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Abstract.    This paper presents a method to extract flutter derivatives of bridge decks based on a 
combination of the computational fluid dynamics (CFD), system simulations and system identifications. The 
incompressible solver adopts an Arbitrary Lagrangian-Eulerian (ALE) formulation with the finite volume 
discretization in space. The imposed sectional motion in heaving or pitching relies on exponential time series 
as input, with aerodynamic forces time histories acting on the section evaluated as output. System 
identifications are carried out to fit coefficients of the inputs and outputs of ARMA models, as to establish 
discrete-time aerodynamic models. System simulations of the established models are then performed as to 
obtain the lift and moment exerting on the sections to a sinusoidal displacement. It follows that flutter 
derivatives are identified. The present approaches are applied to a hexagon thin plate and a real bridge deck. 
The results are compared to the Theodorsen closed-form solution and those from wind tunnel tests. 
Satisfactory agreements are observed. 
 

Keywords:    bridge flutter; CFD; discrete-time aerodynamic model; system identification; system 
simulation 
 
 
1. Introduction 
 

Wind effects are of great importance in design and construction of long-span bridges due to 
their slenderness and flexibility. The dynamic stability of super-long span bridges at high wind 
speeds often governs the structural design due to the potentially catastrophic nature of flutter 
instability. When dealing with the flutter instability, the self-excited forces arising from the motion 
of the bridge deck in airflow can be treated as a linear combination of displacements, velocities 
and flutter derivatives (Scanlan and Tomko 1971). Being depended on bridge deck section shape 
and as a function of reduced wind speeds, the flutter derivatives can be applied to a full bridge as 
to evaluate bridge flutter instability. Wind tunnel tests and numerical calculations based on the 
CFD are often employed to identify the flutter derivatives of bridge decks. The CFD calculation 
for the flutter derivatives is a new and progressive approach that is increasing in strength and 
sophistication with better visualization and flexibility. Although CFD simulation is still under 
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development, it will become more powerful with the improvement of computer resource and CFD 
software, especially in bridge early design stage. 

Up to now, many researchers devoted their efforts on CFD calculations to predict the flutter 
derivatives. According to currently available reports, the methods can be categorized into two 
groups based on imposed vibration mode of bridge deck in CFD simulations. The first one is the 
imposed harmonic excitation of bridge decks with various schemes. Larsen and Walther (1997) 
developed a grid-free discrete vortex method which is applicable to bridge decks to extract flutter 
derivatives. Other reports include the finite difference method (FDM) (Jeong and Kwon 2003, Zhu 
et al. 2009), the finite volume method (FVM) (Vairo 2003, Shirai et al. 2003, Zhu et al. 2007, 
Starossek and Aslan 2009) and the finite element method (FEM) (Frandsen 2004, Ge and Xiang 
2008). In this group, separate CFD simulations in vertical and torsional vibration under each 
reduced wind speed are required to calculate the eight flutter derivatives of bridge decks based on 
system identification (Scanlan and Tomko 1971).  

Although the first group using the harmonic vibration is very straightforward, this method has 
to carry out repeat simulations under each reduced wind speed, which may be time-consuming and 
not as efficient as the second group. In the second group, forced vibration of bridge decks is still 
used in CFD, but the vibration mode is no longer unique-frequency motion, but changes to 
multi-frequency or band-ranged frequency motion. Brar et al. (1996) made the first attempt to 
apply the indicial approach by using the FEM-based CFD calculations, so as to numerically 
compute the indicial aerodynamic forces exerting on a thin airfoil and a rectangular bluff-body 
section. Flutter derivatives were obtained through the Fourier transform with the indicial functions. 
Compared with the method using the imposed harmonic motion on bridge decks, the indicial 
approach saves significant CPU time since only one simulation is needed to evaluate the transfer 
function in heaving or pitching motion, when dealing with the whole range of reduced wind speed 
of interest. However, the study assumed a uniform velocity field in space at the initial time to 
simulate the step-wise motion, which did not respect the real physics of transient flow. Fransos and 
Bruno (2006) extended the method with a smoothed-ramp motion to numerically calculate the 
aerodynamic transfer functions. The flutter derivatives can be simply obtained by evaluating the 
ratio between the Fourier transforms of output and input, provided that the inverse of the latter is 
not singular. They further extended the method to investigate Reynolds number effects on flutter 
derivatives of a flat plate (Bruno and Fransos 2008), and studied the characterization of the 
aerodynamic and aeroelastic behavior of a flat plate under uncertain flow conditions (Bruno et al. 
2009). Huang (2011) presented an imposed multi-frequency vibration mode, which is a direct 
extension of the method in the first group. 

