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Abstract.  A model is proposed to analyse the along-wind dynamic response of upwind turbines with 
horizontal axis under service wind conditions. The model takes into account the dynamic coupling effect 
between rotor blades and supporting tower. The wind speed field is decomposed into a mean component, 
accounting for the well-known wind shear effect, and a fluctuating component, treated through a spectral 
approach. Accordingly, the so-called rotationally sampled spectra are introduced for the blades to account for 
the effect of their rotating motion. Wind forces acting on the rotor blades are calculated according to the 
blade element momentum model. The tower shadow effect is also included in the present model. Two 
examples of a large and medium size wind turbines are modelled, and their dynamic response is analysed 
and compared with the results of a conventional static analysis. 
 

Keywords:  along-wind dynamic response; blade element momentum model; coherent wind speed field; 

rotationally sampled spectrum; tower shadow effect; upwind horizontal axis wind turbine 

 
 
1. Introduction 
 

In the past three decades the use of wind-powered electrical generators has significantly 

increased throughout the world. Numerous research studies in different engineering fields have 

been carried out, leading to a significant improvement in the performances of wind turbines in 

terms of efficiency of the electric power generation, structural behaviour, noise and so on. For this 

purpose, devices, such as pitching and braking systems, yaw drives and wind vanes are frequently 

included in the system. Nowadays the market offers a wide variety of Horizontal Axial Wind 

Turbines (HAWTs) with two or more blades, ranging from the domestic ones of rotor diameter 

shorter than 2 m up to huge machines with a rotor diameter of more than 120 m. 

In the field of structural engineering, the modelling of wind turbine components, the 

description of turbolence wind speed field and its interaction with the structure, the dynamic 

fatigue behaviour of the constituent materials are some of the main topics currently investigated. 

As far as the simulation of fluctuating component of the wind velocity is concerned, spectral 

methods are commonly used to describe the statistic characteristics of time variation of wind speed. 

Purdue (Sundar and Sullivan 1983) and Sandia (Veers 1984) methods defined the stochastic 
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character of the fluctuating wind velocity acting on HAWTs on the basis of Eulerian spectra 

related to a grid of fixed points in the plane swept by the blades. Connell (1980, 1981), taking into 

account the rotational motion of the blades, evaluated a so-called rotationally sampled spectrum 

which derives from the autocorrelation function of the fluctuating wind speed that a point of a 

rotating blade encounters along its path. In order to perform time-domain dynamic analyses, 

spectra of turbulence wind speed are commonly processed through the harmonic wave 

decomposition, implemented in the Fast Fourier Transform (FFT) algorithm (Yang 1972, 1973), 

while the white noise method is less employed (Powell and Connell 1986). Moreover, the 

fundamental investigations of Shinozuka (1971) and Shinozuka and Jan (1972), pertaining the 

simulation of multidimensional and multivariate coherent field of random processes, are 

commonly applied for describing the characteristics of fluctuating wind speed field.  

In dynamic simulations, wind turbines are commonly treated as multi-body structural systems 

(Murtagh et al. 2005, Chen et al. 2009). Depending on the desired level of details which has to be 

achieved, different parts of the wind turbine (blades, drivetrain shaft, yaw bearing hinge, tower, 

etc.), connected one each other by means of springs, hinges or joints, might be included in the 

global structural system as single or multi degrees of freedom elements. The use of modal shape 

functions allows the reduction of the degrees of freedom and in turn of the computational cost. 

Typically, commercial simulation packages (e.g., the freeware NWTC Design Code FAST, 2013) 

discretize blade deflection through the first two flapwise eigenmodes and one or two edgewise 

eigenmodes. However, in order to describe more complex deformation states of flexible wind 

turbines, full Finite Element (FE) models implementing non-linear beam theories are necessary 

(Hansen et al. 2006). 

The correct description of wind-structure interaction in wind turbines requires advanced 

aerodynamics, and possibly aeroelasticity, concepts. As a matter of fact, conversely to the case of 

steady structures (e.g., the supporting tower of the wind turbine), the evaluation of wind pressure 

along the blades requires to account for their relative motion with respect to wind. To this end, the 

Blade Element Momentum (BEM) model due to Glauert (1935), which is based on momentum 

conservation and the blade element theory, is often implemented in relevant codes due to its 

accuracy and computational efficiency. Over the past few years, thanks to the enhancements in the 

computational methods to solve Eulerian and Navier-Stokes equations, computational fluid 

dynamics simulation packages have become more and more popular, allowing the modelling of 

phenomena as complex as those of the interaction between wind generators in wind parks (Hansen 

et al. 2006). 

