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Abstract.    A phase delay spectrum model towards the representation of spatial coherence of stochastic 
wind fields is proposed. Different from the classical coherence functions used in the spectral representation 
methods, the model is derived from the comprehensive description of coherence of fluctuating wind speeds 
and from the thorough analysis of physical accounts of random factors affecting phase delay, building up a 
consistent mapping between the simulated fluctuating wind speeds and the basic random variables. It thus 
includes complete probabilistic information of spatial stochastic wind fields. This treatment prompts a ready 
and succinct scheme for the simulation of fluctuating wind speeds, and provides a new perspective to the 
accurate assessment of dynamic reliability of wind-induced structures. Numerical investigations and 
comparative studies indicate that the developed model is of rationality and of applicability which matches 
well with the measured data at spatial points of wind fields, whereby the phase spectra at defined datum 
mark and objective point are feasibly obtained using the numerical scheme associated with the starting-time 
of phase evolution. In conjunction with the stochastic Fourier amplitude spectrum that we developed 
previously, the time history of fluctuating wind speeds at any spatial points of wind fields can be readily 
simulated. 
 

Keywords:    phase delay spectrum; stochastic wind field; spatial coherence; coherence function; wind field 
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1. Introduction 
 

The coherence properties of wind fields refer to the statistical relationship between time 
histories of wind speeds of any two spatial points in frequency domain, which is usually denoted 
as a coherence function. Panofsky and McCormick first presented the concept of Coherence for 
wind engineering in 1954 by revealing the conjunctive spectrum and orthometric spectrum of a 
cross-power spectrum of two segments of wind speed time series (Panofsky and McCormick 1954). 
The pioneered experimental investigation was carried out by A.G. Davenport, who proposed the 
celebrated exponential decaying model of coherence function for vertical and horizontal wind 
fields, respectively, according to the measured data (Davenport 1961, 1967). This model was then 
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proved by other researchers and has been widely used up to date (Panofsky and Singer 1965, 
Kristensen et al. 1981, Chen 1994, Ying et al. 2005, Paroka and Umeda 2006, Collins et al. 2008).  

Although the exponential coherence model exhibits a feasible behavior to practical applications, 
a critical issue inherent in this model does exist. It is noted that the Davenport exponential model 
is always valued by 1 at the frequency zero, which does not match with the measured data in case 
that the two spatial points have a farther distance (Dyrbye and Hansen 1997). The model, 
moreover, may not be appropriate especially for modeling the coherence of the vertical turbulence 
component since it fails to account for reductions in coherence at low frequencies and over large 
separations (Saranyasoontorn et al. 2004). In conjunction with von Karman theory, Harris derived 
a coherence function of fluctuating wind speeds of two spatial points at isotropic turbulence fields 
(Harris 1971), which is the well-known Harris model in wind engineering. The Harris model, 
noted by Maeda and his colleagues, is suitable for describing the coherent behaviors of measured 
fluctuating wind speeds, while it is not feasible for engineering applications due to a family of 
complicated Bessel functions involved in the model. A simplified formula based on the Harris 
model was then proposed (Maeda and Makino 1980). It was found, however, that at large 
separations the turbulent wind field is not isotropic, and the isotropic von Karman model to 
describe the coherence function for such distances is not available (Schlez and Infield 1998). 
Another exponential coherence model accounting for the influence of turbulence intensity and the 
angular dependence of horizontal coherence was proposed (Schlez and Infield 1998). 

The coherence function is viewed as the most important argument representing the 
mathematical and physical structures of spatial wind fields. It serves as a critical component in the 
simulation of wind fields whether using the classical spectral representation method or using the 
linear filtering scheme (Shinozuka and Jan 1972). While the coherence function is essentially the 
statistical characteristics whereby the simulated random process does not include the probabilistic 
information with statistical moments more than second order.  