This paper presents a method to identify flutter derivatives of bridges based on CFD 
calculations, system identification and system simulation. The present method employs a smooth 
exponential function as the imposed motion on bridge decks in CFD. The time histories of 
aerodynamic forces acting on the bridge deck can be calculated. Then the ARMA model will be 
used as a function to relate the imposed motion and the aerodynamic time histories. This will allow 
one to establish a discrete-time aerodynamic model of the bridge deck. The aerodynamic model 
will be used to simulate output of the aerodynamic forces to an input of harmonic vibration. Then 
flutter derivatives of bridge decks can be identified by using the Scanlan’s model. This method has 
been applied to a hexagon thin plate and a real bridge deck, and the identified flutter derivatives 
are compared with the Theodorsen closed-form solution and those from wind tunnel tests. 
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Fig. 1 Bridge deck in smooth flow with two degrees of freedom 

 
 
2. Governing equations and CFD procedures 
 

Consider a bridge deck enveloping in smooth flow and oscillating with two degrees of freedom, 
as shown in Fig. 1. Through applying ALE formulations to the rigid body with oscillating 
boundaries, the equations governing the two-dimensional incompressible flow around the bridge 
deck can be expressed as follows (Nomura 1992) 
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    (1c) 
where x  and y  are the along-wind and cross-wind coordinates in a fixed reference frame, 

respectively; u  and v  denote the absolute velocities in x  and y  directions, respectively; t is 

the time; p  the static pressure;   the molecular viscosity;   the circular frequency of a 

moving reference frame in the fixed reference frame; ru  and rv  the fluid velocities relative to 
the moving reference frame, respectively. In Eq. (1), no turbulence models have been adopted, 
since the present study involves low Reynolds number flow, as indicated in Subsection 7.1 and 7.2. 

In numerical calculations, Eq. (1) is firstly transformed into a conservation form as to be 
adopted by the FVM. In order to facilitate the incompressible computation, a second-order 
Projection scheme (Zhu et al. 2009) is employed as to decouple the pressure and velocity fields. In 
the first step, estimation on the velocity field is obtained based on the modified momentum 
equation. It follows that the pressure field is evaluated through solving the Poisson-type equation 
with the obtained velocity estimation. In the third step, with the obtained pressure field the 
estimated velocity is updated in order to get an improved estimation. 

The decoupled equations are then discretized in space on the staggered grids, with velocity 
variables defined on cell edges and pressure variables defined in cell center. For spatial 
discretization of the equations, a second-order upwind scheme for the convective terms is used, 
with a second-order central-difference scheme for both the diffusive terms and pressure terms, 
while advancement in time is accomplished by the second-order implicit Euler scheme. The 
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resultant difference equations are then solved by the Tri-Diagonal Matrix Algorithm. A multi-grid 
strategy is employed in order to improve the iterative convergence of the pressure equation. A 
self-developed code based on the Fortran Language is used to perform CFD simulations. More 
details can be found in the reference (Zhu et al. 2007). 