In this paper, a plane FE model is proposed to analyse the along-wind dynamic response of 

upwind turbines with horizontal axis under service wind conditions. In order to simulate 

realistically the wind-induced dynamic response of the wind turbine, both the mean and fluctuating 

wind velocities are considered. A logarithmic law is assumed to describe the wind-shear effect of 

the mean component, while the fluctuating component of wind speed is described according to the 

Shinozuka method (Shinozuka et al. 1990) used in conjunction with either rotationally sampled 

spectra for the rotor blades or Eulerian spectra for the tower. The wind turbine is modelled as a 

two-body (blades and tower) coupled structural system. Due to the higher stiffness of the tower in 

comparison to that of the blades, the dynamic response of the blades is determined by modelling 

them as cantilever beams fixedly clamped at the rotor hub. Then the response of the supporting 

tower is analysed by considering the coupling dynamic effects of the vibrating blades (Murtagh et 

al. 2005, Chen et al. 2009). The stiffness of the blades accounts for the geometric effect of radial 

load which depends on the blade position and the angular frequency (Naguleswaran 1994). The 
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dynamic equilibrium equations of blades and tower are solved by the Newmark method of 

constant acceleration (Chopra 1995). The calculation of the aerodynamic loading on the rotating 

blades is based on the BEM theory (Glauert 1935) modified according to Prandtl (Shen et al. 2005) 

and Buhl (2004) models. The phenomenon of tower shadow, due to the fact that each blade 

periodically pass in front of the tower is also taken into account in the present model (Bak et al. 

2001). Finally, two examples of a large and medium size wind turbine are presented, and their 

dynamic response is analysed and compared with the results of a conventional static analysis in 

which the rotor blades are assumed to be fixed and the structure to be subjected to a mean wind 

speed. 

 

 

2. Description of the model 
 

A plane FE model of an upwind HAWT is presented to investigate its along-wind dynamic 

response. The wind is assumed to blow in the direction of the X-axis (Fig. 1), which is normal to 

the vertical plane swept by the blades. 

The structure of the wind generator is modelled as a two-body coupled system (Fig. 2), 

constituted by the rotor blades (rotating at a constant angular velocity Ω) and the tower of support. 

The nacelle and the rotor hub are treated as rigid bodies acting in the model as translational and 

rotational lumped masses attached to the top of the tower. Due to the higher stiffness of the tower 

in comparison to that of the blades, their dynamic response is assumed to be independent from 

tower vibrations. Therefore, the blades are treated as independent rotating cantilever beams fixedly 

clamped at the rotor hub. The relevant coupling effect of the along-wind blade vibrations on the 

tower dynamic response (Murtagh et al. 2005, Chen et al. 2009) is accounted for by treating the 

tower as a cantilever beam (with a top lumped mass representative of the masses of blades, hub 

and nacelle) whose free end is submitted to the summation of the fluctuating shear and moment 

reactions at the blade roots (Fig. 2). The blades and the tower are modelled via Bernoulli-Euler 

plane beam elements. The spanwise variation, within each finite element, of mass and stiffness 

properties of blades and tower due to their tapered shape is accounted for by using linear functions. 

 

 

 
Fig. 1 Front view of a three-blade horizontal axis wind turbine 
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Fig. 2 Side view of the wind turbine and finite element discretization of the coupled blade-tower system, 

where the V degrees of freedom of a single blade are shown along with the blade-tower coupling 

actions VSS(t) and WSS(t) 

 

 

2.1 Dynamic equilibrium of the rotating blades 
 

According to the adopted FE model, the dynamic equilibrium of each blade can be written in 

the following discretized form 

)()()( ttt BBBBBBB FxKxCxM                       (1) 

where 
BM  is the mass matrix of the blade, )(tBC  the damping matrix, )(tBK  the stiffness 

matrix, 
Bx , 

Bx  and 
Bx  are the vectors of the translational and rotational nodal accelerations, 

velocities and displacements, respectively, and )(tBF  is the vector of the wind nodal forces 

acting on the blade at the time t. Equation 1 is solved by means of the Newmark step-by-step 

constant acceleration method (Chopra 1995). 

