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Abstract.    This paper presents an experimental investigation concerning the peak amplitudes of oscillation 
of a square prism due to Vortex-Induced-Vibrations (VIV) as a function of the mass damping parameter 

ζ*m  (the so called Griffin--plot); *m and ζ being, respectively, the non-dimensional mass and the 
mechanical (structural) damping ratio. With this purpose in mind, an electromagnetic actuator has been 
employed to provide controlled damping. During the experiments the mass--damping parameter was in the 
range .4.2*15.0 << ζm  Experiments show that there is a value of ζ*m below which VIV appears 
combined with galloping and the prism oscillation increases monotonically with the incoming flow velocity. 
For ζ*m >0.3 the present experiments show a well-defined VIV phenomenon and, consequently, a 
Griffin-plot can be defined. 
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1. Introduction 
 

For more than half a century now, Vortex-Induced-Vibrations (VIV) has been recognized as one 
of the central problems of the aero/hydro-elasticity field. It is concerned with the interaction 
between an elastic circular cylinder (or other body with an aerodynamically bluff cross-section) 
and an incoming flow. Briefly outlined, VIV is due to the periodic shedding of vortices that can 
excite the body into resonant oscillations when the vortex shedding frequency and body frequency 
are sufficiently close to one another. Under certain conditions, significant oscillations can emerge 
(principally, normal to the incident flow). Then, a coupling between the oscillating body and the 
flow field around it develops with two relevant consequences: (i) there is a range of flow velocities 
where the vortex shedding frequency is synchronized with the frequency of oscillation (lock-in 
regime), and (ii) the cylinder response may exhibit hysteresis, with jumps in oscillation amplitude 
and in the fluid forces acting on the body. VIV has much relevance in engineering, with 
applications to slender chimneys stacks, bridges, tall buildings, offshore structures, electric power 
lines and heat exchange tubes, among others. Very recently, VIV and other Flow-induced vibration 
phenomena have also attracted interest as a new way for energy harvesting (Wang and Ko 2010, 
Sanchez-Sanz et al. 2009, Barrero-Gil et al. 2010). Because of its practical and scientific relevance, 
VIV has led to a large number of fundamental studies, many of which are reviewed by Bearman 
(1984), Sarkpaya (2004), and Williamson and Govardhan (2004), Kaneko et al. (2008). 
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The canonical arrangement for the study of VIV consists of a spring mounted circular cylinder 
restricted to move in the transverse direction. Such a system can be described by the following 
structural parameters: cylinder with mass per unit length m, diameter D, length L, a characteristic 
frequency of oscillation Nf  (normally defined in still air), and mechanical damping ratioζ . The 
fluid parameters are the velocity of the incoming flow U (turbulence is not considered) and fluid 
properties ρ (density) and ν (kinematic viscosity). Therefore, taking ρ , D, and Nf  as the 
fundamental physical quantities, the normalized amplitude DAA /* = , and frequency of oscillation 

Nfff /* =  present the following dependence  

)/Re,*,,*,(*  *, 2,1 DLUmfA ζΦ=                     (1) 

where )/(*    /* 2Dmmff N ρ== is the mass ratio (the dimensionless number typifying the ratio 
of the mean density of the body to the density of the flow), )/(* DfUU N= is the reduced velocity, 
and ν/Re UD= is the Reynolds number. 

Over the years, extensive research has been conducted for the determination of this relationship 
(Eq. 1), by means of experimental, theoretical, and computational investigations. Researchers have 
been concerned principally with the oscillations of an elastically mounted rigid cylinder (for 
example, see Feng (1968) for 1* >>m and Khalak and Williamson (1999) for 1~*m ); with the 
oscillations of long flexible circular cylinders (Brika and Laneville 1993); with forced oscillations 
of circular cylinders (Bishop 1964, Sarpkaya 1964, Hover et al. 1998); with computational studies 
for low Reynolds number (Evangelinos and Karniadakis 1999, Prasanth and Mittal 2008, 
Sanchez-Sanz and Velazquez 2009, 2011, Semin et al. 2012, Vasallo et al. 2012; and with 
visualization studies of the wake structure (Williamson and Roshko 1988). From the theoretical 
point of view, some mathematical models based on the wake-oscillator concept of Birkhoff (1957) 
have been proposed (Gabbai and Benaroya 2005, or Facchinetti et al. 2004), as well as the use of 
potential flow models to describe the fluid forces (Parkinson 1974). 