 
 

3. Imposed motion on bridge decks 
 

From the system point of view, the fluid field around the bridge deck can be treated as a system. 
In order to get the system’s information, system identification technique may be applied. 
Commonly, the system’s inherent features can be recovered based on the system’s input and output 
information, where the system’s output is the response of the system to the input. However, in 
order to accurately identify the system, suitable input is required as to fully excite the system and 
get the desired response. For the aerodynamic system of bridge decks, suitable imposed motion on 
the bridge deck as input which can excite the desired system response would be preferable. Such 
kind of imposed motion can be as a step-wise displacement or angle change, or as the white-noise 
time series. However, step-wise changes of displacement will result in computational difficulties in 
CFD, in which its derivatives versus time correspond to an infinite velocity. Modified step change 
during a limited time will always involve non-physical oscillations (Zhu et al. 2007), even with 
numerical divergence because of the large and sudden velocity change. For the white-noise time 
series as the imposed motion, it will be very expensive since a huge amount of time steps have to 
compute as to effectively identify the system. 

For flutter prediction of a real bridge, normally the flutter derivatives will be required under a 
range of reduced wind speeds of interest. One can choose the input time series with its main 
energy distributed over a frequency range of interest. The smooth-wise exponential function 
(Fransos and Bruno 2006), which can be easily implemented in CFD and as shown in Eq. (2), is 
adopted and discretized into time series, and used as the imposed motion of the bridge deck in the 
CFD. 

   2
0

0ttwedtV             (2) 

The corresponding velocity can also be discretized into time series, and are imposed to the rigid 
bridge section as the boundary conditions in CFD: 

     2
00

02 ttwedttwtV           

                  tVttw 02               (3) 

where 0d  is the amplitude, corresponding to the maximum displacement imposed on the bridge 

section, which should be always limited in order to satisfy the linear assumption of small 
disturbance; 

0t  is the moment when V(t) reaching the peak; w  denotes the effective width of the 

exponential function, representing the energy distribution in the frequency domain. 
Fig. 2 plots three exponential time series with the same amplitude d0/B in heaving motion and 

different value of w; Fig. 3 shows their energy distribution over the reduced frequency axis by 
means of power spectrum analysis. From the figure, one can see that their dominant energy is 
concentrated on a limited range of frequency, and a small value of w corresponds to a narrow 
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shoulder. It should be pointed out that, in order to avoid any computational difficulty, such as 
numerical oscillation and divergence, a symmetric exponential time series with the beginning and 
ending data almost close to zero should be employed. Thus a small value of w means a long time 
series. For bridge flutter analysis, flutter derivatives are often required under a range of the 
reduced wind speed U/fB, such as 2~12. Since U and B are always prescribed in CFD, a range of 
frequency means a range of reduced wind speeds, with the low frequency corresponding to the 
high value of reduced wind speed. Based on the consideration of CPU time and the desired 
reduced wind speed, the exponential function with value w of 150 will be used in the following 
study.  

 
 

0 1 2 3 4 5 6
0.000

0.005

0.010

0.015

0.020

0.025

 w=100
 w=150
 w=300V

/B

tU/B

Fig. 2 Exponential function with different w 
 
 

0 1 2 3 4 5

-120

-90

-60

-30
 w=100
 w=150
 w=300

M
a

gi
tu

de
(d

B
)

fB/U

Fig. 3 Power spectrum analysis of time series 
 
 

4. Establish aerodynamic models of the bridge deck 
 

When the bridge deck is forced to undergo an imposed heaving or pitching motion, the 
aerodynamic forces acting on the bridge deck can be evaluated from the CFD. In this paper, the 
interval for both the imposed motion and the collecting aerodynamic forces uses the same time 
step size. Treating the imposed motion of the bridge deck as the input and the computed 
aerodynamic forces as the outputs, the relationship between the input and output can be 
established based on system identification techniques. Such kind of relationship between the input 
and output is the inherent characteristic of bridge aerodynamics, and can be obtained by system 
identification. 
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 In this paper, the Auto-Regressive Moving Average (ARMA) model (Brockwell and Davis 
2009) is employed to establish a relationship between the imposed motion and the aerodynamic 
forces. In the following, this kind of established relationship is referred to as 'aerodynamic 
models'. 

