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Abstract.  A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based 
detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse 
(resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation 
by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms 
appear naturally and the resulting formulation provides effective stabilization in turbulent computations, 
where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in 
the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) 
standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on 
the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the 
turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric 
boundary layer flows. 
 

Keywords: multiscale method; detached-eddy simulation; computational wind engineering; inflow 
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1. Introduction 
 

The Computational Wind Engineering (CWE) community applies Computational Fluid 

Dynamics (CFD) techniques to analyze and model wind-structure related phenomena such as 

building aerodynamics and aeroelastics, pedestrian-level wind environment, transport and 

dispersion of air pollutants in urban environment, and so on. Since wind is turbulent in nature, 

CWE thus deals with three-dimensional, time-dependent stochastic flows, causing turbulence 

modeling in CWE applications to encounter special challenges. Murakami (1998) ascribed these 

challenges to four aspects: high Reynolds numbers, complex flow field, sharp edges of bluff 

bodies, and inflow and outflow boundary conditions. In traditional Reynolds-Averaged 

Navier-Stokes (RANS) methods, mean flow fields of turbulence can be computed via a 

time-averaged form of the Navier-Stokes equations, but the unknown nonlinear Reynolds stress 

terms, which represent the fluctuating turbulent effects, are modeled by additional equations. Even 

though RANS has achieved much success in predicting mean flow solutions, it is not able to 
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satisfy the demand for instantaneous turbulence resolutions and dynamic wind loads exerted on 

structures. In Large Eddy Simulation (LES), the large eddies are resolved explicitly and the small 

eddies are modeled by subgrid-scale models. However, one issue confronting LES is that very fine 

grids in three dimensions must be placed in the boundary layers to accurately represent turbulence 

structures in the near-wall regions, which dramatically increases the computational cost for high 

Reynolds numbers. While LES is a powerful research tool, it is not yet suitable to produce 

numerical results in a timeframe and at a cost comparable to wind tunnels. 

Detached-eddy simulation (DES), first proposed by Spalart et al. (1997), is an increasingly 

popular hybrid RANS/LES technique able to predict, at an affordable cost, massively separated 

flows at high Reynolds number. Therefore, the idea is to treat the entire boundary layers by RANS 

models and separated regions by LES models. The application of DES in the field of CWE is 

slowly increasing. Haupt et al. (2011) applied DES and zonal DES to predict the atmospheric flow 

over surface mounted cube. The results for pressure coefficients showed that DES, and particularly 

zonal DES, matched the full-scale measurements better than the RANS solutions. Mannini et al. 

(2011) carried out a comprehensive study of DES to a 5:1 rectangular cylinder and demonstrated 

that DES gave good agreement with experiments in terms of Strouhal number, CD and CL. These 

results suggest that DES is suitable for high Reynolds number bluff body aerodynamics, for which 

the cost of LES may be prohibitive. 

One important requirement of CWE is to accurately compute wall shear stresses. However, as 

the reaction terms dominate the turbulent behavior in the boundary layer, the stability of numerical 

simulation may be hard to control and therefore lead to inaccurate results. In this paper we extend 

the multiscale based stabilized finite element formulation for the Spalart-Allmaras (S-A) 

turbulence model, as presented in Khurram and Habashi (2011), to DES. Stabilized finite element 

methods are formed by adding to the standard Galerkin method variational terms that are 

mesh-dependent, consistent and numerically stabilizing (Brooks and Hughes 1982, Franca et 

al.1998, Hughes et al. 1989, Tezduyar and Sathe 2007, Tezduyar et al. 2009). Hughes (1995) 

revisited the origins of the stabilization schemes from a variational multiscale approach. In the 

Hughes’ variational multiscale method, different stabilization techniques appear as special cases of 

the underlying subgrid-scale modeling concept. Taking this line of thought, which is based on the 

notion of the existence of fine scales in the problem, various stabilized formulations have been 

proposed for the advection-diffusion equation (Masud and Khurram 2004), the incompressible 

Navier–Stokes equations (Masud and Khurram 2006), and for fluid-structure interaction problems 

(Khurram and Masud 2006). 