One of the important issues from the structural engineering point of view involves being able to 
predict the maximum amplitude of oscillations; therefore, determining the peak amplitude of 
oscillation, *

MA , as a function of the elastic properties of the cylinder is of great interest. In fact, 
the Griffin--plot (it will be introduced appropriately later) has become an integral part of the 
offshore design codes. In this case, *U , disappears as a relevant parameter of the problem since 
we are not interested in the velocity at which *

MA  is achieved. Over the years, the influence of 
both Re and the aspect ratio L/D has not been considered (only Govardham and Williamson (2006), 
have considered recently their effect). Thus, )*,(1

* ζφ mAM = and when 1* >>m a heuristic 
argument can be resorted to in order to combine both parameters into a single one, the so called 
mass-damping parameter ζ*m , leads to the functional relationship )*(2

* ζφ mAM = , as was 
showed by Bearman (1984). Let us to summarize his reasoning: a system such us that shown in 
Fig. 1 has a governing equation of motion given by 

)(
2
1) 4 4( 222 tDCUyfyfym YNN ρππζ =++ &&&                   (2) 
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where YC is the fluid force coefficient in the transverse direction. In the lock-in region (or 
resonance range), to a good approximation the fluid force and the cylinder displacement can be 
described as 

)2sin()(
)2sin()( 0

ftAty
ftCtC YY

π
φπ

=
+=

                            (3) 

where f  is the oscillation frequency and φ is the phase angle between the fluid force and the 
cylinder displacement. Substituting Eq. (3) in Eq. (2) and equating sine and cosine terms, the 
solution for the response amplitude and frequency is 
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Fig. 1 Experimental set-up (a) and equivalent mechanical oscillator (b). In (c) an schematic block diagram of 
the system employed to provide control in damping is sketched. 
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For large mass ratio, 1* >>m  (a very common situation on structures under wind action), 
from Eq. (4) one can see that 1~8/*(1* 22 πUf →  and experiments show that )1~cos0 φYC ,  
and 1*)/*( −→ StfU (herein St is the stationary cylinder Strouhal number). Then, one may 
deduce that the maximum response amplitude is a function of mass-damping parameter ( ζ*m ). 
For 1~*m , some experiments (see Williamson and Govardhan 2008) have shown that using 

ζ*m can be valid as well. The plotting of peak amplitudes versus the mass damping parameter is 
known as the Griffin--plot, after his first extensive compilation of existing data in the 1970s for the 
case of circular cylinders. 

However, despite its geometrical and practical significance, experimental studies of the VIV 
response of square prisms are scarce and to date, to the authors’ knowledge, there is no 
Griffin--plot published. The study of the VIV phenomena for square prims in the literature include 
the experimental measurements of pressure fluctuations acting on an oscillating square prism at 
amplitudes up to 25.0* =A  in the range of reduced velocities of 4-13 by Bearman and Obasaju 
(1982), hereafter referred to as B--O. The work of Kumar and Gowda (2006), hereafter referred to 
as K--G, concerns the free vibrations of a spring-mounted square prism, but just for a single value 
of ζ*m =0.3 (thanks to our experimental set up, we can study this free vibrations on a large 
range of ζ*m ). The case of an elastic square prism was studied experimentally by Wang and 
Zhou (2005). 

The aim of this study is to characterize experimentally the maximum amplitudes of oscillation 
for the case of spring-mounted square prisms under VIV. This characterization can be useful for 
structural designers (we will propose a functional relation between the *

MA  and ζ*m (also 
known as Scruton number by wind Engineers), Homma et al. (2009)), as well as for scientific 
purposes. The noticeable difference with respect to the case of a circular cylinder is that for low 
values of ζ*m there is an interaction between VIV and transverse galloping, leading to a 
response that is not self-limited (in the sense that as *U  is greater *A  increases without limit). 
In this case, the Griffin--plot has no physical sense. 

 The mechanism behind galloping is different from that associated with VIV. Basically, 
galloping is a movement-induced vibration appearing when the velocity of the incident flow 
exceeds a certain critical value. Then, the stabilizing effect of structural damping is overcome by 
the destabilizing effect of the fluid force, and a small transverse displacement of the body creates a 
fluid force in the direction of the motion that tends to increase the amplitude of vibration. The 
quasi-steady approach predicts the reduced velocity at which galloping appears is 

1
* /*8 amU g ζπ= , where 01 )/( == ααddCa Y is the slope of YC versus the angle of attack 

measured in static conditions (a more detailed explanation can be found in Parkinson (1974) or 
Barrero-Gil et al. (2009)). Therefore, as ζ*m diminishes *

gU is lower and VIV can appear 
combined with galloping. In the present experiments, VIV phenomenon has appeared well 
separated from galloping until .3.0* ≈ζm  