It should be stressed that the aerodynamic forces from the CFD solution include both the lift 
and moment either for the heaving or pitching motion. The unique-input double-output ARMA 
model should be employed straightforwardly to train the input-output relationship. However, using 
unique-input double-output ARMA models will complicate the identification and will be 
time-consuming. Therefore, this paper employs the unique-input unique-output ARMA model to 
simplify the identification. Four ARMA models are applied herein: a lift model for the lift induced 
by the heaving motion (hereafter referred to as lift-heaving model); a moment model for the 
moment induced by the heaving motion (hereafter referred to as moment-heaving); a lift model for 
the lift induced by pitching motion (hereafter referred to as lift-pitching) and a moment model for 
the moment induced by pitching motion (hereafter referred to as moment-pitching). The present 
results indicate that the unique-input unique-output ARMA model is suitable for identification of 
flutter derivatives of bridge decks. 

The relationships between the aerodynamic forces and the imposed motion in the four models 
can be assumed to satisfy the following discrete-time ARMA model 
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             (4) 

where y(t) is the output (the aerodynamic force); V(t) is the input (the imposed motion); ai and bj  
are the scale coefficients corresponding to the input and output terms, respectively; na and nb are 
the orders of the respective polynomials. Eq. (4) indicates that the aerodynamic output at time t is 
the sum of the weighted aerodynamic outputs and the weighted displacement inputs at present and 
past time steps. 

The aerodynamic forces acting on the bridge deck may contain a steady value, such as the 
steady static lift and moment before the forced displacement imposed. While Eq. (4) does not 
include any constant terms as to account for the steady state in output. Hence, before system 
identification an additional step is necessary to remove the static forces from the computed force 
time histories. In the following, the aerodynamic time series with the steady value removed will 
still be called the aerodynamic forces. Herein, the data from the CFD, including the time step size, 
the imposed bridge deck motion and the computed aerodynamic forces, will be called as “Training 
data”, and one can use them to train the input-output relationship based on the ARMA model, and 
finally obtain the bridge deck aerodynamic models. 

In Eq. (4), two groups of parameters, i.e., the orders of the respective polynomials and the 
corresponding scale coefficients, should be determined. A feasible step is firstly assuming the input 
and output orders, and then fitting the corresponding input and output coefficients. With the 
training data, these input and output model coefficients can be fitted straightforward by using the 
least square algorithm. This can be done on the software platform of MATLAB. Then one can 
transfer to other combination of the input and output orders, and fit their input and output 
coefficients. 

For various ARMA models with different input and output orders, attempt should be made to 
find an accurate one, since they may present different predictions even to the same input. In order 
to choose an ARMA model which can give a more accurate prediction, comparisons of the output 
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between different ARMA models to the same input should be carried out. One can define a 
parameter reflecting the discrepancy between the computed aerodynamic forces from CFD and 
those simulated by the ARMA model, where the imposed sectional motion is used as the input in 
this study. Bear in mind that the same time step size as in the CFD should be adopted. The defined 
parameter can take the following form   

n

yy
n

i
ii




 1

2)ˆ(
              (5) 

where n is the number of the training data; yi is the aerodynamic force from the CFD when the 
bridge deck undergoing the imposed motion; iŷ  is the aerodynamic force simulated by the 

ARMA model to the same imposed motion. 
In this paper, the lift-heaving model will be chosen as an example. The input and output orders 

are set in the range from first to 30th order and from zero to 30th order, respectively. If the input 
order is first chosen, such as the 2nd, then successively choosing different output order is 
performed. With the matched input and output orders, one can fit the model’s input and output 
coefficients, and use this established model to carry out model simulation with the same imposed 
motion. Then the discrepancy of this ARMA model between the CFD calculation and model 
simulated can be obtained from Eq. (5). After testing all the input and output orders in the 
prescribed range, one can compare the discrepancy of different ARMA models with different input 
and output orders, and find the one with the minimum value of  . This ARMA model can be 
regarded as the desired discrete-time lift-heaving model, and will be used to predict the lift 
induced by bridge deck heaving motion.  

