the initial research on flow models of conical vortices has been conducted, the results 
have not been used to predict wind loads on large-span roofs exposed to conical vortices. 
Therefore, the aim of this study is to explain the mechanism of suction induced by vortices and to 
predict the suction beneath vortex cores. To address these topics, flow visualization of conical 
vortices and separation bubble was conducted in a wind tunnel using Particle Image Velocimetry 
(PIV). With the velocities in the vortices measured using PIV, the two-dimensional simplified flow 
model developed by Banks (2000) was improved and validated in this study. The intensities of the 
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separation bubble and conical vortices on a large-span roof were given for different wind 
directions. The quasi-steady theory was corrected by adding the effect of vortices. Finally, the 
mean and peak suction beneath the conical vortices and separation bubble was predicted by this 
improved flow model and validated by wind tunnel pressure measurements on a large-span flat 
roof. 

 
 

2. Flow visualization of the separation bubble and conical vortices on a large-span 
flat roof 

 
The PIV experiment was conducted to verify the existence of separation bubble and conical 

vortices on a large-span flat roof and to obtain the velocities in the vortices that would provide a 
basis for the establishment of the simplified flow model. This experiment was carried out in the 
HD-2 atmospheric boundary layer wind tunnel at the Wind Engineering Research Center of Hunan 
University, Changsha, China, where the working section is 17 m long, 3 m wide and 2.5 m high. 
The PIV system was provided by the Department of Mechanical and Vehicle Engineering at Hunan 
University.  

 
 

Fig. 1 PIV experimental model of flat roof 
 

Fig. 2 Steel bracket 
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2.1 Experimental model 
 

Given the size of the laser section (800 mm×600 mm) in the PIV experiment, the model has a 
dimension of 450 mm×450 mm×180 mm (L×W×H), as shown in Fig. 1. To obtain a rigid body 
and avoid experimental error due to light reflection, the model was manufactured using black 
Plexiglas. Unlike in common pressure measurements, the model in a PIV experiment cannot be 
placed directly on the floor because of the 300 mm opaque side wall of the wind tunnel, which 
obstructs the view of the CCD camera. Therefore, a steel bracket (shown in Fig. 2) with a height of 
510 mm was designed to elevate the model above the opaque side wall by setting it on the bracket, 
ensuring that the intense laser illuminates the model. 

 
2.2 Experimental facilities 
 
The PIV system used for this study is composed of software and hardware devices. The 

software system, Micro Vec V3.2.1, is compatible with Tecplot (graphics software) and Origin 
(mathematical analysis software). It includes an integrated particle image velocimetry system, an 
analysis system for measuring concentration field and particle diameter, and a control system for a 
digital camera. The hardware system is comprised of a Nd-YGA Laser system, a high resolution 
CCD camera, a synchronizer, an image acquisition card, and a personal computer. 

The Nd-YGA Laser system was set above the roof of the HD-2 wind tunnel. The laser 
illuminated the flow field through the transparent glass roof, which resulted in light sheets parallel 
to the incident flow. The CCD camera was located outside the wind tunnel and normal to the flow 
direction. To ensure the integrity of the vortex profiles, the camera was set at a height of 780 mm 
from the ground, which was 90 mm higher than the flat roof located on the bracket. 

Before the PIV experiment began, the suburban terrain (Category B) formulated in the China 
loading code for the design of building structures (GB50009-2001) was simulated by placing 
roughness elements in the entrance portion of the test section. At the roof height of 690 mm, the 
mean velocity and the longitudinal turbulence intensity were 10 m/s and 15%, respectively. After 
completing the simulation of the terrain, seeding particles with diameters of less than 1 m were 
released into the wind tunnel from the exit. 

The CCD camera initiated when the seeding particles in the wind tunnel were widely 
distributed. Two pairs of images were captured per second, and for each case, 100 images (50 
velocity fields) were captured and processed. The post processing of the images was carried out by 
Micro Vec V3.2.1. The size of the interrogation window was selected as 64×64 pixels. After that, 
ensemble averaging of these 50 data files was conducted and imported to Tecplot Program. The 
streamlines and vorticity fields provided in Section 2.4 of this study were obtained after ensemble 
averaging. 

 
2.3 Experimental design 

 
The design of this PIV experiment is illustrated in Fig. 3, which considers the configuration of 

the separation bubble and conical vortices. For the separation bubble, the light sheet was located at 
the longitudinal bisector of the roof, shown in Fig. 3(a). This location was selected to avoid 
disturbance due to body-induced turbulence (Kasperski et al. 1996) near the edge of the roof. For 
the conical vortices, the light sheet was set at one side of the roof diagonal, parallel to the flow 
(Fig. 3(b)). 
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(a) Separation bubble (b) conical vortices 

Fig. 3 Design of PIV experiment 
 
 
2.4 Results and discussion 

 
2.4.1 Separation bubble 
The separation bubble is generated when the flow is normal to the leading edge (Zhao 1997) 

(wind direction of 0°). The position of the model in the wind tunnel is shown in Fig. 4 and the 
location of the light sheet is illustrated in Fig. 4(a). 

The streamlines in the visual plane of the separation bubble are given in Fig. 5(a), which shows 
that the flow separates at the leading edge and reattaches to the roof surface to generate a 
separation bubble. Also, irregular streamlines on top of the plane imply the existence of 
small-scale coherent structures in the turbulent flow. Fig. 5(b) shows both the streamlines and the 
vorticity field in the visual plane of the separation bubble. Positive vorticity exists on top of the 
plane. While the negative vorticities were distributed around the separation bubble, which is a 
favorable configuration for the generation of vortices, the peak negative vorticity corresponds to 
the vortex core of the separation bubble. The magnitude of the negative vorticity decreases 
downstream, indicating an attenuation of the separation bubble. 
 

 
(a) Plan view (unit: mm) (b) physical position 

Fig. 4 PIV experimental scheme for the separation bubble (wind direction of 0°) 
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(a) Streamlines (b) vorticity field 

Fig. 5 Streamlines and mean vorticity field of the separation bubble (wind direction of 0°) 
 
 
2.4.2 Conical vortices 
Conical vortices are generated along the leading edges of roofs when the flow attacks at 

oblique angles to the edge (Kawai and Nishimura 1996). Therefore, in this experiment, the wind 
directions used to observe conical vortices were set at 30° and 45°. The model was rotated to 
simulate different wind directions. 