The mass matrix of the blade 
BM  is formed by assembling the consistent mass matrices of 

each finite element (Cook et al. 1989). The classical Rayleigh method (Chopra 1995) is employed 

to build the damping matrix of the blade )(tBC  as a function of the mass matrix 
BM  and the 

stiffness matrix )t(BK . The coefficients of the Rayleigh mass matrix are calculated on the basis 

of the damping ratio at the first two natural frequencies of the blade. The stiffness matrix )t(BK  

is the sum of the elastic stiffness matrix B,EK  and geometric stiffness matrix B,GK , where the 

latter is obtained by assembling the geometric stiffness matrix of each finite element, )t(e
B,GK , 

given by 

             zd)z()z,t(N)z()t(
eL

eTe
B,G

 0 GGK                    (2) 
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shape functions of the Bernoulli-Euler beam element, z  is the radial coordinate of the finite 

element, )( z,tN e  is the radial force along the element which is a function of the time t. As a 

matter of fact, such a force is the sum of the two radial forces )(zN e
c

 and )( z,tN e
g

 due to, 

respectively, centrifugal action and self-weight of the blade, where the latter is time varying from 

compression to traction depending on the angular position ψ  of the blade. Along the blade, the 

centrifugal radial force )(zNc  is given by the following expression, function of the z-axis 

originating at the blade root (Fig. 2) 

dzzRzmzN Hub

L

z
c

B

)()()( 2                        (3) 

where LB is the flexible length of the blade, )(zm  its mass per unit length and HubR the radius of 

the hub. The gravity radial force )( z,tNg  is a function of the angular position tt Ω )ψ(ψ(  , Fig. 

1), that is 

  dzzmtgztN
BL

z
g  )(cos),(                        (4) 

where g is the gravitational acceleration. It should be noted that, for typical blade geometries and 

rotational speed, the centrifugal radial force is much higher than the gravity radial force. 

The nodal forces )(tBF  due to wind loading, related to the undisturbed local wind speed 

estimated by Shinozuka approach (Shinozuka et al. 1990) (see Section 2.2 below), are determined 

through the BEM model described in (Glauert 1935, Shen et al. 2005, Buhl 2004) (see Section 2.3 

below). 

 

2.2 Aft-fore wind speed field acting on the rotating blades 
 

Generally speaking, the undisturbed wind speed field is described by the three components, u, v, 

w, with respect to the XYZ frame being Z the vertical axis (Fig. 1). Since the along-wind structural 

response is here investigated, only the u component, characterised by a mean, u , and a 

fluctuating, u , term, along the X direction normal to the rotor plane is considered. The wind 

shear effect dictates the mean wind speed profile along the height h, which can be described by the 

following standard logarithmic expression (Simiu and Scanlan 1996)  

)1n()(1n  )( 00 z/H/z/hUhu HubHub                        (5) 

where 
HubU  is the mean wind speed at the hub height, HubH , and 0z  is the surface roughness 

length of the site. The height at the r  coordinate of the i-blade is given by the following 

time-varying function 

) ( cos )( iHub trHt,rh                              (6) 

Where i  is the initial phase angle of the i-blade. 

The fluctuating component )(tu  of the wind speed field is herein treated statistically through 

appropriate power spectral density functions of turbulence. As has been explained by Connell 

(1980), the spectrum of turbulence encountered by a rotating point on the blade, the so-called 

rotationally sampled spectrum, can be quite different from that observed by a fixed point. 
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Depending on the atmospheric gust characteristics, the rotational velocity and the distance of the 

rotating point from the centre of rotation, the energy content of such a spectrum is shifted from 

mid frequencies to high frequencies corresponding to multiples of the rotational frequency on the 

blades. Then according to the PNL method (Powell et al. 1985), the autocorrelation function Rjj()
 

of the turbulence component of the wind speed, )t(u j
 , encountered by the j-node rotating at a 

constant velocity Ω and with a distant r from the centre of the hub, is given by 

 
)(

22
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31

2
)(

6/1
2
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and   = correlation time; 2  = variance of the u-component turbulence;Γ  = gamma function; 

  yujHubj LzR ,
2 / , where Lu,y is the integral length scale of the u-component in the cross-wind 

direction; )L/(U x,uHub   , where x,uL is the integral length scale of the u-component in the 

along-wind direction; K  = modified Bessel function of the second kind of fractional order  . 