 
 

5. Model simulations to the simple-harmonic motion 
 

After establishing the discrete-time aerodynamic models of the bridge deck, one can carry out 
model simulations to any inputs, provided that the frequency contents of the motion can match the 
frequency feature of the established model. In the following, the sinusoidal function is discretized 
into time series and used as model input in heaving and pitching motion 

 ftXX 2sin0                                (6) 

where 0X  is the amplitude, i.e., vertical maximum for heaving or torsional maximum for 

pitching, which is equal to 0d  in Eq. (3); f the frequency and can be set up as to get the reduced 

wind speeds based on U/fB. Since U and B are already prescribed in CFD, varying the frequency 
can result in different reduced wind speeds. Hence in model simulations, the frequency of the 
simple-harmonic time series can be calculated based on the desired reduced wind speed with the 
known value of U/B=10. This strategy will be consistent with the CFD if the same time step size is 
used in the model simulation. Because the established aerodynamic models represent the 
aerodynamic inherent features of the bridge deck over the frequency of interest, certainly the 
aerodynamic models can simulate aerodynamic forces to a suitable displacement inputs. The same 
time step size as that in CFD is used for model simulations, because the CPU time required for 
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model simulations is significantly smaller than that in CFD. In order to extract flutter derivatives 
under a couple of desire reduced wind speeds, a couple of individual model simulations should be 
performed, in which a different frequency in Eq. (6) will be used.  

 
 

6. Identification of flutter derivatives 
 

The self-excited aeroelastic forces acting on the bridge deck are commonly expressed in the 
following form (Scanlan and Tomko 1971),  
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where K  is defined as UB /  and is known as the reduced frequency, in which   denotes 

the circular frequency; *
iH  and  4,3,2,1* iAi  are the flutter derivatives. Eq. (7) indicates that, 

with the input of simple-harmonic motion and its first derivatives (velocity), as well as the 
simulated time histories of aerodynamic forces, the flutter derivatives can be identified using a 
system identification technique. In this paper, the least square algorithm is employed. 

Considering the pure heaving motion, Eq. (7) can be simplified as follows 
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where the heaving displacement and velocity at a certain time step i  are marked as ih  and ih , 

respectively; the lift and moment at time step i  are denoted by iL  and iM , respectively. 

 Eq. (8) can be rewritten in the following matrix form 
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Let  
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then, Eq. (9) can be rewritten as 
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Eq. (13) with total n time-step data can be formulated as 
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Eq. (14) can not be solved exactly if 2n  because it is over-determined. However, it can be 
evaluated by using the least square method, which produces an estimation of the flutter derivatives 
as follows 
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A similar way can be used to recover the flutter derivatives relating to the pitching motion. 
 
 

7. Applications and results 
 

7.1 Identification of flutter derivatives of a hexagon thin plate 
 
To validate the present approach for identification of flutter derivatives, a hexagon thin plate 

model is taken as a case study. This plate section has a width of 450 mm and height of 20 mm, 
with sharp corners at windward and leeward side. It was used as a model in wind tunnel 
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experiments (Gu et al. 2000, Gu and Qin 2004), as shown in Fig. 4.  
Fig. 5 shows the computational domain and grids around the hexagon thin plate. The 

computational domain is a rectangle, with inlet, outlet and side boundaries being 15B (B the plate 
width) away from the plate. The total grids number is 130×98, non-uniform structured meshes are 
employed in order to reflect the variable gradients in the computational domain. The grids near the 
surface of the plate are highly stretched, with the first grid space of 0.005B normal to the wall. 
Additionally, a multi-grid algorithm based on “V” cycle iteration, with three layers of grid system 
and every second fine grid being the coarse one, is employed as to improve the iterative 
convergence when solving the pressure equation (Zhu et al. 2009). During the CFD calculation, 
the exponential time series are imposed to the hexagon thin plate when undergoing heaving or 
pitching motion. The value of 0d  for heaving or pitching motion is 0.025B and 3o, respectively. 