The arrangement of the model at a wind direction of 30° is shown in Fig. 6. It is known that 
conical vortices occur in pairs located on two sides of the diagonal of the roof. Research indicates 
that the size of a vortex close to the flow is larger than that at a greater distance from the flow 
(Zhao 1997 and Kim et al. 2001). Therefore, the visual plane was set on the right side of the 
diagonal (Fig. 6(a)). 

 
 

 
(a) Plan view (unit: mm) (b) physical position 

Fig. 6 PIV experimental scheme for the conical vortex (wind direction of 30°) 
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(a) Streamlines (b) vorticity field 

Fig. 7 Streamlines and mean vorticity field of the conical vortex (wind direction of 30°) 
 

 
The streamlines in the visual plane of the conical vortex at a wind direction of 30° are given in 

Fig. 7(a), which illustrates a conical vortex adhering to the roof. Fig. 7(b) shows both the 
streamlines and the vorticity field in the visual plane of the conical vortex. The negative vorticity 
was distributed over the roof, with its peak near the conical vortex. Greater suction is induced 
under this peak negative vorticity on the roof. The magnitude of the negative vorticity slightly 
decreased as it heads downstream. Positive vorticity is distributed uniformly on top of the plane, 
indicating no obvious effect from the vortices. 

Fig. 8 shows the arrangement of the model at a wind direction of 45°. The flow was parallel to 
the diagonal of the roof. In symmetric structures, the conical vortices at the two leading edges of 
the roof have a very symmetric nature when the flow is running along the diagonal of the roof 
(Kawai 1997, Kim et al. 2001). In this experiment, the visual plane was set on the right side of the 
diagonal, as shown in Fig. 8(a). 

 

 
(a) Plan view (unit: mm) (b) physical position 

Fig. 8 PIV experimental scheme for the conical vortex (wind direction of 45°) 
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(a) Streamlines (b) vorticity field 

Fig. 9 Streamlines and mean vorticity field of the conical vortex (wind direction of 45°) 
 
 
The streamlines in the visual plane of the conical vortex at a wind direction of 45° are shown in 

Fig. 9(a). Compared with the oblong vortex at a wind direction of 30° (Fig. 7(a)), the conical 
vortex formed at a wind direction of 45° was more circular. Fig. 9(b) shows both the streamlines 
and the vorticity field in the visual plane of the conical vortex. The peak negative vorticity was 
located near the leading edge of the roof, which is favorable for the generation of a conical vortex.  
The negative vorticity and the intensity of the vortex attenuated slightly downstream. 

 
 

3. Development of a flow model for conical vortices  
 

3.1 Weaknesses of the existing vortex models 
  
The existing vortex models used to predict pressure profiles are the point vortex, the Rankine 

vortex and Cook’s simplified equation based on the Rankine vortex (Banks et al. 2000). In the 
point vortex model, the flow field is induced in potential flow theory by the placement of two 
counter-rotating vortices at a distance 2h from each other. The resulting surface flow velocity is 
given by 

  2 2

h
U

h








                              (1) 

Where   is circulation or strength of each vortex, h is the height of the vortex core and  is 
the projection distance along the roof surface (Fig. 10). 

The point vortex model does describe the field-potential flow, but it is not realistic. The 
tangential velocity is predicted to increase infinitely as the vortex core is approached, which is 
misleading. Under the effect of the point vortex, surface pressures are assumed to simply follow 
the Bernoulli equation, which may lead to the underestimation of the actual pressures beneath 
vortices. 

The Rankine vortex model (Fig. 11) is much more realistic than the point vortex model. It 
features a fully viscous vortex core rotating as a solid body and surrounded by an irrotational, 
inviscid vortex. The tangential velocities inside and outside the vortex core can be expressed as 
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  2/innerU r cr R                                 (2) 

/outerU c r                                   (3) 

where c is a constant, R is the radius of the core (Fig. 11) and r is the distance from the center of 
the core (Fig. 11). 

Therefore, the spin velocity in the vortex core increases with the increasing distance between 
the fluid particle and the center of the core, with the maximum velocity occurring at the boundary 
of the core. The velocity then decreases as a hyperbolic shape beyond the core. Fig. 11 gives the 
velocity profile of the Rankine vortex according to Eqs. (2) and (3). It is seen that the velocity 
changes abruptly at the boundary of the core, which is unrealistic. In fact, the vorticity of the 
circulating flow linearly increases in the core and then gradually decreases to zero outside the core 
(Simiu et al. 1996). This conclusion will be verified by the PIV experiment in the following 
section. Besides, the Rankine vortex does not adequately describe the flow field. 

 
 

Fig. 10 Point vortex model 
 
 

Fig. 11 Velocity profile of the Rankine vortex model 
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The Rankine vortex infers surface profiles for regions inside and outside the core (Banks et al. 
2001). Cook (1985) approximates these two relationships with a uniform equation (Eq. (4)). 
However, the flow field is still unknown. 

2
min

1

1

p

p

C

C

R




   
 

                            (4) 

where pC  is the pressure coefficient for an arbitrary point on the pressure profile and minpC  is 

the minimum pressure coefficient (maximum suction coefficient) beneath the vortex core. The 
definitions of other symbols are given in Eqs. (1) and (2). 

These models provide surface pressure profiles under vortices, but they offer little insight into 
the manner by which the turbulent component in the flow changes into roof suction. They also pay 
little attention to the flow field around the vortices. However, Banks (2001) developed a flow 
model of conical vortices that describes the relationship between the flow velocity above the 
vortex, the vortex and the roof surface. In this study, the flow model developed by Banks (2001) 
was improved and validated by simplifying the velocity profile between the vortex and the 
potential region. Based on this improved model, the intensities of the conical vortices and 
separation bubble on a large-span roof were quantified. Finally, the predictions for suction beneath 
vortex cores were given and verified. 