The organization of the paper is as follows: in Section 2 we present the experimental set-up and 
the method used to actively control the mechanical damping of the system. In Section 3 some 
experimental results and a Griffin-Plot (the heart of this investigation) are presented. The final 
section is devoted to summarize several aspects of this investigation.  
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2. Experimental details 
 

An experimental facility was employed satisfying two major purposes, such as to get linear 
stiffness, and provide control of mechanical damping. The experimental set--up is similar to that 
employed by Kumar and Gowda (2006). As it can be seen in Fig. 1(a), a square prism of length L 
= 30 cm was supported elastically by means of two aluminium beams (40 cm long). The square 
section prism was made out of wood with smooth surface finishing, and it was subjected to the 
action of an airstream supplied by a small open-test section wind tunnel of rectangular area of 25 
cm height, and 40 cm width. The tunnel consist of a centrifugal fan where the air is powered and 
sent to the contraction zone (2.4:1 area ratio), and a rectangular duct with two low porosity screens 
to reduce non--uniformities of the flow up to 1\% in the test section. The speed range of the tunnel 
is 0.1 to 2.5 m/s. The prism was situated horizontally 6 cm downstream of the exit of the tunnel. 

In all cases, the width of the square cross-section D was 2 cm, giving and aspect ratio L/D of 15, 
and the wind speed U  was varied in the range 50-200 cm/s (so that, the Reynolds number, 
defined as ν/Re UD=  varied between 1000 and 4000). The free-stream turbulence level at the 
centerline was below 2%. The transverse vibration, )(ty , was obtained with a miniature 
accelerometer with a resolution of 2 mg (2.5 grams mass and placed at the end of one of the 
aluminium beams), through double integration of the measured acceleration. This integration was 
done by using the trapezoidal rule and applying a high pass filter to remove low frequency content. 
The wind tunnel speed was measured with a portable hot wire anemometer (resolution of 0.01 m/s) 
placed at Dx 5.2−= and Dy 5.4= (being x  the direction of the flow, see Fig. 1(a)). Finally, it 
should be noted that the experimental set-up allows for a small motion in the x direction (typically, 

).01.0/ <yx  
 
2.1 Control of mechanical damping 
 
To provide accurate control of damping, a voice coil was used as an actuator. The voice coil 

produces a force that is proportional to the current drive through the coil. If )(tVa  is the voltage 
across the coil, R its electrical resistance and )(tz  the displacement of the coil, then the force aF  
supplied by the voice coil is given approximately by (the coil inductance and capacitance can be 
neglected) 

zb
R

KtV
R
KtF aa &⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

2

)()(                       (5) 

where K is a constant and b  another constant which takes into account the eddy current 
effects. If )(tVa is proportional to the transverse velocity of vibration )(ty& , and )(tz is 
proportional to the transverse vibration amplitude of the square prism, then 

)()( tyCtFa &=                               (6) 

    
where C is a constant. Therefore the voice coil introduces an external damping term in the 

system dynamics, which now can be written as 
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yCtDCUtFtDCUyfyym YaYN &&&& +=+=++ )(
2
1)()(

2
1)44( 2222

0 ρρππζ          (7) 

where m is the equivalent mass of the system (mass of the square prism plus the modal mass 
of the beam system) per unit length and 0ζ is the mechanical damping without control. To 
calculate the equivalent mass, firstly the stiffness of the installation was measured by adding 
calibrated weights to the center of the square prism and measuring its vertical displacement with a 
vernier caliper. The square prism was then excited with an initial displacement giving a natural 
frequency of oscillations of 3.5=Nf   Hz. The equivalent mass is then deduced as ). 2/( 2

Nfkm π=
A value of 176.0=m kg/m was obtained ( 353* =m ). 

As it can be seen in the block diagram shown in Fig. 1(c), the output voltage of the 
accelerometer accV (proportional to y&& ) is integrated by means of a passive low--pass filter with 
cut-off frequency of 0.15 Hz (as the natural frequency of the system was 5.3 Hz the phase lag 

introduced is less than 2º), so that )()(1)( 12 tykdttV
CR

tV acc
FF

&== ∫ ( FR and FC  are, respectively, 

the resistance and capacitance of the low--pass filter; 1k  is a constant]. Then, 2V is sent to the 
power amplifier that drives the voice coil with a voltage proportional to the velocity of oscillation, 

)()( 21 tykktVa &=  (and hence yCFa &= ). The magnitude of the damping introduced, C, is varied 
with a potentiometer and its sign can be changed if the polarity of aV  is reversed, providing 
accurate control of positive and negative damping. At the same time, the accelerometer signal is  
recorded on a PC using a 12 bit A/D board at a sampling frequency of 200 Hz. Finally, it should be 
noted that the voice coil is placed downstream of the square prism far enough so that yz << and 
the voice coil has a linear behavior. 