In order to validate the multiscale DES in predicting surface pressure distributions on tall 

buildings, the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall 

building model is chosen in the present work. Comprehensive aerodynamic and aeroelastic 

behavior of CAARC building model have been widely researched via several wind tunnel 

experiments. Melbourne (1980) compared the averaged and standard deviation of surface pressure 

according to the database from six wind tunnel centers. The pressure discrepancies were attributed 

to the difference in approaching longitudinal velocity spectrum and blockage ratios. Tanaka and 

Lawen (1986) carried out a pressure and aeroelastic study of CAARC with a small geometric scale 

of 1:1000, and showed that no particular error was observed due to the extremely small geometric 

scale. Goliger and Milford (1988) investigated the sensitivity of geometric scale and turbulence 

intensity, and found that geometric scale had negligible influence, but that turbulence intensity had 

a more noticeable effect on the response of the building. Obasaju (1992) provided a complete 

study of mean and standard deviation, as well as the spectra of forces and base overturning 
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moments of CAARC under both uniform and atmospheric boundary layer flows. In addition, a 

computational study of CAARC was conducted by Huang et al. (2007) using RANS and LES. 

They found that the velocity profile of inflow mainly influenced the mean pressure distribution on 

the walls of the building, but that turbulence intensity had a significant effect on the fluctuating 

forces. Braun and Awruch (2009) conducted a numerical study for aerodynamic and aeroelastic 

behavior of CAARC using a fluid-structure interaction technique. 

The inlet boundary condition is an important issue for DES and LES. In contrast to RANS 

simulations where only mean flow quantities are imposed at the inlet boundary, LES and DES also 

need the fluctuating parts of inflow. The inflow turbulence generation was considered one of the 

three key numerical issues for LES in CWE, as well as other CFD applications (Tamura 2008). It 

is a tough problem, first because inflow turbulence should satisfy several important characteristics 

of high Reynolds number natural wind, such as mean velocity, turbulence intensity, spatial 

correlation, power spectrum density and so on. Moreover, the inflow turbulence generation 

techniques should be easy to modify according to various wind environments, simple to implement 

in CFD codes, and compatible with the Navier-Stokes equations. Currently, there are two main 

approaches taken. The first is precursor or recycling/rescaling methods, which require an auxiliary 

computational domain to drive the turbulence and then introduce it to the main domain. Some 

success is achieved in CWE applications (Kataoka 2008, Nozawa and Tamura 2002), but a 

drawback is the difficulty in controlling turbulence characteristics and the additional 

computational cost of the precursor. The second category of inflow turbulence generation is 

synthesized methods, in which instantaneous artificial velocities, following prescribed turbulence 

features, are generated separately and then imposed at the inlet. As no external domain is required, 

it is much less expensive than precursor or recycling/rescaling methods. Moreover, turbulence 

features are simpler to modify for different flow conditions. The most challenging problem of the 

synthesized methods is that the artificial velocity fields must satisfy the divergence-free condition. 

Recently a promising synthesized inflow turbulence generation method labeled discretizing and 

synthesizing random flow generation (DSRFG) (Huang et al. 2010) has demonstrated how to 

simulate a spatially correlated turbulent flow field. 

To the best of the authors’ knowledge, the present work is a first attempt to employ DES for 

predicting surface pressure distributions of tall buildings under atmospheric boundary layer flows. 

The DES formulation is based on the S-A turbulence model equations and discretized by 

multiscale finite element method. The multiscale DES is then applied to the CAARC tall building 

model with Reynolds number of 94,000. Comparisons are demonstrated between URANS with 

uniform inflow, DES with uniform inflow, and DES with turbulent inflow in terms of 

time-averaged surface pressure coefficient distribution. Instantaneous velocity magnitude contours 

and three-dimensional streamlines are exhibited as well. 

 

 

2 Numerical strategies 
 

2.1 Strong form of Spalart-Allmaras turbulence model based DES 
 
The strong form of normalized Spalart-Allmaras (S-A) turbulence model (Spalart and Allmaras 

1994) is 
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The terms appearing in (1) are: time derivative of 
E , convective term, production term, 

destruction term, and diffusion term, respectively. 
E  is a working variable and turbulent eddy 

viscosity is determined by 
1T E vf  . The modified magnitude of vorticity is 

 

                22 2

1

Re

E

vS S f
d





  , 2 ij ijS    , 
1

2

ji
ij

j i

uu

x x

 
      

             (2) 

 
and d  is the distance to the nearest wall. The functions 

1vf  and 
2vf  are defined as 
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

  with   the laminar viscosity. The destruction term is formed with 

1
6 6

3

6 6

3

1 w

w

w

C
f g

g C

 
  

 
,  6

2wg r C r r   , 
2 2

2Re

E

E v

r
d S f



 




          (4) 

 
The closure coefficients of the model are 
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Based on S-A equations, the DES formulation is obtained by replacing d in the destruction 

term and production term with  maxmin , DESd d C  , where 
DESC  is suggested to be 0.65 and 

max is the largest dimension of the local element (Spalart et al. 1997). 