It is found in our investigations that the differences between two Fourier phase spectra indicates 
the similarities of corresponding time histories of wind speeds at any two spatial points, and 
govern their coherence behaviors as well. A phase delay spectrum model is thus developed in the 
present paper that describes the spatial coherence of stochastic wind fields and accommodates the 
simulation of large-scale wind fields. The rationality and of applicability of the model is proved 
using the measured data at spatial points of wind fields. The sections arranged in this paper are 
distributed as follows. Section 2 is dedicated to illustrating the relationship between phase delay 
spectrum and coherence function. The modeling and validation of phase delay spectrum, including 
those along vertical and horizontal directions, are respectively provided in Section 3. Section 4 
details the numerical procedure of simulation of multiple-point fluctuating wind speeds. 
Discussion on the spectral representation method and the proposed simulation scheme is carried 
out in Section 5. The concluding remarks are included in the final section. 

 
 

2. Relationship between phase delay spectrum and coherence function 
 
2.1 Definition of coherence function and its numerical scheme 
The coherence function uγ between the two fluctuating wind speeds xu and yu at any two 

spatial points along the main direction of wind field can be defined as 
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Where xyS  denotes the cross-spectral density of xu  and yu ; xxS  and yyS denotes the 
auto-spectral density of xu and yu , respectively; n  denotes the natural frequency. 

The numerical scheme of spectral density of fluctuating wind speeds using periodogram 
technique is detailed as follows (Welch 1967) 

The fluctuating wind speeds xu and yu are assumed as the ensemble of N samples of time 
histories 

Nxx uu ,,
1

⋅⋅⋅  and 
Nyy uu ,,

1
⋅⋅⋅ , respectively. The sampling number in each section is D, and 

the sampling frequency denotes sF . The time duration of each sample denotes sFDT /= . The 
discrete Fourier transform (DFT) of each sample of xu and yu is carried out employing the 
following formula 
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where i  denotes the unit length of imaginary number 1− . 
The auto-spectral density of the fluctuating wind speeds xu and yu is rendered by 
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where the superscript ‘*’ denotes the conjugation of complex number; [ ]⋅E denotes the 
ensemble-average of argument.  

The cross-spectral density of the fluctuating wind speeds xu and yu is rendered by 
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Substitution of Eqs. (4), (5) and (6) into Eq. (1), the coherence function can then be derived 
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2.2 Relationship between coherence function and Fourier spectrum 
 
The discrete Fourier transform denoted by Eqs. (2) and (3) can be re-written into the function in 

Fourier amplitude and Fourier phase 
 

( ) ( ) exp[i ( )]
j j jx x xF n F n nφ=

                    (8) 
 

( ) ( ) exp[i ( )]
j j jy y yF n F n nφ=

                    (9) 
 

where ( )
jxF n and ( )

jyF n denote the Fourier amplitude spectrum; ( )
jx nφ  and ( )

jy nφ denote 

the Fourier phase spectrum. 
The conjunctive spectrum of Fourier spectrum is given by 
 

( ) ( ) exp[ i ( )]
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The cross-power spectrum denoted in Eq. (6) can be re-written into 
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The coherence function denoted in Eq. (7) then can be re-written into 
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where )(njφΔ denotes the phase delay spectrum of two spatial points at wind field 

 
( ) ( ) ( )
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                           (14) 

 
Assuming ( )

jxF n , ( )
jyF n and ( )j nφΔ are mutually independent stochastic variables at the 

points of frequencies, we then have 
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Eq. (13) is then reduced into 
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where [ ]⋅D denotes the standard deviation of argument. 
It is indicated in the Fourier amplitude spectrum of measured fluctuating wind speeds that its 

standard deviation is 10%-30% of the mean (Li et al. 2012). One might figure out that the 
denominator in Eq. (17) values 1.01-1.09. Eq. (17) then can be further reduced into 

 
[ ] [ ] ))(sin())(cos( ))(exp()( ninEniEn jjju φφφγ Δ+Δ=Δ=           (18)  

 
The reducing formulation of coherence function )(nuγ is built up on the error less than 10%. 
It is revealed by Eq. (18) that the coherence function relies upon the phase delay spectrum that 

indicates the critical factor governing the difference and relationship between time histories of 
fluctuating wind speeds at any two spatial points of wind fields.  