According to (Simiu and Scanlan 1996), the standard deviation of the turbulence,  , is 

assumed to be proportional (by a factor function of 0z ) to the friction velocity u  which is 

described by the following expression 











0

*

ln

)(

z

h

huk
u                               (10) 

where k = von Kármán constant (typically equal to about 0.4). According to Wiener-Khintchine 

(Shinozuka 1971) using the Fourier transform of the autocorrelation function )(R jj  , the 

corresponding two-side auto-Power Spectral Density Function (auto-PSDF) is evaluated 





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0

)cos()(
1

)(
2

1
)( 





  dRdeRS kjj

i
jjkjj                (11) 

Where k   is the sampled pulsation equal to  K,...k,...,,2  ( T/ 2 , with T = 
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duration of the signal assumed to be periodic, is the minimum pulsation and K  is the 

maximum pulsation being considered). 

In order to account for the spatial coherence of the fluctuating wind speed field, the signals of 

the wind speed at the blade nodes are spatially correlated with that at the hub centre. Such a signal 

coherence decreases with increasing distance between nodes. Davenport coherence function γjl for 

fluctuating wind speeds )t(u j
 and )t(ul

  at the nodes j and l, respectively, is approximately 

assumed to be equal to (Davenport 1968) 

Hub

jlk

U

C

kjl e)(




 2


                              (12) 

where C is the coherence decay constant (Simiu and Scanlan 1996), jl  is the distance between 

the nodes j and l. 

The fluctuating wind speed field u is described as a one-dimensional multivariate 

homogeneous Gaussian coherent stationary random process with zero mean value through the 

harmonic superposition method of Shinozuka (Shinozuka et al. 1990) 

1,...,2,1])(cos[)(2)(
1 1

 
 

JjtHtu lkkjlk

j

l

K

k

kjlj           (13) 

where J+1 is the total number of nodes where the aerodynamic forces are evaluated 

(corresponding to the nodes of the FE discretization) including the hub centre, lkΦ  is the 

independent random phase angle uniformly distributed between 0 and 2π, and )( kjl ω  is the 

angle explained in Eq. (18) below.  

The quantity )( kjlH  is the jl-term of the lower triangular matrix )( kH  obtained by the 

Cholesky decomposition of the two-side cross-power spectral density matrix )( kS  of the 

process, namely 
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kk  HHS                          (14) 
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The diagonal terms )(S kjj  , corresponding to the values of the auto-PSDF at the pulsation 

k , are obtained for 1,,2  Jj   from the rotationally sampled spectra of the J nodes along 

the blade. The auto-PSDF )(11 kS   corresponds to the two-side Eulerian von Kármán spectrum at 

the hub centre 

595



 

 

 

 

 

 

Andrea Spagnoli and Lorenzo Montanari 
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The off-diagonal terms )( kjlS   are the cross-PSDFs, representing the spatial coherence of the 

wind speed field, which are determined as a function of the auto-PSDFs and of the coherence 

function jl of Eq. (12) through the following expression 

)()()()( kjlkllkjjkjl SSS                       (17) 

Finally, the angle )( kjl   appearing in Eq. (13) is obtained from the term )( kjlH   as 

follows 
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Fig. 3 shows an illustrative example of the PSDF for a fixed point at the hub centre (von 

Kármán spectrum) and for rotating points at different radial positions (rotationally sampled 

spectra). As has been suggested by Yang (1972, 1973), FFT technique is here employed to reduce 

drastically the computational cost in generating the time-histories of the fluctuating wind speed 

field. 