 
3.2 Conception of the flow model for conical vortices 

 
In potential flow theory, the flow field around a point vortex is induced by the placement of two 

counter-rotating vortices. Unlike this theory, the flow model in this study is imagined to be a wheel 
that is spun by the free stream above it (Banks et al. 2001). This flow model is similar to the 
Rankine vortex, but the velocity through the Rankine vortex changes abruptly and unrealistically 
at the boundary of the core (Xu 1985). Therefore, a transition region was added between the vortex 
region and the potential flow region, which maked the vorticity change gradually from increasing 
inside the vortex to decreasing outside the vortex. The schematic of this flow model is shown in 
Figs. 12(a) and 12(b) shows its velocity profile. The origin of the coordinates is set at O. Letting 

/a h  (Fig. 12(a):   is the vertical distance from O and h  is the height of the vortex core), 
this flow model can be divided into four regions(Banks et al. 2001): the viscous vortex core 
(-0.2<a<0.2), the vortex region (0.2<a<1 and -1<a<-0.2), the transition region (1<a<2) and the 
potential flow region (a>2). 

According to aerodynamic theory, the pressure gradient through the vortex can be expressed as 
(Xu 1987) 

2

c

dP U

dn R


                                (5) 

where /dP dn  is the pressure gradient from point T to point B (Fig. 12(a)), U is the fluid speed in 
the direction of vortex rotation, Rc is the curvature radius of the streamlines in the vortex, and   
is the air density. 
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(a) Schematic (b) Velocity profile 

Fig. 12 Two-dimensional flow model of the conical vortices 
 
 
Hence, the pressure change through the vortex is associated with centrifugal accelerations. 

There is a quantitative relationship between the pressure change, the curvature radius of the 
streamlines and the rotational speed of the vortex. Eq. (5) provides a basic foundation for 
developing the flow model for conical vortices in this study, and the curvature radius of the 
streamlines and the velocity profile in the vortices are investigated below.  

 
3.3 Curvature radius of the streamlines in a vortex 

 
The curvature radius of the streamlines corresponding to different regions is described below. 
 In the core, the fluid rotates as a solid body. cR  , and the curvature radius of 

streamlines is 

/cR h a                               (6) 

 As the flow beneath the vortex approaches the roof, the curvature radius becomes infinite. 
That is, a→-1 and cR  . Thus, the curvature radius of the streamlines between the 
core and the roof (-1<a<-0.2) can be expressed as 

 / / 1cR h a a                            (7) 

 Above the vortex core, the flow will also tend to be straight line and eventually merge 
with the incident flow around the roof. Through CFD numerical simulation, Banks (2000) 
gave the curvature radius of the streamlines for regions above the core (a>0.2) as 

31
/

2cR h a a                             (8) 

 
3.4 Velocity profile in a vortex 
 
The velocity profile through the vortex is described in the following steps. 
 In the vortex core, viscosity dominates and the flow rotates as a solid body. The velocity 
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U increases linearly with r 

U r                                  (9) 

where   is a proportionality constant. 
 The velocity profile in the vortex region is based on Rizzi’s numerical solution of the 

complete N-S equations for a 65° sweep delta-wing at an attack angle of 10° (Rizzi and 
Muller 1989). The equation is 

1/ 2

T

U
a

U
                             (10) 

Substituting Eq. (10) into Eq. (5), the pressure is seen to vary linearly with a. This linear 
variation agrees well with numerical simulation results (Ekaterinaris and Schiff 1994). It should be 
noted that the suction decreases from the core toward the roof surface. According to Eq. (5), this 
decrease is slow beneath the core because the curvature radius of the streamlines increases rapidly 
as it nears the roof surface. Therefore, most suction in the vortex core will be transferred to the 
roof surface. 

 In the potential flow region, the Bernoulli equation should be obeyed. Banks provides the 
following equation(Banks 2001) 

 
2

/

a

a cT

dn
R h

T

U
e

U

 
  
 


                          (11) 

 In the transition region, the maximum velocity is at max 1.5a   (Banks et al. 2000). To 
achieve a smooth transition and ensure the location of the peak velocity, Banks proposed 
the following velocity equation 

 
 

max max

2

max

2 /

1 /

U a a
U

a a

 



                        (12) 

where max 1.05 TU U . 
The measured velocities in the vortices during the PIV experiment were fitted based on the 

above equations. To match those velocities at the boundary points of different regions, constant 
terms may be added to the fitting equations and the slope of curves was adjusted slightly. Eqs. (9) 
and (10) were adopted for the fitting of velocities in the vortex core (-0.2<a<0.2) and the vortex 
region (-1<a<-0.2 and 0.2<a<1), respectively. Eq. (11) was employed in the potential flow region. 
Considering that Eq. (12) was complex, the parabolic equation (Eq. (13)) was used for the fitting 
of velocities in the transition region (1<a<2). 

2/ TU U Aa Ba c                              (13) 

The above velocity profiles were used to fit the measured velocities in vortices during the PIV 
experiment, as shown in Fig. 13. For comparison, the velocity profile of the Rankine vortex was 
also given in Fig. 13. It should be noted that the measured velocities were an ensemble average of 
the instantaneous data under wind directions of 0°, 30° and 45°. The results indicated that the 
velocities in the transition region can be satisfactorily fitted by the parabolic equation, which leads 
to a smooth transition in the velocity profile. 
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Fig. 13 Fitting of velocities in the vortices 
 
 

Table 1 Curvature radius of streamlines and velocity profiles in the vortices 

Region Range /cR h  
/ TU U  

Flow model of this study Banks model 
Vortex region 

beneath the core 
1 0.2a   

 
 / 1a a   (0.1403 0.8199 )a    0.9 a   

Vortex core 
0.2 0.2a  

 
a  3.4292 a  2.15a  

Vortex region  
above the core 

0.2 1a   3 / 2a a  0.1403 0.8199 a  0.9 a  

Transition 
region 

1 2a   3 / 2a a  
20.1254 0.4374 0.6737a a  

 2

3.15

2.25

a

a
 

Potential flow 
region 

2a   3 / 2a a   3

2
exp( )

/

a

a
c

da
R h


  

 3

2
exp( )

/

a

a
c

da
R h




Note: cR -Curvature radius of streamlines; h -Height of vortex core; U -Rotation velocity of vortex; TU

-Velocity at T of potential flow region 
 
 
Table 1 shows the curvature radius of the streamlines /cR h  (Section 3.3) and the fitted 

equations for the velocities / TU U . For comparison, the equations for / TU U  provided by Banks 
(2000) are also shown in Table 1. In Section 4 of this study, Banks’ model was compared with the 
improved model to predict mean and peak suction beneath the conical vortices and separation 
bubble. 