One might realize that the phase delay spectrum of Fourier spectrum is a stochastic variable 
due to the randomness inherent with the spatial wind fields. The general formulation of the phase 
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delay spectrum is given by 1 1 1 2 2 2( , ; , , , , , )n x y z x y zφ ηΔ , where η denotes the elementary 
stochastic variable; 1 1 1 2 2 2( , , , , , )x y z x y z denotes the spatial variables of wind fields. 

The phase spectrum ( )
jy nφ  might be denoted as a coordinative phase spectrum if the spatial 

point y  of wind field is defined as a coordinative point where the fluctuating wind speed yu  is 

measured. The phase spectrum of fluctuating wind speed ( )
jx nφ , in this context, at any spatial 

point x  can be derived using Eq. (14) in case that the phase delay spectrum ( )j nφΔ between 

spatial points x and y . In conjunction with the Fourier amplitude spectrum ( )
jxF n  of 

fluctuating wind speeds (Li et al. 2012), the fluctuating wind speed xu  at the spatial points x can 
be readily re-built up by virtue of Eq. (10) and its inverse Fourier transform. Using this numerical 
scheme, the spatial wind field can be constructed. 

Since the Fourier amplitude spectrum and Fourier phase spectrum of fluctuating wind speeds 
both be expressed in stochastic functions, the mentioned numerical scheme, based on the principle 
‘coordinative phase spectrum—phase delay spectrum’, is rendered to implement the simulation of 
spatial stochastic wind fields. 

The phase values of phase delay spectrum ( )nφΔ  typically locate at the domain [0, ]∞ , while 
its principal values are usually defined in the domain [0,2 ]π . Fig. 1 shows the principal value 

( )xy nφΔ  of the two cases with relative relationship between ( )x nφ and ( )y nφ . It is indicated 
that any phase delay spectrum can be transferred into its counterpart with principal values using 
the complementation scheme by 2π . 

It is noted that the stochastic model of wind fields using phase delay spectrum and that of wind 
fields using coherence function have some connections as well as differentiation. The coherence 
function, as indicated in Eq. (18), can be derived from the phase delay spectrum by operating its 
argument in harmonic functions with mathematic expectation. While the two components have 
significant differences from the sample collection that would be detailed in the following sections. 

 
 

3. Modeling of phase delay spectrum 
 

3.1 Primary factors affecting phase delay spectrum 
 
The previous investigations indicate that the main factor affecting the wave shape of a time 

history of wind velocity is its Fourier phase spectrum (Seong and Peterka 2001). Although the 
Fourier amplitude spectrum hinges on the energy distribution of wind velocity process, it does not 
govern the wave shape. In fact, the wave shape exhibits a certain similarity between wind speed 
time series recorded at two spatial points in the neighborhood. The closer of the two points, the 
more obvious of similarity of wave shape arises to be and vice versa. It is thus remarked that the 
degree of similarity of Fourier phase spectrum of wind speeds recorded at two closer spatial points 
is higher than that of wind speeds recorded at two distant spatial points. In other words, the phase 
delay spectrum defined in Eq. (14) would be of a smaller value as far as the wind speeds recorded 
at a two closer spatial points are concerned. 
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Fig. 1 Indication of principal values of phase delay spectrum 
 
 
The investigations reveal that the primary factors affecting the phase delay spectrum include: (i) 

the natural frequency n  that is in positive relationship to the phase delay; (ii) the spatial distance 

yr and zr between two points that are also in positive relationship to the phase delay; (iii) the mean 

wind speed U that is in negative relationship to the phase delay; (iv) the shear rate /dU dz that 
is in positive relationship to the phase delay. The decaying exponential model of coherence 
function includes the first three factors but not includes the fourth factor. As a matter of fact, the 
influence of surface friction on the airflow at high altitude can be ignored, and the airflow gives 
rise to be isotropic turbulence. This influence, however, appears to be strong in the domain near 
the surface. The direct proof is that the difference between wave shape of wind speed time series at 
two low-altitude spatial points exhibits to be more significant than that at two high-altitude spatial 
points. The shear rate of main flow, therefore, should be accounted into the phase delay spectrum. 
The model of phase delay spectrum developed in the present paper includes the influence of the 
shear rate.   