 

 

Fig. 3 Example of power spectral density functions of fluctuating wind speed at the hub height (von 

Kármán spectrum) and at two points along the rotating blade (rotationally sampled spectrum) at a 

distance of 17.5 m and 35 m from the hub centre ( smUHub /15 , mLL yuxu 5.73,,  , 
222 /19.2 sm  and srad /07.2 ) 

 

 

2.3 Aerodynamics wind loads acting on the rotating blades 
 

Owing to the relative motion of blades with respect to the undisturbed wind speed field, the 

estimation of the aerodynamics wind loads acting on the rotating blades is a difficult task. The 
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fundamental BEM theory (Glauert 1935), modified by Prandtl model (Shen et al. 2005) and Buhl’s 

(2004), is here applied to determine the elementary along-wind force dFB acting on the blade 

element of length dr, located at a distant r from the hub centre 

drcuCdF relANB
2

,
2

1
                          (19) 

where   is the air density and c the length of the local cross section chord (Fig. 4). The 

coefficient  sin cos  , dlA,NA,N CCCC  is the local normal aerodynamic coefficient, where 

 ll CC   and  dd CC   are, respectively, the static lift and the drag coefficients, function 

of the attack angle  ,    (see Fig. 4), with   being the inflow angle of the relative wind 

velocity 
relu  (see below) and   is the local pitch angle sum of the blade pitch angle and of the 

local twist angle. The coefficients lC  and dC are commonly given in a tabular form for 

standardized airfoil sections. As is shown in Fig. 4, the local relative wind velocity relu is equal to 

   22
)1()1( arau  , where u  is the undisturbed local inflow wind speed, sum of the 

mean and the fluctuating components. The coefficients a and a  are the axial and tangential 

induction factors representative of the variation of the axial and tangential local wind velocities, 

respectively, due to wake effects induced by the turbine. These coefficients are calculated through 

the following semi-empirical expressions (Buhl 2004) 
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The thrust coefficient 
TC  of the pressure on the element is given by 




2
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CCa
C


                   (22) 

where )2( r/Bc   is the local solidity and B is the number of blades. The loss factor F due to 

Prandtl model (Shen et al. 2005) accounts for the effect of the vortex shedding at the blade tip and 

near the rotor hub on the induced velocity 

TipHubFFF                               (23) 

where 
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An iterative procedure is required to calculate the induced factors of Eqs. (20) and (21) (Dai et 

al. 2011). The Newton-Raphson method is here employed together with the adjustments proposed 

by Maniaci (2011) in order to overcome convergence issues of the BEM method. 

Finally, the influence of the presence of the tower behind the rotor blades on the local wind 

speed field, called the tower shadow effect, is considered in the proposed model. Bak method (Bak 

et al. 2001), proposed for upwind HAWTs, is adopted. Accordingly, the correction multiplication 

factor of the undisturbed local inflow wind speed u is 
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where x  and y  are, respectively, the upwind and crosswind distance of the blade axis from 

the tower midline normalized with respect to the tower radius at the height of interest; 
TdC ,

 is the 

drag coefficient of the tower function of Reynolds number, here calculated for local mean speed 

according to Eq. (5). 

 

 

 

Fig. 4 Airfoil section of the blade and relevant aerodynamic angles for BEM theory 

 

 

2.4 Dynamic equilibrium of the coupled tower-blade system 
 

While the dynamic response of the blades is virtually independent of the deflections undergone 

by the supporting tower of the wind turbine, the dynamic response of the tower itself might 

significantly be influenced by the vibration of blades (Murtagh et al. 2005, Chen et al. 2009). To 

account for this coupling phenomenon, the overtop system of the wind turbine supported by the 

urel

Rotor plane
au

a'r




r

u



chord

c

598



 

 

 

 

 

 

Along-wind simplified analysis of wind turbines through a coupled blade-tower model 

tower is considered by including into the dynamic equilibrium equations of the tower the 

translational and rotational masses related to the superstructure (blades, hub and nacelle), 
SSM , 

lumped at the tower top (see Eq. (28) below), and the vector, (t)SSF , containing the moment and 

the shear dynamic reactions of the blades at their roots (see Eq. (29) below). Then, the along-wind 

response of the tower is evaluated by solving the dynamic equilibrium equations of the coupled 

system through the Newmark step-by-step constant acceleration method (Chopra 1995) 

(t)(t) SSTTTTTTSST FFxKxCxMM  )(                 (27) 

where 
TM  is the mass matrix of the tower, 

TC  the damping matrix of the tower constructed by 

the Rayleigh method (Chopra 1995), TK  the elastic stiffness matrix of the tower, (t)TF  the wind 

forces acting on the tower,
Tx , 

Tx  and 
Tx  the vectors of the translational and rotational nodal 

accelerations, velocities and displacements, respectively, of the tower, discretized by means of the 

plane Bernoulli-Euler beam elements. 