The goodness of fit statistics for Fig. 13 are given in Table 2 and described below. (1) SSE is 
the sum of squares due to error. A value closer to 0 indicates a better fit. (2) The R-square 
measures how successful the fit is in explaining the variation of the data. It is the ratio of the sum 
of squares of regression (SSR) and the total sum of squares (SST). A value closer to 1 indicates a 
better fit. (3) The adjusted R-square uses the R-square statistic defined above and adjusts it based 
on the residual degrees of freedom. A value closer to 1 indicates a better fit. (4) The RMSE is the 
root mean squared error. A value closer to 0 indicates a better fit. 
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Table 2 Goodness of fit statistics 

Region Range SSE 2R Adjusted 2R  RMSE 
Vortex core 0 0.2a   0.0015 0.9684 0.9526 0.0275 

Vortex region  
above the core 

0.2 1a   0.0088 0.9419 0.9347 0.0332 

Transition region 1 2a   0.0004 0.9823 0.9704 0.0038 
Potential flow 

region 
2a   0.0002 0.9766 0.9668 0.0027 

 
 
 
3.5 Pressure change in a vortex 
 
Through the integration of Eq. (5), the pressure change from point T towards point B (Fig. 12 

(a)) along the   axis can be expressed as (Banks et al. 2000) 

 
2

/

B B

T T
c

U
dP da

R h


                             (14) 

Normalizing by the reference dynamic pressure and TU  gives 

 
  

22

2 2
2

/

T
T

B T B
ref T c

U aU
Cp Cp da

U U R a h

 
   

  
                     (15) 

Point T is located in the potential flow region; therefore, TCp  can be calculated using the 

Bernoulli equation,  2 21/ 2T ref ref TP P U U   . The basic definition of pressure coefficient is also 

used, so 

2

2
2

1
1
2

T ref T
T

ref
ref

P P U
Cp

UU


                             (16) 

Substituting Eq. (16) into Eq. (15) gives 

2 12

2
1 1 2

T
cT

B B
ref T

RU U
Cp da

U U h

           
    

                       (17) 

Let 1Cp Cp   . According to Eq. (16),  2
/T T refCp U U  . Thus, BCp  is given as 

2 1

1 2
T

c
B T B

T

RU
Cp Cp da

U h

            
    


                      (18)

 

It can be seen that there is a transfer function between the pressures at point T and point B, 
which implies an amplification factor related to the pressure change from the potential flow region 
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to the roof surface.  
To investigate the amplification factor, letting 

2 1

2
T

c

B
T

RU
da

U h


       
  

                            (19) 

Eq. (18) can then be written as 

 1B TCp Cp                                 (20) 

Eq. (20) implies that the vortex amplifies and transfers pressures above the vortex to the roof 
surface. The amplification factor  demonstrates the intensity of the vortices. A larger 
corresponds to an intense vortex and greater roof suction. If 0  , there is no obvious vortex on 
the roof. From Eq. (19), it can be seen that a larger curvature radius of streamlines causes greater 
suction beneath vortices. The faster the vortex spins, the greater the roof suction becomes. 
Therefore, vortices control roof suction through the curvature radius of streamlines and rotational 
velocity. 

Because is related to the curvature radius of streamlines cR ,  represents not only the vortex 
strength but also the nature of the reattachment. A larger curvature of streamlines means stronger 
vortices and obvious reattachment. 

 
3.6 Corrections based on wind direction 

 
Experimental measurements show that the wind changes direction as it passes over the leading 

edge of a roof. Fig. 14 illustrates the actual wind direction imposed on the conical vortex. It is 
indicated that the tangential speed above the vortex should be  sinU  .   is the actual wind 

angle with respect to the vortex axis and   is the experimental wind angle. 
 
 

 
(a) Top view (b) side view 

Fig. 14 Variation of tangential speed 
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The flow model was corrected by considering the actual wind angle. U  in Eq. (17) is 
substituted with  sinU  . Combining Eqs. (17) and (19) gives (Banks et al. 2000) 

                          
2

2
2

1 1 sinT
B

ref

U
Cp

U
                               (21) 

Through flow visualization, Banks gave the relationship between   and   

18 0.7                                               (22) 

Based on Eq. (21), the mean pressure at point B (beneath the vortex core) can be written as 

  
____

2
2

_____
2

1 1 sinT
B

ref

U
Cp

U

    
——

                      (23) 

The quasi-steady theory is a simple, practical model used to describe the relationship between 
the incident flow and roof pressure. It is the basis for wind-resistant codes in many countries, and 
links the pressure fluctuations on roofs directly to fluctuations in the approaching flow 

      
2

ref
P p

ref

U t
C t C t

U


 
    
 

——

——

                     (24)

 

where  refU t  is the time history of the wind velocity at the reference point, 
_____

refU  is the mean 

velocity at the reference point,  t  represents the wind direction of the incident flow and 

  pC t
——

 is the mean pressure at a certain point of study. 

However, many studies have concluded that the quasi-steady theory fails to accurately predict 
pressures in separation regions, such as beneath conical vortices (Banks et al. 2000). This is 
because the quasi-steady theory attributes the roof pressure fluctuations to the fluctuating content 
of the incident flow and ignores the effect of conical vortices (as shown in Eq. (24)). Therefore, 
fluctuating and peak pressures are underestimated by the quasi-steady theory. To correct the 
quasi-steady theory, the effect of conical vortices is added; that is, Eq. (23) is substituted into Eq. 
(24)  

     

2 _____
2

2
_____ _____

2

1 1 sinref T
B

ref ref

U t U
Cp t

U U

 
  
                 

                (25) 

Therefore, the incident flow, the vortices and the roof pressures are connected by Eq. (25). If
 

_____

/ref refU t U , on the right side of the equation, is taken as the ratio of the peak velocity to mean 
velocity  

_____

max /ref refU t U , the BCp  obtained on the left side of the equation is the peak suction 
beneath the vortex cores. Eqs. (23) and (25) were used to predict mean and peak suction beneath 
cores of the conical vortices and separation bubble to verify the effectiveness of this flow model. 
 