 
3.2 Model of phase delay spectrum 
 
The mentioned four factors affecting phase delay should be included in the model of phase 

delay spectrum. While the model could be represented by these factors through dimensional 
analysis since the phase delay is really a dimensionless quantity. According to the relationship 
between the phase delay spectrum and these four factors, the mean wind speed is supposed to be 
an argument serving as the denominator, while the other three factors are supposed to be 
arguments serving as the numerator. Having this in mind, we propose the model of phase delay 
spectrum as follows 
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where yβ and zβ denote the magnification coefficient of phase delay spectrum along horizontal 
direction and vertical direction, respectively, whereby the phase delay spectrum with different 
amplitudes can be obtained.  

Eqs. (19) and (20) represent a collection of phase delay spectra, respectively. The phase delay 
spectrum, moreover, is essentially a stochastic function of which the basic stochastic variables are 
the mean wind speed U and the ground roughness length 0z . It is understood from the log-law 
formulation of wind profile 

 
*

0

( ) lnu zU z
zκ

=
                           (21) 

 
where *u  denotes the shear wave speed; κ  denotes the von Karman’s constant. Differential of 
Eq. (21) with respect to height z , the shear rate of main flow in the time domain can be obtained 
 

*( ) udU z
dz zκ

=
                         (22) 

 
It was mentioned previously that the phase delay spectrum is a stochastic function in essence. 

When using Eqs. (19) and (20) in usual cases, the mean wind speed U  and shear rate 
( ) /dU z dz are typically valued by their means. 

 
3.3 Validation of phase delay spectrum along vertical direction 
 
It is indicated that there exists the relationship of samples and set between Fourier amplitude 

spectrum and the power spectrum (Li et al. 2012). The power spectrum can be derived from the 
integration of samples of Fourier amplitude spectrum. Likewise, there exists the relationship of 
samples and set between phase delay spectrum and the coherence function, as shown in Eq. (13), 
where the ensemble-average of the function dependent upon phase delay spectrum results in an 
approximate coherence function. It is thus necessary to carry out the validation of phase delay 
spectrum. 

The formulation of coherence function is given by 
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0 0 0( , , ) ( ) [ ( ) ( ) ]cos( ) isin( ) ( ) ( )[exp(i )]ref ref refj ju jz U n n n n p U p z dU dzE φ φγ φ
Ω

Δ + Δ= Δ = ∫∫
  (23) 

 
where ( )refp U and 0( )p z denote the probability density functions of mean wind speed at the 
reference height and of the ground roughness length, respectively. Ω denotes the integral domain. 

As far as the phase delay spectrum along vertical direction is concerned, the mean wind speed 
( )U z at height z relies upon the ground roughness length and the mean wind speed at the 

reference height refz  
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U z z z
U z

z z
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then the shear rate is given by 
 

0

( )( )
ln( )

ref

ref

U zdU z
dz z z z

=
                     (25) 

 
The ground roughness length 0z is assumed to admit the log-normal distribution. The 

reference height is defined as 10 m. The mean wind speed 10U is assumed to admit Gumbel 
distribution (Li et al. 2012). Towards obtaining the measured data of strong winds, we built up an 
observation platform at a certain site of East China in 2006. The surroundings of the platform are 
schematically plotted in Fig. 2. A main anemometer tower, denoted as P1 shown in Fig. 3, is used 
as the primary carrier for investigating the vertical wind field. Other three anemometer towers, 
denoted as P2, P3, P4, respectively, in Fig. 3, were also erected in the area of platform to 
investigate the horizontal wind field. Four supersonic anemometers were mounted on the main 
tower, as shown in Fig. 3, at 10 m; 20 m; 28 m and 43 m along the height of the anemometer tower, 
respectively. The wind data was measured using these supersonic anemometers of which the 
sample frequency is 10 Hz. Huge mass of wind-speed data has been obtained in the past 5 years. 
The profile of mean wind speeds can be obtained through synthesizing the measured data of wind 
speeds into the time interval 10 mins at these typical heights. Fig. 4 shows the profile of a 10-min 
mean wind speed from measured data and its fitting function, respectively. It is seen that the wind 
profile match well with the log-law formulation, as indicated in Eq. (21). The turbulence intensity 
along the main flow, defined as the ratio between standard of deviation of fluctuating wind speeds 
and the mean wind speed, at height 10 m is identified to be 0.25 using the measured data. The 
statistical parameters of the ground roughness length 0z  and the mean wind speed 10U are listed 
in Table 1. 
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Fig. 2 Schematic diagram of surroundings of the platform 
 