 

2.2 Linearized weak form of DES formulation 
 

First, the temporal discretization of DES formulation is performed, using a standard backward 

Euler scheme. The semi-discrete form of DES formulation is 
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where n and n+1 are the time levels and Δt  is the time step. In order to keep the presentation 

simple, we drop the superscript n+1 from here on. Using w as the weighting function, the 

linearized weak form of (6) can be shown as 
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where    ,  d
e
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     i.e., 
2L  product of the indicated arguments over domain e , 

Eν  is the 

incremental value in the Newton iteration and R, shown below, is the residual at iteration i. 
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 (8) 

2.3 Multiscale method 
 

We assume an overlapping sum decomposition of the scalar field into coarse scales or 

resolvable scales and fine scales or subgrid scales.  
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Likewise, we assume an overlapping sum decomposition of the weighting function into the 

coarse and the fine scale components indicated as w  and w' , respectively. 
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Substituting the additive decomposition of solution and weighting function into the weak form 

(7) and exploiting the linearity of the weighting function, we get a coarse scale problem and a fine 

scale problem. Modeling of the fine scale solution via approximate solution of the fine scale 

problem and substitution of the fine scale solution into the coarse scale problem, yields the 

multiscale form, which is shown as 
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R is defined in (8) and   is defined as 
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where 

1

eb is the bubble function for the trial solution and 
2

eb  represents the bubble for the 

weighting function. Further details regarding the multiscale method and the choices of bubble 

functions can be found from Refs. (Khurram and Masud 2006, Khurram et al. 2012, Masud and 

Khurram 2004, Masud and Khurram 2006). 

 

 

3 Inflow turbulence generation 
 

3.1 DSRFG formulation 
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The DSRFG inflow turbulence generation method was recently proposed by Huang, Li and Wu 

(2010). It is defined as a general inflow turbulence generator for unsteady numerical simulation of 

a spatially correlated turbulent flow field. This method is able to generate homogeneous-isotropic 

and inhomogeneous-anisotropic turbulence satisfying any given spectrum. Briefly, the overall 

velocity vector field is formed by 
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The parameters in Eqs. (15) and (16) are 
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n and n  are pseudo-random numbers following a normal distribution with mean value of 0 and 

standard deviation value of 1, i.e.,  , 0,1 , 1,2,3N i n n

i i
ξ . m,n

k  is the wave number, the 

distribution of which is determined by the spectrum. a  is uniformly distributed from 0 to 1. 

 mE k  is the spectrum value and N  is the sampling number for each wave number 
mk . 

sL  is a 

length scale of turbulence, which controls the spatial correlation. 
avgU  is the mean velocity and 

m,n
k  is isotropically distributed on the surface of a 3D sphere. In the present work it is computed 

by the following equations 
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where b and  are uniformly distributed from -1 to 1 and from 0 to 2 , respectively. Fig. 1 

shows the distribution of m,n
k  with 1mk   and 500N  . 

 

3.2 Validation of DES combined with DSRFG 
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The multiscale finite element DES code is implemented in FENSAP-ICE, a finite element 

method based Navier-Stokes solver (Aube et al. 2010, Beaugendre et al. 2006, Morency et al. 

2001). A test case of an empty wind tunnel is presented to validate the performance of DES+ 

DSRFG in modeling atmospheric boundary layer flows. The dimensions of the empty wind tunnel 

are 2 m×0.4 m×1 m in x, y and z direction. Structured grids are used, as shown in Fig. 2, and the 

total node number is 526,000. The overall simulation time is 1 second, with a uniform time step of 

10
-3

 second. 

 

 

 

Fig. 1 Distribution of wave number m,n
k  

 

 

 

Fig. 2 Computational grid of empty wind tunnel 

 

 

The inflow natural wind characteristics are assumed to follow the third flat terrain category in 

the Architectural Institute of Japan (AIJ) Recommendations for Loads on Buildings (AIJ 2004). 