128



 
 
 
 
 
 

Improvement and validation of a flow model for conical vortices 

4. Verification of the flow model 
 

4.1 Wind tunnel pressure measurement on a large-span flat roof 
 

Pressure measurement on a large-span flat roof was performed in the TJ-2 atmospheric 
boundary layer wind tunnel at the State Key Laboratory for Disaster Reduction in Civil 
Engineering of Tongji University, Shanghai, China, with the goal of validating the improved flow 
model described in the previous section. The working section is 17 m long, 3 m wide and 2.5 m 
high. The flat roof (Fig. 15(a)) has a platform measuring 750 mm×750 mm×300 mm that was 
manufactured using Plexiglas to obtain a “rigid” body. It was a larger-scale model of the flat roof 
used in the PIV experiment (Fig. 1). Fig. 15(b) illustrates the tap locations and the angles of 
incidence. The suburban terrain (Category B) formulated by GB50009-2001 was simulated, and 
the velocity of the approaching flow was measured simultaneously with the pressure. At a 
reference height of 300 mm, the mean wind velocity and the longitudinal turbulence intensity were 
10 m/s and 15%, respectively. 

The measured pressures were converted to pressure coefficients by dividing them by the 
reference dynamic pressure at the reference height of 300 mm. 

0

( )
( ) i

pi

P t P
C t

P P








                             (26) 

where ( )iP t  is the measured pressure at tap i, 0P  is the total pressure at the reference height and 

P  is the static pressure at infinity. 
 

 
 

 

(a) Physical model (b) tap locations (unit: mm) 

Fig. 15 Model of the flat roof and its tap locations 
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Table 3 Integration for intensity of the conical vortices (wind direction of 15°) 

Flow model Region 
Integration 

results 
Total intensity 

Flow model in this study 

-1<a<-0.2 0.69 

2.8 
-0.2<a<0.2 0 

0.2<a<1 1.396 
1<a<2 0.72 

Banks’ model 

-1<a<-0.2 0.518 

2.34 
-0.2<a<0.2 0 

0.2<a<1 1.088 
1<a<2 0.729 

 
 
By measuring the pressures on the flat roof, the wind directions that favor the generation of 

conical vortices can be determined. It has been demonstrated (Kawai and Nishimura 1996, Banks 
2000) that the profiles of the mean pressure coefficient along lines normal to the eaves are 
bell-shaped under the influence of conical vortices. This conclusion is in agreement with the 
theory of the point vortex in fluid mechanics (Lin et al. 2005). Therefore, the question of whether 
pressure profiles along lines normal to the leading edge are bell-shaped is utilized to judge the 
formation of conical vortices in this study. If the profiles are approximately bell-shaped, the roof is 
identified as being under the influence of conical vortices; otherwise, there are no conical vortices 
on the roof. Then the mean pressure profiles for lines normal to the leading edge were analyzed at 
wind directions ranging from 0° to 90°. It is concluded that the angles conducive to the formation 
of conical vortices on the flat roof are 15°, 30°, 45°, 60° and 75°. Under wind directions of 0° and 
90° (normal to the leading edge), separation bubble is generated instead(Zhao 1997). 

 
4.2 Intensity of the conical vortices 

 
The intensities of the conical vortices in different directions were integrated using Eq. (19), 

with an integration range of [-1,2]. Table 1 shows the rotational velocity and the curvature radius 
of the streamlines in the vortices. As an example, the intensity of the conical vortices at a wind 
direction of 15° was integrated and given in Table 3. For comparison, the integration of the vortex 
strength based on Banks’ model (Banks et al. 2000) was also shown in Table 3. The integral 
function was given in Table 1. 

It is clear that intensity of the vortex region above the core (0.2<a<1) constituted the largest 
percentage of the total strength. In the vortex region (-1<a<-0.2 and 0.2<a<1), the intensities 
calculated by the flow model of this study were higher than those calculated by Banks’ model. In 
the transition region, the intensities provided by the two flow models were nearly the same. 

After the integration of vortex strength at a wind direction of 15°, the intensities of conical 
vortices at wind directions of 30°, 45°, 60° and 75° were analyzed. According to Eq. (19), the 
rotational velocity and curvature radius of the streamlines are two factors that influence the vortex 
strength. As mentioned in Section 3.4, the equations for rotational velocity in vortices were 
obtained from numerical simulations (Rizzi et al. 1989, Ekaterinaris et al. 1994), which were 
assumed to be invariant. Thus, the vortex strength was only influenced by the curvature radius of 
the streamlines. In this study, the curvature radius of the streamlines was estimated by the angle 
between the vortex axis and the leading edge. Then the ratio of vortex strength between different 
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wind directions can be estimated by the ratio of the angle between the vortex axis and the leading 
edge. Several studies have indicated that the maximum mean suction in pressure profiles is 
directly beneath the vortex core (Kawai et al. 1996). The connection of the vortex cores can be 
assumed to approximate the axis of the conical vortex. The pressure profiles for lines normal to the 
leading edge were calculated using this knowledge. The vortex axis on the large-span flat roof 
under various wind directions was demonstrated in Fig. 16. 

At wind directions of 30° and 15°, the ratio of the angle between the leading edge and the 
vortex axis was 7/8. As mentioned in Table 3, the vortex strength at a wind direction of 15° was 
2.8. Thus, the vortex strength at a wind direction of 30° was  2.8 7 /8 2.45  . The intensities of 

the conical vortices under different wind directions were similarly estimated (Table 4) using the 
reference intensity of 2.8 (wind direction of 15°). Table 4 also gives the intensities of the conical 
vortices based on Banks’ model (Banks et al. 2000). 

 
 

 
(a) 15°                    (b) 30°                      (c) 45° 

 
(d) 60°                          (e) 75° 

Fig. 16 Vortex axis of the conical vortices at different wind directions 
 

 
Table 4 Intensities of the conical vortices at different wind directions 

Wind direction 15° 30° 45° 60° 75° 
Flow model in 

this study 
2.8 2.45 1.4 0.7 0.35 

Banks’ model 2.34 2.05 1.17 0.585 0.29 
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Table 4 shows that the intensities calculated with the flow model of this study were larger than 
those obtained from Banks’ model. Therefore, the resulting suction beneath the vortex cores was 
expected to be larger based on the improved flow model. By comparing these results with 
measured pressures on the large-span flat roof, the following discussion will evaluate the 
effectiveness of these two models in predicting suctions beneath vortex cores. 

 
4.3 Variation of the rotational velocity in the longitudinal direction 

 
The rotational velocity 

____ _____

/T refU U  above the vortices decreases with increasing distance from 
the windward corner. Banks determined the variation of 

____ _____

/T refU U  along the leading edge at a 
wind direction of 30°(Banks, 2000), which was fitted as shown in Fig. 17. Note that the 
attenuation is parabolic and can be expressed by Eq. (27) 

____ _____
6 2/ 7.17 10 0.003 1.59T refU U X X                        (27) 

where X is the distance between the apex and the section of the conical vortex (Fig. 18). 
 