 
 
 

 

Fig. 3 Schematic diagram of four supersonic anemometers mounted on the anemometer tower 
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Table 1 Statistical parameters relevant to probability density of elemental stochastic variables 

Stochastic variables 0z  
( )U z  

10 m 20 m 28 m 43 m 

Mean -1.2155 -- -- -- -- 

Standard deviation 1.0052 -- -- -- -- 

Position parameter -- 5.1746 6.3349 6.7712 7.5151 

Scale parameter -- 0.7475 0.8286 0.8402 1.0337 
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Fig. 4 Profile of a 10-min mean wind speed from measured data and its fitting function 
 
 
We choose 20 sample values with equivalent probability respectively on the ground roughness 

length 0z and the mean wind speed 10U . For the purpose of comparative studies, the height 10 m 
is defined as the reference height. Three collections of phase delay spectra respectively at the 
height 20 m, 28 m and 43 m are generated using the proposed model. Each collection includes 400 
samples. The coherence function derived from Eq. (23) is modified to match the coherence 
function derived from the measured data through adjusting the magnification coefficient of phase 
delay spectrum zβ , as shown in Fig. 5.  

It was mentioned that Eq. (13) just indicates the ensemble-average of the phase delay spectrum 
in complex domain. While its standard deviation can be further defined by 
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 (26) 
The standard deviation of coherence functions along vertical direction derived from measured 

data and model is shown in Fig. 6. 
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Fig. 5 Mean of coherence functions along vertical direction derived from measured data and model 
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Fig. 6 Standard deviation of coherence functions along vertical direction derived from measured data and 
model 

  
 
It is seen that the standard deviation of coherence function derived from measured data is 

slightly larger than that of coherence function derived from the model in the domain of low 
frequencies, indicating that the measured phase delay features a wider distribution in the complex 
domain. Besides, the standard deviation whether of the measured spectrum or of the model 
spectrum approaches to 1. It is revealed that the principal values of phase delay spectrum admit the 
uniform distribution with domain of [0, 2 )π . 

 
3.4 Validation of phase delay spectrum along horizontal direction 
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The cross-wind distance between two spatial points of wind field at horizontal direction is not 
always the direct distance between them, especially in case that the along-wind direction is not 
perpendicular to the direction connected by the two points, as shown in Fig. 7. 

It is worth to be noted that the phase delay spectrum described by Eq. (19) is between spatial 
points P and P1. While the phase delay spectrum between spatial points P1 and P2 should account 
for the along-wind phase delay between P2 and P, which is given by 

 

( ) 2 x
x

rn n
U

φ πΔ =
                       (27) 

 
It is indicated in Eq. (27) that the along-wind phase delay derives from the product of 2π and 

the ratio between along-wind distance xr and harmonic wave length U n . As regards the case 
shown in Fig. 7, therefore, Eq. (19) should be modified into 
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y y
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U U
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                (28) 
 

It is obvious that the along-wind distance xr would be zero in case that the along-wind 
direction is perpendicular to the direction connected by the two points, and Eq. (28) becomes into 
Eq. (19).  