The Reynolds number is of 300, and the computational time step size is 0.0005s. 
With the present ALE formulation, the grid system is fixed with the rigid section and moving 

synchronously according to the imposed motion. At each time step, the no-slip and no-penetration 
conditions are applied to the surface of the thin plat. At each time step, velocity of the moving 
reference frame can be projected onto the grids system, with the incoming wind speed onto the 
inlet, the top and bottom boundaries. For the Projection-2 scheme on staggered grids, the 
Neumann boundary condition for pressure is applied on the outlet boundary. 

 The lift and moment coefficients are respectively defined as follows  

)2/1/( 2BULCL                (16a) 

)2/1/( 22BUMCM                   (16b) 

 

 
Fig. 4 Cross section of hexagon thin plate (unit: mm) 

 

 
(a) (b) 

Fig. 5 Computational domain and grids around hexagon thin plate (a) Computational domain and grids 
and (b) Close-up view 
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(a) (b) 

Fig. 6 Comparison of aerodynamic coefficients between model simulation and training data in heaving 
motion (a) Lift coefficient and (b) Moment coefficient 

 
 

(a) (b) 

Fig. 7 Comparison of aerodynamic coefficients between model simulation and training data in pitching 
motion (a) Lift coefficient and (b) Moment coefficient 

 
 
When the hexagon thin plate is forced to undergo imposed heaving or pitching motion, the 

aerodynamic forces acting on the plate can be calculated. Their coefficients are plotted by dash 
lines and labeled (Training Data) in Figs. 6 and 7.  

The training data of the system includes the computed aerodynamic forces and the imposed 
motion at each time step. With the training data and system identification technique applied to the 
ARMA model, one can obtain four discrete-time aerodynamic models, with more accurate 
predictions on the aerodynamic forces: the lift-heaving model with 22nd-order input and first-order 
output; the moment-heaving model with only 22nd-order input; and 12th-order inputs and first-order 
output for both the lift-pitching and moment-pitching models. The solid lines in Figs. 6 and 7 
(labeled as Model Response) show the aerodynamic forces simulated by these four models to the 
imposed motion in CFD. It is evident that all of the model responses and their training data have 
the same trends. Except for the response produced by the lift-pitching model, the model responses 
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match the training data fairly well.  
Different model orders have been tried to fit the input and the output when dealing with the 

lift-pitching model, in order to improve the discrepancy between the simulated time series and the 
training data. It is found that decreasing the order of input and output will enlarge the discrepancy, 
while to some extent, increasing the order will not apparently improve the situation. Further 
increasing the order may result in high-frequency numerical oscillation around the training data, 
and may even result in divergence. Considering the computational efficiency, lower order models 
will be adopted when different models present almost the same accuracy.  

In order to predict the aerodynamic force (i.e., the outputs) of the models to a simple-harmonic 
displacement input, model simulations are carried out with the sine function. Value of X0 is 0.025B 
for heaving and 3o for pitching. The time step size is 0.0005s. Fig. 8 plots time histories of the 
simulated lift coefficients of the lift-heaving model, as well as the moment coefficients of the 
moment-heaving model, both to a simple-harmonic heaving motion with a frequency of 2 Hz (see 
Fig. 9). One can see that both of the simulated time histories appear in a simple-harmonic mode, 
with phase lags included between the input and output.  
 