The mass matrix of the superstructure, 
SSM , is given by 
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where 
im  is the mass of the i-blade, 

Hubm  is the mass of the hub, 
Nacm  is the mass of the 

nacelle, 
TH  is the distance between the tower top and the hub centre of mass, TN is the 

distance between the tower top and the nacelle centre of mass. The vector )(tSSF  of the shear 

force and moment transmitted into the tower top is 
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The shear force resultant of the dynamic response of the superstructure is given by 
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Where )(tK )i(
jk,B  is the jk-term of the stiffness matrix (related to the j-th translational degree of 

freedom) of the i-blade, )()(
, tx i
kB  is the general k-th translational/rotational degree of freedom of 

the i-blade. The force 22
, )]([

2

1
)( tUURCtF HubHubHubdHub Hub

   is the aerodynamic wind load 

acting on the hub where 
HubdC ,

 is the drag aerodynamic coefficient of the hub and )(tUHub
  is 

the fluctuating velocity at the hub. 

Then the moment resultant of the dynamic response of the superstructure is 
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Where )(tK )i(

hk,B
  is the hk-term of the stiffness matrix (related to the h-th rotational degree of 

freedom) of the i-blade and )i(
k  is the distance between the node corresponding to the k-degree 

of freedom of the i-blade and the node at z = 0 (Fig. 2). 

 

2.5 Aft-fore wind speed field acting on the tower 
 

The u-component of the wind speed acting on the tower along the X-axis is decomposed into 

the mean and fluctuating terms. The former term is described according to Eq. (5) to account for 

wind shear effect. The fluctuating wind speed field is generated so as to consider a spatial 

correlation of the nodal wind loads along the height of the tower. The following Eulerian von 

Kármán spectrum is employed 
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Due to the specific wind speed profile along the height of the tower, each node is characterized 

by a different spectrum since the mean wind speed u  is a function of the height. Shinozuka 

formulas (see Eqs. (13)-(18)) are applied considering the vertical coherence of the wind speed field 

through the following Davenport coherence function γjl (Davenport 1968) between the two nodal 

points j and l 

 lj
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 )(                        (33) 

It has to be underlined that, in order to capture the real frequency content of the fluctuating 

wind speed acting on the blades, rotationally sampled spectra have been used. This has the 

drawback of requiring the generation of two independent wind speed fields, one for the blades and 

the other one for the tower, which are coherent one each other solely with respect to the wind 

speed at the hub centre. 
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3. Illustrative examples 

 
For illustrative purposes, the proposed model is here employed to simulate the dynamic 

response of two upwind wind-powered electrical generators, called WindPACT 1.5 MW and AOC 

15/50. The adopted aerodynamic and mechanical characteristics of the blades and tower of the two 

wind turbines are the same as those reported in the benchmark models of (NWTC Design Code 

FAST 2010). The WindPACT 1.5MW is a large size turbine characterized by a three-blade rotor 

with a diameter of 70 m. The hub is located at a height of 84 m on the ground and has a diameter 

of 3.5 m. The blade rotational frequency is equal to 0.33 Hz. The damping ratios of the first two 

natural frequencies of the blade are assumed to be equal to 3.9%. The masses of each blade, hub 

and nacelle are equal to 4356 kg, 15148 kg and 51170 kg, respectively. The supporting steel tower 

has a tapered shape with height equal to 82.39 m. Its first two damping ratios are assumed to be 

equal to 3.4%. The AOC 15/50 HAWT is a medium-size wind turbine having a three-blade rotor 

with a diameter of 14.98 m. The hub is located at a height of 25 m on the ground and has a 

diameter of 0.56 m. The blade rotational frequency is equal to 1.07 Hz. The damping ratios of the 

first two natural frequencies of the blade are assumed to be equal to 4%. The masses of each blade, 

hub and nacelle are 139 kg, 247 kg and 1747 kg, respectively. The supporting steel tower has a 

tapered shape with height equal to 24.4 m. Its first two damping ratios are assumed to be equal to 

3%. The selected values of the damping ratios are typical for the blade and tower structures under 

consideration. The adopted finite element discretizations for blades and tower in the two wind 

turbines are the same as those reported in the benchmark models of (NWTC Design Code FAST, 

2010). More in details, 10 elements along each blade and 10 elements along the tower are used in 

the AOC 15/50 turbine, while 20 elements along each blade and 9 elements along the tower are 

used in the WindPACT 1.5 MW turbine. 