 

 

Fig. 17 Fitting of the velocity in the longitudinal direction
 
 

Fig. 18 Planar projection of the conical vortices
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4.4 Prediction of mean suction beneath the cores of the conical vortices (
____

vCp ) 

The mean suctions beneath the cores of the conical vortices (
____

vCp ) were calculated using Eq. 
(23), in which:  

1)    was shown in Table 4.  

2) 
____ _____

/T refU U  was calculated according to Eq. (27). However, Eq. (27) was proposed based on a  
wind direction of 30°. Through flow visualization, Banks gave the variation of 

____ _____

/T refU U  with 
wind direction (Banks et al. 2000), as shown in Fig. 19. Therefore, in this study, the values for ____ _____

/T refU U  under other wind directions were discounted based on the curve in Fig. 19. It should be 
noted that the roof models in this study and in the literature (Banks et al. 2000) were different in 
size, so the X value in Eq. (27) has been prorated according to the size ratio of the two models. 

Conditional sampling should be conducted in order to obtain the measured value for 
____

vCp  
because the vortex cores move back and forth and the maximum suction is found to follow the 
moving cores directly (Kawai and Nishimura 1996, Banks and Meroney 2001a, b, c). There were 
several taps on a section of the conical vortices in this experiment. At each instant, the tap having 
the maximum suction was selected, and this maximum suction was extracted to form a new time 
history called the pressure time series of the vortex core. The mean of this new time series can be 
set as the measured value of 

____

vCp . 
 
 

 

Fig. 19 Variation of velocity with wind direction
 
 

Fig. 20 Typical section of the conical vortices
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(a) 15∘                                (b) 30∘ 

(c) 45∘                                 (d) 60∘ 
 

(e) 75∘ 

Fig. 21 Comparison of the calculated and measured mean suction beneath cores of the conical vortices 
 
 
Several sections of conical vortices were randomly selected as research objects (Fig. 20, in 

which the section number is the number of the tap on the leading edge). At different wind 
directions, the mean suction beneath the cores of these sections (Col. 4-Col. 9) was calculated 
using Eq. (23) and compared with the measured values, as shown in Fig. 21. For comparison, the 
calculated results given by Banks’ model were also shown in Fig. 21. 

The following conclusions can be drawn from Fig. 21:  
 The mean suction beneath the cores of the conical vortices is largest at a wind direction 

of 30° because the lateral component of the approaching turbulence increases when the 
flow deviates from the diagonal of the roof at a wind angle of 30° (Fig. 22). Fig. 19 also 
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demonstrates that 
____ _____

/T refU U  above the vortices reaches a maximum at a wind direction of 
nearly 25°. Therefore, the rotational speed is the dominant factor for suction beneath the 
vortex cores. This result also can be confirmed by the frequency domain. Fig. 23 shows 
the wind pressure spectra at tap 42 (randomly selected in the vortex area, Fig. 15(b)) for 
different wind directions. It can be seen that the highest peak occurs at a wind direction of 
30°. In other words, the largest fluctuating energy in the approaching flow induces the 
greatest mean suction beneath the vortex cores. 

 For conical vortices at the given direction, the suction beneath the conical vortices 
decreases as the distance from the apex increases, with the peak occurring near the 
windward corner. This is due to the fact that the curvature radius cR  decreases and the 

rotational speed 
____ _____

/T refU U  increases towards the apex. The mean suction is expected to 

increase, according to Eq. (23), so the smaller vortices would induce greater suction near 
the leading corner. 

 Because of the larger vortex strength given by the flow model in this study (Table 4), the 
calculated mean suction was greater than that given by Banks’ model. Compared with the 
measured values, the errors in the predictions based on the improved model were less 
than 10%. Some of the predicted suction was larger than the measured results. Errors for 
the calculated results given by Banks’ model were generally less than 15%. Therefore, the 
mean suction given by the improved model is more accurate than that from Banks’ 
model. 

 

Fig. 22 Schematic of the incident flow on the conical vortices (wind direction of 30°) 
 
 

Fig. 23 Pressure spectra induced by different wind directions
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4.5 Prediction of peak suction beneath the cores of the conical vortices ( maxvCp ) 

 
The peak suction beneath the cores of the conical vortices was calculated using Eq. (25), which 

is the corrected quasi-steady theory. The calculation of the mean suction has been presented in 
Section 4.4. The ratios of the maximum to mean velocity of the incident wind (  

____

max /ref refU t U ) 
were obtained from the measured upstream velocities, as shown in Fig. 24, and the mean velocity 
was limited to 10 m/s. The ratios of  

____

max /ref refU t U  under different wind directions are given in 
Table 5. 

 
 

 
(a) 15°

 
(b) 30° 

 
(c) 45° 

 
(d) 60°

(e) 75°

Fig. 24 Incident velocities at different wind directions 
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Table 5 Ratios of maximum to mean velocity at different wind directions 

Wind direction 15° 30° 45° 60° 75° 

 
____

max /ref refU t U  1.47 1.51 1.50 1.78 1.79 

 
 
The typical sections shown in Fig. 20 continue to be used as research objects. The peak suction 

beneath the cores of these sections (Fig. 20: Col. 4-Col. 9) were calculated using Eq. (25). The 
calculation results were compared with the measured values that select the maximum in the 
pressure time series after conditional sampling (as mentioned in Section 4.4). Fig. 25 demonstrates 
the results of comparing the calculated and measured peak suction beneath the cores of the conical 
vortices. For clarity, the calculated results given by Banks’ model are also shown in Fig. 25. 

 
 

(a) 15° (b) 30° 

(c) 45° (d) 60° 

(e) 75°

Fig. 25 Comparison of the calculated and measured peak suction beneath the cores of the conical vortices
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The probabilities of exceeding the calculated peak suction were evaluated using the cumulative 
density function (CDF) of the measured pressure time series beneath the vortex cores, as shown in 
Table 6. Col 4 (Fig. 20) at a wind direction of 15° was taken as an example to illustrate the 
evaluation. Figs. 26(a) and 26(b) show the pressure time series of the vortex cores in Col 4 and its 
CDF curve. The calculated peak suction for the core of Col 4 was -3.192, whose exceeding 
probability was evaluated to be 0.3% according to the CDF curve in Fig. 26(b). 