 
 
 

Fig. 7 Schematic diagram of relationship between cross-wind distance and direct distance between two 
spatial points P1 and P2 
 

 
We select 66-group measured data of wind speeds to calculate the coherence function and its 

standard deviation at which the wind direction almost exhibits 30 degree (± 5 degree) to the 
direction of wind-field platform. The model computation, meanwhile, are carried out using Eqs. 
(23) and (26). The reference height is defined as 20 m. Since the angle between along-wind 
direction and direction of wind-field platform is about 30 degree, the cross-wind distance is just 
half of the direct distance. Defining the point P1 as the datum mark, the phase delay spectrum of  
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Fig. 8 Mean of coherence functions along horizontal direction derived from measured data and model 
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the wind speed at the neighborhood points with distance along cross-wind direction 20 m, 60 m 
and 120 m can be readily obtained, respectively. Besides, the phase delay spectrum with distance 
40 m can also be derived defining P2 as the datum mark and P3 as the neighborhood point. 
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Fig. 9 Standard deviation of coherence functions along horizontal direction derived from measured data 
and model 
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Figs. 8 and 9 show the defference between the results derived from model and from the 
measured data. It is seen that the coherence function computed by the proposed model of phase 
delay spectrum matches well with that computed by measured data. This is true whether for the 
mean or the standard deviation of phase delay spectrum. It is thus proved that the modified model 
represented by Eq. (28) is of applicability. 

 
 

4. Simulation of wind fields 
 
4.1 Procedure for simulation of multiple-point fluctuating wind speeds 
 
The previous sections provide the basic concept and principals for modeling of phase delay 

spectrum. The model, in fact, is pertinently suitable for the simulation of wide wind fields. The 
numerical procedure is detailed as follows: (i) define a datum mark and conduct its evolutionary 
phase spectrum by virtue of the numerical scheme associated with starting-time of phase evolution 

eT that we proposed previously (Li et al. 2013); (ii) select the appropriate magnification coefficient 
of phase delay yβ  and zβ by fitting the results of model and measured data, the phase delay 
spectrum of wind speeds at spatial points, relevant to the datum mark, is then generated using Eqs. 
(19) and (28); (iii) integrate the phase spectrum of the datum mark and the phase delay spectrum to 
obtain the Fourier phase spectrum of wind speeds at spatial points whereby the time history of 
fluctuating wind speeds can be readily achieved in conjunction with the Fourier amplitude 
spectrum using the inverse Fourier transform (Inv-FFT). The flowchart of the numerical procedure 
is shown in Fig. 10. 

 
4.2 Comparative studies between simulated and measured spatial wind fields 
 
Using the numerical procedure detailed in the previous section, we investigate the sample 

behaviors of simulated and measured spatial wind fields. The height 10 m at platform point P1 is 
served as the datum mark. The vertical wind field is constructed at the four typical heights of P1, 
i.e., 10 m, 20 m, 28 m and 43 m. The horizontal wind field is constructed at the height 20 m of the 
four platform points, i.e., P1, P2, P3 and P4. The magnification coefficients of phase delay spectrum 

for horizontal and vertical wind fields are defined as 35yβ = , 80zβ = , respectively. The 

simulated time histories of fluctuating wind speeds in wind fields are shown in Fig. 11. It is seen 
that the simulated wind speed time series numerically very close to the measured ones.  

Besides, the cross-spectral density of simulated and measured fluctuating wind speeds at four 
typical heights of the platform points is caculated using Eq. (6). It is seen in Fig. 12 that the 
cross-spectral density of simulated fluctuating wind speeds at typical heights matches well with 
that of the measured fluctuating wind speeds, indicating that the coherence behaviors of the 
re-built wind field conform with that of the original wind field. 
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Fig. 10 Flowchart of simulation of spatial wind fields 
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Fig. 11 Simulated and measured time histories of fluctuating wind speeds at typical spatial points of 
wind fields 
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Fig. 12 Cross-spectral density of simulated and measured fluctuating wind speeds at four typical heights 
of the platform points 

 
 

5. Discussions on spectral representation methods 
 

The spectral representation method is a well-visited numerical simulation scheme. It has been 
developed into a comprehensive method allowing for simulation of multi-dimensional, 
multi-variable and non-stationary random processes since it originated in 1954 (Rice 1954). The 
spectral representation method is widely used in the simulation of wind fields (Shinozuka and 
Deodatis 1997, Liu et al. 2004, Ding et al. 2006, Zheng et al. 2007, Kareem 2008, Hu et al. 2010, 
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Aung et al. 2012, Ye et al. 2012). Its essential is to carry out the simulation of the random process 
matching with objective power spectrum using the superposition technique of harmonic waves 
with random phases. Fig. 13 shows the flowchart of simulation of spatial wind fields using the 
spectral representation method. 