The mean velocity profile and turbulence intensity profile are expressed in Eqs. (19) and (20), 

respectively 
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where zb=0.02m, zG=0.9m, α=0.2, U0=30 (m/s). The target power spectrum density is assumed to 

follow von Kármán model (Simiu and Scanlan 1996) 
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where L is turbulence integral length scale, and f is frequency. 

The artificial inflow turbulence is calculated separately by DSRFG method. Fig. 3 presents the 

time history of velocity in three directions on one node at the inlet, with the duration of 1s. These 

instantaneous fluctuating velocities are then imposed at the inlet. 

 

 

 

Fig. 3 Time history of velocity in three directions 

 

 

Fig. 4 demonstrates an instantaneous velocity magnitude contour at inlet, middle section and 

exit. It is generally observed that velocity magnitudes in the flow field increase with height, and a 

strong stochastic phenomenon is also observed as expected. 
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Fig. 4 Instantaneous velocity magnitude contour at inlet, middle section and exit 

 

 

Statistical features are calculated to evaluate the wind field. Fig. 5 presents the comparisons of 

mean velocity profile and turbulence intensity profiles at inlet and exit, with the targets defined by 

Eqs. (19) and (20). Mean velocity and turbulence intensity are two key parameters to define wind 

properties. As can be seen in Fig. 5, both are in very good agreement with the targets. Moreover, 

Fig. 5 also indicates that the flow field is capable of maintaining the mean velocity and turbulence 

intensity profiles, especially for mean velocity profile, between inlet and exit. It is an important 

precondition for modeling flows in CWE applications. 

 

 

  
(a) Mean velocity profile (b) Turbulence intensity profile 

Fig. 5 Comparisons of mean velocity and turbulence intensity profiles 
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Spatial correlation is also one of the most important statistical features of turbulence. If two 

points are very close in space, they will probably fall into the same turbulence structure with 

certain integral length, and therefore are more correlated. Conversely, two points farther in space 

will have less probability to be embedded into the same turbulence structure. The two-point spatial 

correlation coefficient can be determined in terms of instantaneous velocity by the following 

equation 
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 (22) 

 

where ui and uj represent the instantaneous velocity at points i and j. Shiotani and Iwatani (1976) 

proposed a simple formulation to estimate the lateral spatial correlation coefficient of wind, which 

is expressed as follows 

 

                        0
( ) e x p ( )

i

i

y

y y
R y

L


                            (23) 

where Ly = 50 that is a constant integral scales determined experimentally. Fig. 6 shows the spatial 

correlation coefficient by DSRFG and by Eq. (23). The spatial correlation coefficient of DSRFG is 

calculated by Eq. (22) considering the velocity component in streamwise direction. It is observed 

that DSRFG is in good agreement with the target. 

 

 

 

Fig. 6 Spatial correlation coefficient 

 

 

Another significant property of natural wind is power spectrum density (PSD). It is found that 

the PSD of natural wind follows the von Kármán model defined in Eq. (21). It is clear from Fig. 7 

that the PSD agrees well with von Kármán spectrum at the inlet, but misses the high frequency 

domain at the exit. This high frequency domain corresponds to the small eddies, which are filtered 

out by the grid in DES. This phenomenon is also observed in Ref. (Kataoka 2008), where an LES 

11



 

 

 

 

 

 

Yue Zhang, Rooh A. Khurram and Wagdi G. Habashi 

method is employed along with inflow turbulence generated by recycling/rescaling method. Huang 

and Li (2010) believe that if the grid between the building and the inlet is fine enough, most parts 

of the velocity fluctuations can be resolved and made to act on the building as dynamic loads. 

 

 

 

Fig. 7 Comparison of power spectrum density 

 

 

Therefore, DES combined with inflow turbulence generated by DSRFG, presents an overall 

good modeling of atmospheric boundary layer flows. The flow field satisfies specific mean 

velocity and turbulence intensity profiles and shows a strong random phenomenon close to natural 

wind environment. Spatial correlation coefficients of turbulence are also modified to match the 

target formulation. For PSD analysis, it is found that the high frequency domains are absent after 

some distance. It is suggested to refine the grid as much as possible to circumvent this problem. 