Fig. 25 indicates that calculated peak suction given by the improved model and Banks’ model 
was always less than the measured values. Comparatively, the errors of the calculated results from 
the improved model were less than 13%, while those from Banks’ model were less than 20%. This 
once again implies that Banks’ model may underestimate the actual intensity of the conical 
vortices. 

Comparing Figs. 25 and 21, the prediction accuracy of the mean suction beneath vortex cores 
was higher than that of the peak suction. This is due to the fact that the intense fluctuations 
induced by conical vortices increase the uncertainty of the pressure prediction and decrease the 
prediction accuracy. In the China loading code for the design of building structures 
(GB50009-2001), the peak factor (g) is proposed to calculate peak wind loads during the design of 
cladding and envelopes. The specified g is 2.2 in GB50009-2001, which represents a reliability of 
98.61% and an exceeding probability of 1.39%. In Table 6, the exceeding probabilities of the 
calculated peak suction given by the improved flow model were less than 0.5% compared to the 
measured pressure time series beneath the vortex cores. It is noted that there are few instantaneous 
fluctuations larger than the predictions. Therefore, the peak suction calculated by the improved 
flow model could ensure the safety of large-span roofs exposed to conical vortices. 

 

(a) Pressure time series beneath the vortex core (b) cumulative probability function 

Fig. 26 Pressure time series beneath the vortex core and its cumulative probability function (Col 4, wind 
direction of 15°) 

 
Table 6 Exceeding probabilities of calculated peak suction beneath the cores of the conical vortices 

Wind direction 15° 30° 45° 60° 75° 
Col 4 0.3%/ 0.68%* 0.28%/ 0.55%* 0.3%/ 0.5%* 0.03%/ 0.28%* 0.05%/ 0.32%*
Col 5 0.08%/ 0.27%* 0.02%/ 0.03%* 0.1%/ 0.25%* 0/ 0.16%* 0.03%/ 0.13%*
Col 6 0.12%/ 0.3%* 0.03%/ 0.05%* 0.05%/ 0.1%* 0.06%/ 0.2%* 0.08%/ 0.3%* 
Col 7 0.3%/ 0.72%* 0.07%/ 0.07%* 0.1%/ 0.18%* 0.06%/ 0.25%* 0.13%/ 0.48%*
Col 8 0.62%/ 1.5%* 0.05%/ 0.2%* 0.1%/ 0.25%* 0.1%/ 0.36%* 0.12%/ 0.24%*
Col 9 0.38%/ 2.0%* 0.08%/ 0.2%* 0.2%/ 0.6%* 0/ 0.58%* 0.2%/ 0.58%* 

Note: * represents the calculated results given by Banks’ model 
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4.6 Application of the flow model to separation bubble  
 

The improved flow model is also applicable to separation bubble, which is a two-dimensional 
vortex. The separation bubble is generated when the flow is normal to the leading edge. The 
pressures on the large-span roof at a wind direction of 90° (Fig. 15) were set as measured values 
for this portion of the study. The fitness of the flow model for predicting mean and peak suction 
beneath the cores of the separation bubble was verified by the measured results.  

 
4.6.1 Prediction of mean suction beneath the cores of separation bubble  
Eq. (23) is used to calculate the mean suction beneath the cores of the separation bubble. In Eq. 

(23):  
   =90° (normal to the leading edge); 

  
___ ____

/ 1.04T refU U  according to the fitting curve in Fig. 19; 

 To evaluate the parameters of the separation bubble, conical vortices at a wind 
direction of 30°  

(Table 4, vortex strength is 2.45) were used as a reference. The ratios 2( / )TU U  and  /cR h  
belong to the separation bubble and the referenced conical vortices were analyzed. Based on these 
results, the ratio of intensity of the separation bubble to that of the referenced conical vortices was 
determined according to Eq. (19). It is clear from Table 3 that the integration in the vortex region 
(0.2<a<1) accounts for the largest percentage of vortex strength. Therefore, closer attention was 
paid to 2( / )TU U  in the vortex region (0.2<a<1). In addition, the curvature radius of the 
streamlines in the separation bubble was difficult to calculate, so its influence was ignored. The 
ratio  /cR h  was substituted with that of h (the height of the vortex core). To determine the ratios 

2( / )TU U  and h, the streamlines and colored charts showing the velocity in the separation bubble 
and the referenced conical vortices are illustrated in Fig. 27 using the PIV experiment.  

 
 
 

(a) Separation bubble (b) conical vortices (wind direction of 30°)

Fig. 27 Streamlines and colored charts showing the velocity in the separation bubble and conical vortices
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Table 7 Parameters of the separation bubble and conical vortices 

Parameters 2( / )TU U h  

Separation bubble  2
2 / 8  14 mm 

Conical vortices (wind direction of 30°)  2
2 / 6  21 mm 

 
The parameters of the separation bubble and the referenced conical vortices can be estimated 

from Fig. 27, as shown in Table 7.  
Based on Table 7 and Eq. (19), the ratio of intensity for the separation bubble to that for the 

referenced conical vortices was calculated to be 0.375. According to Table 4, the intensity of the 
referenced conical vortices at a wind direction of 30° is 2.45, so the intensity of the separation 
bubble is 0.92, which is approximate to the proposed strength of 0.9 by Banks in the literature 
(Banks and Meroney, 2001). The mean suction beneath the cores of the separation bubble can then 
be calculated according to Eq. (23), for a result of 

____

1.077vCp   . (The intensity of the separation 
bubble was assumed to be uniform in the transverse direction, so the mean suction in the 
transverse direction was identical.).  

The calculated 
____

1.077vCp    was compared with the measured values to identify the 
effectiveness of the improved flow model. According to literature (Sun et al. 2009), the coverage 
area of the separation bubble on the large-span roof is approximately Y=155 mm (Fig. 28). Five 
sections normal to the leading edge were set as research objects within this range (Fig. 28: The 
section number is the number of the tap on the leading edge). The conditional sampling referenced 
in Section 4.4 was still used to calculate the pressure time series of the cores for different sections. 
The mean of the pressure time series was interpreted as the measured values of 

____

vCp . Considering 
the symmetry of the flat roof, typical sections were only selected in the bottom half of the roof 
(Fig. 28). The comparison of the calculated 

____

1.077vCp    and the measured 
____

vCp  for different 
sections is given in Fig. 29. X represents the distance between the section and the bottom edge of 
the roof (Fig. 28). Because the intensity of the separation bubble given by Banks is close to the 
evaluated intensity in this study, the calculated results from Banks’ model were not provided in 
this Section.  