It is noted that the spectral representation method, at least, underlies the challenges as shown as 
the following points: 

(i) The spectral representation method belongs to the simulation scheme of statistics in essence. 
In case of the simulation of random processes, the amplitude of harmonic waves relies upon the 
spectral density. The simulation results, meanwhile, of the objective random process is assessed 
through the validation of the simulated and the original power spectrum. The spectral density, 
however, is essentially the statistical characteristics whereby the simulated random process does 
not include the probabilistic information with statistical moments more than second order.  

(ii) The spectral representation method limits in sample selection repeatedly. Since the power 
spectrum belongs to the ensemble characteristics, the simulated random process cannot feature the 
sample resurgence of random processes in the real world. 

(iii) The initial phases used in the spectral representation method are typically independent 
stochastic variables distributed in the frequency domain [0,2 )π with uniform distribution. This 
treatment results in a dramatically number increasing of stochastic variables used in the numerical 
simulation of fluctuating wind-speed fields. The number of the stochastic variables is usually 
400-600. 

 (iv) The essential relationship between the frequency phases, the frequency phase and energy 
is not included. The result with consequence of these challenges is evident that the numerical 
simulation of fluctuating wind speeds for stochastic dynamic analysis of structures using the 
spectral representation method is not only computationally time-consuming but also limited in 
statistical solution rather than probability density function of responses. The probabilistic solution 
relevant to statistical moments thus results in the difficulties of accurate assessment of structural 
reliability. 

While the simulation scheme developed in the present paper has a couple of significant benefits 
over the spectral representation method, as detailed as follows: 

(i) The stochastic Fourier spectrum is essentially a stochastic function. Its values hinge on the 
physical relationship among the basic random variables. It thus exhibits the capacity of re-building 
up the samples of random processes. In other words, the mapping between the simulated 
fluctuating wind speeds and the basic random variables is unique and self-consistency. 

(ii) The relationship between fluctuating wind speeds at the spatial points in wind fields is 
governed by the phase delay spectrum. This treatment prompts a ready and succinct scheme for the 
simulation of fluctuating wind speeds. 

(iii) The fluctuating wind speeds is directly generated using the inverse Fourier transform. It 
bypasses the possible numerical errors due to simulation techniques. 

(iv) The random variables involved in Fourier amplitude spectrum and phase spectrum are just 
the ground roughness length and the mean wind speed, and the evolutionary phase spectrum 
includes only one random variable eT as well. It is thus indicated that using only three random 
variables one could completely simulate a spatial wind field. The reduction of the relevant random 
variables to the fluctuating wind speed provides a new perspective to the accurate assessment of 
dynamic reliability of wind-induced structures. 
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Fig. 13 Flowchart of simulation of spatial wind fields using the spectral representation method 
 
 

6. Conclusions 
 
The phase delay spectrum is usually used to describe the essential factors of similarities and 

differences between the time histories of fluctuating wind speeds at two spatial points. In the 
present paper, we propose a novel model of phase delay spectrum. The model is proved to be of 
rationality and of applicability using the measured data at spatial points of wind fields. It is 
indicated in our investigations that the phase spectrum of fluctuating wind speeds at spatial points 
derives from the integration of phase delay spectrum with the phase spectrum at datum mark 
defined. The numerical scheme associated with the starting-time of phase evolution provides a 
new perspective towards the simulation of phase spectrum. The time history of fluctuating wind 
speeds can readily simulated in conjunction with the stochastic Fourier amplitude spectrum. 
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