 
 
4 CAARC standard tall building model 

 

4.1 Geometry and mesh 
 

CAARC standard tall building model is a rectangular cylinder with width Dy = 45.72 m, depth 

Dx = 30.48 m and height H = 182.88 m as shown in Fig. 8. The blockage ratio of this numerical 

wind tunnel is 2.94%. A fully structured mesh consisting of 8-node hexahedral elements is 

employed to discretize the flow field. An internal block is placed around the building, within 

which the mesh is refined separately. For the boundary layer resolution, the height of first 

elements near the building and ground is Dy/4000 with an expansion ratio of 1.2, which ensures 

that most wall distances y
+
 are less than unity. As suggested in Huang and Li (2010), to maintain 

the high frequency dynamic wind loads on building, the grid between inlet and building is also 

refined. Finally, 3.3×10
6
 nodes are generated in the domain. Fig. 9 gives a general view of the 

computational mesh employed in the present study. 
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(a) Top view 

 

(b) X-Z central plane 

Fig. 8 Computational domain and boundary conditions 

 

 

  
(a)  Mesh around building (b) X-Z central plane 

Fig. 9 Computational mesh 

 

 

4.2 Boundary conditions 
 

The objective of the present work is to validate multiscale DES, combined with DSRFG 

technique, in predicting the pressure distribution on tall buildings under atmospheric boundary 

layer flows. Three test cases are simulated that are described as: 1) URANS with uniform inflow, 

2) DES with uniform inflow, and 3) DES with turbulent inflow. Experiments on CAARC standard 

tall building model have been carried out in several wind tunnel research centers. The 

experimental data from the National Aeronautical Establishment (NAE) (Melbourne 1980) and 

University of Ottawa (Tanaka and Lawen 1986) is introduced in this paper for comparison 

purposes. According to these wind tunnel experiments, the velocity profile exponent  of 

approaching wind is suggested to be 0.28 and turbulence intensity at building height IH is 

approximately 9%. Therefore, the mean velocity profile in the present numerical simulations is 

expressed as 
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and the turbulence intensity in case 3 for turbulent inflow DES is assumed as 
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In summary, Table 1 lists the inlet boundary conditions for the present simulations and two 

wind tunnel experiments. Fig. 10 demonstrates the instantaneous velocity magnitude at the inlet in 

case 3 of DES with turbulent inflow. Strong stochastic turbulent inflow following specific mean 

velocity profile and turbulence intensity profile is observed. 

 

 
Table 1 Description of test cases 

Case Turbulence model 
Inlet boundary 

condition 

Velocity profile 

exponent   

Turbulence 

intensity at z = H 

1 Unsteady S-A RANS Uniform inflow 0.28 0 

2 DES Uniform inflow 0.28 0 

3 DES Turbulent inflow 0.28 9 % 

NAE (a) - Turbulent inflow 0.28 9 % 

Ottawa - Turbulent inflow 0.28 9 % 

 

 

 
Fig. 10 Instantaneous velocity magnitude distribution at inlet in case 3 (DES with turbulent inflow) 

 

 

4.3 Results and discussions 
 

First, the time-averaged surface pressures are compared between three test cases and two wind 

tunnel experiments. Fig. 11 presents the time-averaged surface pressure at 2/3 building height, 

along the front, side and back surfaces. On the front wall, which is associated with the range 
'0 1.5xX D   in the figure, all 3 test cases agree well with the experiments. The time-averaged 
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pressure on the front wall of buildings depends more on the mean velocity of the approaching 

wind. Therefore, no significant difference of pressure is observed since the mean velocity profiles 

of these test cases are similar. This is consistent with the conclusion from the LES work of Huang 

et al. (2007) that the mean pressure coefficient on the front face is insensitive to the turbulence 

intensity of the approaching flow, but sensitive to the velocity profile. 

However, on the side and back walls, significant differences are observed between these three 

test cases. For case 1, URANS with S-A turbulence model, the curve of Cp seems to follow the 

trend of experimental data very well but obviously underestimates the values at all points. Case 2, 

DES with uniform inflow, overestimates the Cp, especially on the sidewall, and the curve is 

relatively flat indicating that the surface pressure difference at different points is insignificant, 

which is not the real situation. In case 3, where DES is boosted by the DSRFG turbulence inflow 

generation approach, the Cp distribution is much better than the other cases but still a noticeable 

underestimation of pressure is observed on the back wall, where turbulent flow in the wake plays 

an important part in the contribution of negative pressures. 