The following parameters are used to describe the undisturbed wind speed field: mean wind 

speed at the hub height, HubU , equal to 15 m/s; surface roughness length, 0z  , equal to 0.03; 

integral length scales of the u-component in the along-wind, Lu,x, and cross-wind, Lu,y , direction 

equal to 73.5 m; air density,  , of 1.225 kg/m
3
; kinematic air viscosity of 5104639.1  m

2
/s; 

coherence decay constant, C, equal to 8.8. The standard deviation of the fluctuating wind speed is 

assumed to be equal to *u6 (see Eq. (10) for u ) (Simiu and Scanlan 1996). Wind speed spectra 

with a maximum frequency of 20 Hz are considered to generate wind speed time-histories having a 

duration of 120 sec. For the dynamic analyses an integration time step of 0.012 sec is assumed. As 

an example, in Fig. 5 the time-history of the u-component of the wind speed at the hub centre, 

used in the ensuing simulation of WindPACT 1.5 MW, is presented. 

 

 

Fig. 5 Sample of generated time-history of wind speed at the hub height of WindPACT 1.5 MW wind 

turbine 
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In Table 1, the relevant along-wind natural frequencies of the two wind turbines along with 

their rotational frequencies are reported. The blade natural frequencies are obtained by an 

eigenvalue analysis of a single blade, where the stiffness matrix is formed by considering only the 

geometric contribution due to centrifugal forces. As for the tower, the eigenvalue analysis is 

performed on the basis of the elastic stiffness matrix of the tower, 
TK , and its mass matrix, 

SST MM   (see Eq. (28)).  
The results of the dynamic analyses for the two wind turbines being considered are presented in 

terms of the time history of the following along-wind quantities: displacement at the blade tip and 

at the tower top, and shear force at the blade root and at the tower base. The results are normalised 

with respect to those obtained from a static analysis of the turbines with fixed blades (park 

condition) and subjected to a mean wind speed. The static displacement at the blade tip refers to an 

horizontal blade position (Ψ=90°, Fig. 1). The results of the static analyses are shown in Table 2. 

 

 
Table 1 Summary of the dominant frequencies for the two analysed wind turbines 

 WindPACT 1.5 MW AOC 15/50 

Blade rotational frequency [Hz] 0.33 1.07 

Blade 1
st
 natural frequency [Hz] 1.32 4.26 

Blade 2
nd

 natural frequency [Hz] 3.77 13.88 

Tower 1
st
 natural frequency [Hz] 0.42 1.65 

Tower 2
nd

 natural frequency [Hz] 3.00 12.04 

 

 

Table 2 Results of the static analysis for the two analysed wind turbines under park conditions and mean 

wind speed 

 WindPACT 1.5 MW AOC 15/50 

Blade tip displacement [m] 0.229 0.015 

Blade root shear force [kN] 14.81 0.75 

Tower top displacement [m] 0.074 0.008 

Tower base shear force [kN] 63.70 3.35 

 

 

The time histories of the dynamic responses of WindPACT 1.5 MW and AOC 15/50 are 

reported in Figs. 6-9 and Figs. 10-13, respectively. All the time histories reported exhibit an initial 

transient stage followed by a steady state stage. For the displacement at the tower top, a 

comparison with the results obtained by the FAST code (NWTC Design Code FAST 2010), where 

the whole blade-tower structural system is modelled, is presented in Figs. 8 and 12. It can be seen 

that the comparison is in general satisfactory with a slightly smaller average value predicted by 

FAST in comparison to that of the present model in the case of the WindPACT turbine. 

Firstly, it can be observed that, under the same wind speed conditions, the amplification of both 

deflection and shear with respect to the static values is significant, and turns out to be greater in 

the large-size turbine than in the medium-size counterpart. Such an amplification is mainly due to 

the effect both of blade rotational motion on aerodynamics pressures and of inertial forces. For 

instance, the average normalized displacement at the blade tip is about 12.1 and 5.4 times higher 
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than the static value in WindPACT 1.5 MW and AOC 15/50, respectively. For the displacement at 

the tower top such an amplification factor becomes equal to about 9.3 and 3.0 in WindPACT 1.5 

MW and AOC 15/50, respectively. Moreover, the amplitudes of displacement/shear vibrations in 

the steady state stage tend to be higher in the case of WindPACT 1.5 MW as compared to those 

related to AOC 15/50. For instance, the largest amplitude of vibration for the normalised 

displacement at the blade tip is equal to about 2.5 and 0.8 in WindPACT 1.5 MW and AOC 15/50, 

respectively. 