 

(a) (b) 

Fig. 8 Time histories of force coefficients simulated by aerodynamic models of hexagon thin plate in 
heaving motion (a) Input and Lift coefficient, (b) Input and Moment coefficient 
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(a) (b) 

Fig.10 Time histories of force coefficients simulated by aerodynamic models of hexagon thin plate in 
pitching motion (a) Input and Lift coefficient, (b) Input and Moment coefficient 
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Fig. 11 Identified flutter derivatives of hexagon thin plate in comparison with Theodorsen closed-form 

solution and results from wind tunnel test 
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Fig. 10 shows the simulated time histories of the lift coefficients from the lift-pitching model, 
as well as the moment coefficients from the moment-pitching model, both to the simple-harmonic 
pitching motion with a frequency of 5 Hz. 

With the time histories of both input and output, the flutter derivatives at a given reduced wind 
speed can be identified. In order to extract the flutter derivatives at a different reduced wind speed, 
procedures include changing the frequency of the input, repeating the model simulation steps and 

performing system identification. The identified flutter derivatives *
iH  and *

iA  (i=1, 2, 3, 4) at 

various reduced wind speeds, together with the Theodorsen closed-form solution (Theodorsen, 
1936) and the results from the wind tunnel (Gu et al. 2000), are plotted in Fig. 11. The wind tunnel 
test (Gu et al. 2000) was carried out in smooth flow with the Reynolds number ranging from 
1.3×105 to 7.2×105. One can see that the present results share common trends with the closed-form 

solution and those from wind tunnel tests. Except for *
2H , the identified flutter derivatives are 

close to results from the wind tunnel.  
It should be pointed out that the employed governing equations for fluid do not include the 

turbulent model, while the present Reynolds number is much lower than that in wind tunnel. It 
seems that the flutter derivatives of sharp corner sections may be insensitive to Reynolds number 
and turbulence (Frandsen 2004). 

 
7.2 Identification of flutter derivatives of a real bridge deck 
 
The present approach is applied to the Humen Bridge. This bridge is located in the southern 

part of China crossing the Zhujiang River, which is one of the most active typhoon-prone regions 
in the world. Flutter stability evaluation is of first importance when designing long-span bridges in 
such areas. This is a single-span two-hinge suspension bridge with the central span of 888 m. Its 
stiffening girder is a streamlined box girder of 35.6 m width and 3.012 m height, as shown in Fig. 
12.  

Fig.13 shows the computational grids around the bridge deck. The computational domain and 
grids, initial and boundary conditions, as well as the Reynolds number and the imposed motion are 
almost the same as those used in the hexagon thin plate, except that the first grid space is of 
0.004B normal to the wall. The computational time step size is of 0.0004s. 
The aerodynamic forces acting on the bridge deck undergoing imposed motion are calculated, as 
given in Figs. 14 and 15, where the dashed lines are labeled (Training Data). Based on the training 
data, the employed system identification technique and model screening method, four aerodynamic 
models are established: the lift-heaving model with 12nd-order input and zero-order output; the 
moment-heaving model with 10nd-order input and 10nd-order output; 12nd-order input and 
first-order output for both the lift-pitching and the moment-pitching models. Figs. 14 and 15 show 
the simulated aerodynamic coefficients, which are labeled as Model Responses of the four models 
to the imposed motion in CFD. Clearly, all the model responses and training data have the same 
trends. In particular, the force coefficients simulated by the lift-pitching and moment-pitching 
models closely match the training data. As for the lift-heaving model, the simulated time histories 
show slight oscillation around the training data. This may be attributed to fact that the model 
includes a higher order of input but without any previous output. 
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S.C.

32m

26.6m

35.6m
 

Fig. 12 Girder cross section of Humen Bridge 
 

Fig. 13 Computational grids around bridge deck 
 

(a) (b) 

Fig. 14 Comparison of aerodynamic coefficients between model simulation and training data in heaving 
motion (a) Lift coefficient and (b) Moment coefficient 

 

(a) (b) 

Fig. 15 Comparison of aerodynamic coefficients between model simulation and training data in pitching 
motion (a) Lift coefficient and (b) Moment coefficient 
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Fig. 16 shows the simulated lift coefficients of the lift-heaving model, as well as the moment 
coefficients of the moment-pitching model, both to a simple-harmonic heaving motion with a 
frequency of 5Hz and amplitude of 0.025B. Fig. 17 shows the lift coefficients from the lift-pitching 
model, as well as the moment coefficients from the moment-pitching model, both to a 
simple-harmonic pitching motion, with frequency of 5Hz and pitching amplitude of 3o. Like the 
situation in the hexagon thin plate, all of the simulated time histories appear in simple-harmonic 
mode. 