 

 

 

Fig. 11 Time-averaged surface pressure distribution at z =2/3H 

 

 

In addition to mean flow solutions, the instantaneous flow field solutions are shown in Figs. 12 

and 13. Fig. 12 exhibits the instantaneous velocity magnitude contour on the X-Z plane. The left 

column of Fig. 13 demonstrates the three-dimensional streamlines at 1/3 and 2/3 of the building 

height that starts from inlet of numerical wind tunnel, and the right column shows the streamlines 

at X-Z plane. As expected, the turbulence resolution in DES is very clear behind the building.  

An obvious difference between DES and URANS is that the turbulent flow in DES is stochastic 

in the wake but URANS always presents nearly periodic behaviors. Another observation is that the 

building is surrounded in the atmospheric boundary layer flows as shown in case 3 (DES with 

turbulent inflow). This indicates that the turbulence inflow generation technique adds to the 

accuracy of unsteady numerical simulations by incorporating inflow turbulence that is always 

present in the wind tunnel experiments. 
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(a) URANS with uniform inflow 

 

(b) DES with uniform inflow 

 

(c) DES with turbulent inflow 

Fig. 12 Instantaneous velocity magnitude contour on X-Z plane 

 

 

  
(a) URANS with uniform inflow 

  

(b) DES with uniform inflow 

  

(c) DES with turbulent inflow 

Fig. 13. Instantaneous streamlines colored by velocity magnitude contour 

 

 

16



 

 

 

 

 

 

Multiscale finite element method applied to detached-eddy simulation … 

This discussion would be incomplete without a remark about the relative computational costs 

of URANS and DES. DES definitely requires a more refined grid than URANS in separated 

regions; providing more physical information but at the expense of a higher computational cost. In 

the present case, however, we have purposely chosen to use identical grids for the multiscale DES 

and URANS in order to avoid any grid influence in comparing results, and to demonstrate that 

URANS cannot capture turbulent features even on very fine meshes. Our conclusion is that on the 

same grid, the computational cost for DES and URANS is identical; in the present case: 10 

seconds to complete a Newton iteration on a mesh of 3 million elements, using 16 nodes - each 

with 2.8 GHz dual quad-core Intel Nehalem processors. 

 
 

5 Conclusions 
 

We applied a multiscale finite element method to the Spalart-Allmaras DES formulation. The 

potential use of DES in CWE applications is explored by using the CAARC standard tall building 

model to validate DES in predicting surface pressure distributions, with DSRFG inflow turbulence 

generation technique to model atmospheric boundary layer flows. The main conclusions of the 

present work can be summarized as follows: 

1. The multiscale method is applied to Spalart-Allmaras turbulence model based DES 

formulation. The key point of the proposed formulation is a multiscale decomposition of the scalar 

field into coarse and fine scales. The stabilization terms arise naturally and the method is free of 

user-defined stability parameters. The multiscale method provides stabilization for the convection 

as well as production/destruction dominated flows and, as a consequence, it demonstrates superior 

stability compared to artificial diffusion based methods.  

2. The DSRFG inflow turbulence generation is able to model atmospheric boundary layer flows 

with prescribed properties. The mean velocity and turbulence intensity profiles agree well with the 

targets. The capability of self-sustaining these two parameters is also excellent. Spatial correlation 

of inflow turbulence is modified to follow specific formulation. For power spectrum density of 

turbulence, DSRFG follows the von Kármán spectrum well at the inlet but loses the high 

frequency domains after some distance. The high frequency domains are related to the small 

eddies that may be filtered by the grid. It is believed that finer grid will preserve them to some 

degree.  

3. Multiscale DES under atmospheric boundary layer flows can predict closely the surface 

pressure distribution on the front and sidewalls of CAARC tall building model but the values on 

the back walls are underestimated. Compared to other two cases of URANS and DES with 

uniform inflow, DES with turbulent inflow presents a clear advantage in the mean pressure 

coefficient predictions. Three-dimensional streamlines indicate that DES can provide rich 

turbulence resolutions in the wake of buildings, whereas URANS always presents a periodic 

behavior because turbulence corresponding to all length scales is modeled. Therefore, we have 

successfully validated the multiscale DES in predicting surface pressure distributions on tall 

buildings and it is strongly suggested that turbulent inflow should also be applied in simulating 

unsteady flows with DES for CWE applications. 
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