 

 

 

Fig. 6 Time-history of the normalised along-wind displacement at the blade tip of WindPACT 1.5 MW 

wind turbine 

 

 

 

Fig. 7 Time-history of the normalised along-wind shear force at the blade root of WindPACT 1.5 MW 

wind turbine 
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Fig. 8 Time-history of the normalised along-wind displacement at the tower top of WindPACT 1.5 MW 

wind turbine: (a) present model and (b) FAST code 

 

 

Fig. 9 Time-history of the normalised along-wind shear force at the tower base of WindPACT 1.5 MW 

wind turbine 

 

 

Fig. 10 Time-history of the normalised along-wind displacement at the blade tip of AOC 15/50 wind 

turbine 
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Fig. 11 Time-history of the normalised along-wind shear force at the blade root of AOC 15/50 wind 

turbine 

 

 

 
Fig. 12 Time-history of the normalised along-wind displacement at the tower top of AOC 15/50 wind 

turbine: (a) present model and (b) FAST code 

 

 

Fig. 13 Time-history of the normalised along-wind shear force at the tower base of AOC 15/50 wind 

turbine 
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Fig. 14 Power spectral density function of the shear force at the blade root: (a) WindPACT 1.5 MW wind 

turbine and (b) AOC 15/50 wind turbine 

 

 

 

 

Fig. 15 Power spectral density function of the shear force at the tower base: (a) WindPACT 1.5 MW wind 

turbine and (b) AOC 15/50 wind turbine 

 

 

Finally, the time-histories of the displacement at the blade tip and those of the shear at the blade 

root show dominant frequencies corresponding to the first two natural frequencies of the blades 

and to the rotational frequency of the rotor. This trend is shown in the FFT results reported in Fig. 

14 for the shear at the blade root. As far as the supporting tower is concerned, its dynamic response 

shows the effect of blade-tower coupling. In fact, the dominant frequencies are in the 

correspondence of the fundamental natural frequencies of the blades (this points out the blade 

dynamic flapping action transmitted into the tower) and of the first two natural frequencies of the 

tower (see the FFT results of Fig. 15 for the shear at the tower base). 
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4. Conclusions 
 

In this paper a plane FE model is presented to perform time-domain along-wind dynamic 

analyses of upwind HAWTs. The structure is modelled as a coupled two-body system constituted 

by the blades and the tower of support, where the response of the tower is analysed by considering 

the coupling dynamic effects of the vibrating blades. The stiffness of the blades accounts for the 

geometric effect of radial load due to self-weight and centrifugal forces. Mean and fluctuating 

components are considered to simulate the two spatially coherent wind speed fields acting on the 

blades and on the tower. For a rigorous evaluation of the aerodynamic loading on the rotating 

blades, rotationally sampled spectra, BEM model and tower shadow effect are taken into account. 

Two wind turbines having different sizes are modelled and their dynamic response is 

investigated. The results clearly show a significant amplification of displacements in comparison 

to those of a static analysis where the blades are fixed and a mean wind pressure is considered. 

This behavioural trend, which is more evident for large-size wind turbines, demonstrate that the 

use of simplified static analyses might strongly underestimate the stress level in the structure. In 

addition, the forced vibration of the supporting tower submitted to the sum of the shear forces at 

the blade roots might lead to a dynamic along-wind response characterised by dominant 

frequencies related to the blade first natural frequency and the main natural frequencies of the 

tower. This outcome clearly indicates a blade-tower coupling effect which is neglected when the 

wind turbine is designed by treating the tower and rotor as separate systems. 

In conclusion, the proposed model, despite its relative simple features in comparison to more 

sophisticate methods, might be a useful tool for preliminary design and qualitative analysis into 

the along-wind dynamic interaction effects undergone by wind turbines under service conditions, 

which might lead to additional detailed and optimized analyses. 
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