The identified flutter derivatives of the bridge deck are plotted in Fig. 18. The direct derivatives, 

i.e., *
1H , *

2A  and *
3A , from the sectional model wind tunnel test (Lin 1995) are also presented in 

the figure. The wind tunnel test was performed in smooth flow, and its Reynolds number ranges 
from 1.5×105 to 4.9×105. It can be seen that the present results match the results from the wind 
tunnel.   

It can be observed again that the identified the flutter derivatives of bridge box girders seem to 
be insensitive to the Reynolds number and turbulence. 

 
 

(a) (b) 

Fig. 16 Time histories of force coefficients simulated by aerodynamic models of bridge deck in heaving 
motion (a) Input and Lift coefficient and (b) Input and Moment coefficient 

 

(a) (b) 

Fig. 17 Time histories of force coefficients simulated by aerodynamic models of bridge deck in pitching 
motion (a) Input and Lift coefficient and (b) Input and Moment coefficient 
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Fig. 18 Flutter derivatives of Humen Bridge deck, (□) flutter derivatives identified by the present method, 
(■) flutter derivatives identified through wind tunnel tests 

 
 

8. Conclusions 
 

In this paper, an approach by means of the CFD and the system identification is presented as to 
establish the discrete-time aerodynamic model, which can be used to identify the flutter derivatives 
of bridge decks based on the system simulation. The main conclusions and discussions can be 
summarized as follows, 
(1)  Compared with the CFD using the imposed simple-harmonic motion to the bridge deck, the 

present method requires only one CFD calculation in heaving or pitching motion, resulting in 
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notable time saving in identification of flutter derivatives. 
(2) The exponential function (Fransos and Bruno, 2006) is adopted as the impose motion in CFD, 

in which the frequency contents are adjustable through varying the parameter w. The 
advantage of this function over the unit-step function is that, it is very easy to be implemented 
in CFD without any numerical difficulties. 

(3) Turbulent models are not included in this study, while the Reynolds numbers are near three 
orders lower than those in wind tunnel. However the identified flutter derivatives of the two 
sections are in good agreement with the results from wind tunnel. It seems that the flutter 
derivatives of sharp corner sections are not sensitive to both the Reynolds number and 
turbulence. 

(4) The present method is only validated for streamlined-box sections. Further studies are 
required as to identify flutter derivatives of bridges with bluff sections. Except for the ARMA 
model, it may also be a good practice to establish the aerodynamic model based on other 
system identification methods. 

(5) Although the idea of aerodynamic models is used to identify flutter derivatives of bridge decks 
based on Scanlan’s models. It may be a valuable practice to employ the aerodynamic model to 
directly predict aeroelastic response of bridges when coupled with the structural system. When 
structural responses evaluated by the dynamic equations are used as displacements input to the 
aerodynamic models, aerodynamic forces acting on the bridge deck can be predicted by model 
simulations. Those aerodynamic forces can be in turn put into in the dynamic equations, and 
one can perform aeroelastic analysis and solve structural response under wind (Zhu et al. 
2007). The important point is that the Scanlan’s model is no longer required when carrying out 
aeroelastic analysis for bridges. Furthermore, it may be feasible to predict flutter instability of 
bridges based on the aerodynamic models. This may be a major advantage when predicting 
aeroelastic response of nonlinear aerodynamic systems, in which large amplitude structural 
vibration and massive boundary layer separation occur. This discuss on the subject is, however, 
beyond the scope of this paper. 
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