 
 

Fig. 28 Typical section of the separation bubble (unit: mm)
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Fig. 29 Comparison of the calculated and measured mean suction beneath the cores of the separation 
bubble (wind direction of 90°) 

 
 
Fig. 29 indicates that the calculated mean suction beneath the cores of the separation bubble is 

larger than the measured values. The errors of the calculated results were less than 13%, which 
indicates an adequate prediction. The evaluated intensity of 0.92 for the separation bubble on the 
large-span flat roof is reasonable.  

 
4.6.2 Prediction of the peak suction beneath the cores of the separation bubble  
The peak suction beneath the cores of the separation bubble were also calculated using Eq. (25), 

and the incident velocity is shown in Fig. 30. As mentioned in Section 4.5, the maximum of the 
pressure time series beneath the cores of the separation bubble (after conditional sampling) was 
taken as the measured value. 

From Fig. 30, the ratio of maximum to mean velocity was calculated as  
____

max / 1.57ref refU t U  , 

and the resulting max 2.655vCp    was calculated according to Eq. (25). Fig. 31 gives the 
comparison between the calculated and measured peak suction beneath the cores of the separation 
bubble. 

Table 8 shows the exceeding probabilities of the calculated peak suction ( max 2.655vCp   ), 
compared with the measured pressure time series of the cores. The evaluation is illustrated in Fig. 
26. 

 
 

 
Fig. 30 Incident velocity at a wind direction of 90° 
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Fig. 31 Comparison of the calculated and measured peak suction beneath the cores of the separation 
bubble 

 
 
Table 8 Exceeding probabilities of calculated peak suction beneath the cores of the separation bubble (wind 

direction of 90°) 

Section Col. 62 Col. 71 Col. 83 Col. 91 Col. 100 
Exceeding 

probabilities 
0.01% 0.03% 0.1% 0.1% 0.05% 

 
Fig. 31 and Table 8 indicate that the errors of the calculated peak suction are less than 15%, 

with exceeding probabilities of less than 0.1%. In addition, the calculated peak suction was less 
than the measured values. This is due to the fact that the non-Gaussian pressure fluctuations under 
the separation bubble lead to erratic large spikes in the pressure time series. However, the 
exceeding probabilities in Table 8 imply that fluctuations beyond the predictions are rare. With a 
higher reliability, the calculated peak suction could ensure the safety of large-span roofs. Therefore, 
the improved flow model can not only apply to the prediction of suction beneath conical vortices, 
but it is also appropriate for predicting suction beneath separation bubble on large-span roofs.  

Research has indicated that the quasi-steady theory underestimates the actual peak suction in 
the flow separation region (Banks et al. 2000), which is due to the quasi-steady theory assuming 
that pressure fluctuations on roofs are generated by the fluctuating component in the incident flow, 
while the crucial effect of vortices on pressure fluctuations is ignored. The flow model in this 
study establishes a relationship between the incident flow, the vortex and the roof suction. Based 
on this model, the peak suction beneath conical vortices and separation bubble were calculated, 
and these calculations’ errors and exceeding probabilities were kept within a reasonable range.  
 
 
5. Conclusions 
 

Through a PIV experiment, the existence of separation bubble and conical vortices on a 
large-span flat roof was verified. A two-dimensional flow model of conical vortices was improved 
and validated based on the measured velocities in vortices. According to this flow model, the 
intensities of the conical vortices under different wind directions were given.  The main 
conclusions of this work can be summarized as follows:  

 When the flow is normal to the leading edge, separation bubble occurred on the 
large-span flat roof.  Negative vorticity is distributed around the separation bubble, with 
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their peak corresponding to the vortex core. The magnitude of the negative vorticity 
decreases downstream. Under a cornering flow, conical vortices are observed near the 
leading edge of the flat roof. The appearance of conical vortices is influenced by the wind 
angle.  When the wind changes from running along the diagonal to deviating from the 
diagonal of the roof, the conical vortex close to the approaching flow changes from a 
circular into a more oblong shape. The peak negative vorticity is then located near the 
leading edge and around the vortices. Positive vorticity is distributed uniformly above the 
conical vortices.  

 The vortex can be seen as an amplifier that amplifies and transfers pressure above the 
vortex to the roof surface. This amplification factor demonstrates the intensity of the 
vortices. The curvature radius of the streamlines in the vortices and the rotational velocity 
of the vortices are confirmed to have an influence on the vortex strength. A larger 
curvature and faster rotational speed cause greater suction beneath the vortices, with the 
latter former playing a more important role.  

 The mean suction beneath the cores of the conical vortices was calculated using both the 
improved model and Banks’ model. The results indicate that the calculated suction given 
by the improved model in this study is larger than that from Banks’ model. Compared 
with the measured values, the errors of the mean suction from the improved model are 
less than 10%, while those from Banks’ model are less than 15%. Therefore, the flow 
model of this study is more accurate in predicting mean suction beneath the cores of 
conical vortices.  

 The quasi-steady theory was corrected by considering the effect of vortices on generating 
pressure fluctuations. Based on this idea, the improved model and Banks’ model were 
employed to predict peak suction beneath the cores of the conical vortices. Compared 
with the measured values, the errors of the peak suction given by the improved model are 
less than 13%, and the exceeding probabilities are less than 0.5%, while errors of the 
calculated results from Banks’ model are less than 20%, with the exceeding probabilities 
less than 1%. Therefore, the improved model predicted peak suction with higher 
reliability could ensure the safety of large-span roofs exposed to conical vortices.  

 The intensity of the separation bubble on the large-span roof is evaluated using the 
measured velocities and height of the vortex core. Based on this procedure, the mean and 
peak suction beneath the cores of the separation bubble were predicted using the 
improved model. Compared with the measured values, the errors in the calculated mean 
suction are less than 13%, while errors in the peak suction are less than 15%, with 
exceeding probabilities of less than 0.1%. Consequently, the improved flow model can 
also apply to the prediction of suction beneath the cores of separation bubble.  
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