 
2.2 Experimental procedure 
 
All experiments begin with a characterization of mechanical properties without incoming flow 

(in still air). As active control is only used in damping, for all cases the measured frequency of 
oscillation was nearly the same (5.3 Hz). Damping in still air can be divided in two components: 
damping caused by fluid viscosity and mechanical damping caused by internal friction. The fluid 
viscosity damping force hdF  per unit length can be estimated introducing a non-dimensional drag 
coefficient dC   

yyCF dhd &&ρ
2
1

−=                              (8) 

 
Assuming sinusoidal motion with amplitude A and frequency f , and taking only the first term 

of the Fourier expansion of Eq. (8) (Blevins 1990) 
 

yAfDCF dhd &ρ
3
8

=                              (9) 

 
On the other hand, the mechanical damping force per unit length, mdF , is given by 
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yfmFmd &  4 ζπ=                           (10) 
so that 

*2
*3
AC

m
F
F

dhd

md ζπ
=                            (11) 

 
It follows that 1~/ hdmd FF for low values of ζ*m  and the total damping, mechanical (ζ ) 

plus hydrodynamic ( hζ ), has a highly non-lineal dependence on the amplitude of oscillations. 
Experiments (see for example Brika and Laneville (1993)) show that hζ can be approximated by a 
quadratic dependence on the amplitude of the oscillations ( dC is dependent on amplitude of the 
oscillation), and therefore the mechanical damping can be estimated by simply subtracting the 
hydrodynamic component from the measured (total) damping ( saζ ). That is, 2)/( DAksa −= ζζ , 
where k is positive and constant. One can see then that the mechanical damping can be evaluated 
measuring the damping in still air saζ and extrapolating its value as DA / tends to zero. Here, the 
total damping is determined by measuring the decay between two consecutive peak amplitudes, 

 
1

ln
2
1)(

+

=
i

i
isa A

AA
π

ζ                          (12) 

Fig. 2 shows two free-decay tests used to obtain damping characteristics as a function of the 
amplitude of oscillations. Cases (a) and (b) correspond, respectively, to the case when the damping 
introduced by the actuator is negative (ζ  =0.00146) and positive (ζ =0.0047), since the damping 
without actuation is 0ζ  =0.0029. 

 
 

Fig. 2 Positive [case (b)] and negative [case (a)] damping  introduced in the system. In both cases the trace 
of the displacements recorded is shown (left) as well as the total damping as a function of the normalized 
amplitude of oscillations (right). Dashed line corresponds to a square law fitting of experimental 
measurements 
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3. Results 
After the mechanical damping was imposed and measured, the experimental procedure was 

always the same: fixing the airstream velocity, the square prism is exposed over sufficiently long 
time until a steady state of oscillation is reached; then, the oscillation is registered during 60 
seconds. Next, the flow velocity is increased in a small step with the prism still oscillating and the 
operation is repeated. During the experiments, no hysteresis effects were observed, and when the 
flow velocity was decreased the results were very nearly the same. In fact, when the model was 
released from rest, the steady amplitude of oscillation *A was approximately the same than when 
the model was released from a high amplitude (Fig. 3). 

 
 

 

Fig. 3 Traces of the vibration amplitude for * 11.8U =  with two different initial conditions: (a) from rest, 
(b) with pre-excitation 

 
 
Looking at the figure it is observed that the time needed to reach the steady state depends on 

the initial condition, being much lower when there is pre-excitation (in fact, we have observed that 
the decay rate is even larger than that of still air conditions, indicating a strong energy transfer 
from the body to the flow). The absence of hysteresis matches with the experimental visualization 
studies carried out by Ongoren and Rockwell (1988), as well as the experimental results of K--G. 
For the square cross-section oscillating at a fixed amplitude ( 13.0* =A ), Ongoren and Rockwell 
did not detect a phase change of the vortex shedding relative to the body motion when 1~/ vff    
( f  and vf are, respectively, the frequency of oscillation and the frequency of vortex shedding); 
however, they observed an abrupt discontinuity for the case of a circular cylinder, which could be 
responsible for the hysteresis phenomenon. 

Experimental results of K--G are shown in Fig. 4 together with results of the present 
investigation. The overall shape and the range of lock-in is similar in both experiments 
(comparable to that observed by B--O), but several differences are noted. The most remarkable 
findings is that the reduced velocities at which the maximum amplitudes are reached are different. 
A value of 10* =U is found in the K--G results and 5.12* =U in our results. However, 
quantitative comparison is not easy, due to the different experimental conditions. The Reynolds 
number in the K--G experiments was in the range 14000Re4000 ≤≤ (our experiments are in the 
range 4000Re1000 ≤≤ $1000), and the aspect ratio was also different ( 6.11/ =DL in K--G, and 

10 1020 2030 3040 40(s) (s)
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DL / in our experiments).  
 
 

 

Fig. 4 Amplitude response ∗A versus reduced velocity ∗U . White squares: K--W results ( * 0.3m ζ = ). 
Present investigation in black circles ( * 0.45m ζ = ) 

 
Fig. 5 shows the non-dimensional amplitude, *A as a function of the reduced velocity *U  

for three different damping ratios ( ζ*m =0.68, 0.62, 0.45). Note that oscillations start at 
.5.7* ≈U This value corresponds to a Strouhal number of 0.13, which is close to some 

experimental measurements (Okajima 1982). Then, *A  increases until 1312~* −U , where a 
drastic reduction in *A takes place. Finally, the amplitude of oscillations monotonically decreases 
with flow velocity in the range .1714~* −U  As expected, both the maximum amplitude during 
lock-in and its extent are inversely proportional to ζ*m . 

Measurements of the fluctuating lift force were not attempted in the present experiments. 
However, Parkinson (1974), estimated the lift coefficient in phase with the square prism velocity 
( φsin0YC ) from Eq. (4). That is 

⎟
⎟
⎠

⎞
⎜
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⎝

⎛
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2
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***16sin
U

AfmCY ζπφ                                         (13) 

 
Results are shown in Fig. 6 for two values of the mass damping parameter. It is remarkable that 

the maximum value of φsin0YC  appears at 12* =U  in both cases. Measurements of the phase 
angle between suction, measured at the centre of a side face, and square prism displacement 
carried out by B--O show a maximum value for φsin  at 12* =U  when 25.0* =A (Fig. 14 in 
B--O paper). It is precisely the reduced velocity at which our free vibration results present a peak. 
B--O states that maximum amplitudes could occur at the high velocity end of lock-in. Our results 
are in good agreement with this observation (however, it must be noted that forced oscillations 
with a given amplitude and frequency do not represent completely the case of a free vibration 
arrangement, where amplitude and frequency are changing).  

During the experiments we found that there is a certain value of the mass--damping parameter 
at which the character of response is very different, due to the effects of galloping. As can be seen 
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in Fig. 7, for very low values of damping, the oscillations start where the stationary Strouhal 
number predicts ( .5.7* ≈U ), but *A  always increases with *U  without apparent limit (our 
wind tunnel has a maximum flow velocity of some 2 m/s).  For these cases, the Griffin--plot is 
not defined. 

   
 

Fig. 5 Amplitude response ∗A  versus reduced velocity ∗U  for three damping levels 
 
 

Fig. 6 Fluid excitation (a) [based on Eq. (4)] and square prism response (b) for two values of damping. 
White circles: * 0.62m ζ = . Black circles: * 0.45m ζ =  
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Fig. 7 Square cylinder response ∗A  versus the reduced velocity ∗U . For very low values of the mass 
damping parameter VIV appears combined with galloping 

 
 
We did not observe oscillations below 5.7* =U (a case with ζ*m as low as 0.15 was tested). 

This result is consistent with the phase measurements of B--O, where the phase angle φ is 
negative below 8.7* =U when 05.0* =A (and hence there is no energy transfer between the flow 
and the square prism, see Eq. (4)). 

We conducted 30 tests similar to those showed in Fig. 5 covering the range 4.2*15.0 ≤≤ ζm , 
looking for the Griffin--plot, i.e the functional relationship between *

MA  and ζ*m . The results 
are plotted in Fig. 8. A least-square fitting to the data gives the following dependence 

32* *24.0*91.0*1.147.0 dddAM −+−=                                         (14)   

where a convenient variable 3.0** −= ζmd (valid for 3.0* >ζm ) has been introduced (note 
that the present experiments show than for 3.0* <ζm galloping appears and the response is not 
self-limited). For completeness, the figure also shows experimental data from other researchers. 

The extension of the range of resonance (lock-in) is plotted in Fig. 9. Here, we have defined the 
lock-in by an oscillation amplitude threshold, namely .05.0*)(* >UA   As it can be seen, the 
lock-in domain increases as *d tends to zero. Very different is the behavior of the upper limit, 

*
UU , compared to that of the lower limit *

LU . While *
LU remains almost independent of *d , *

UU  
shows an increasing derivative as *d  diminishes. A possible explanation can be given here: *

LU  
is mainly governed by the vortex shedding frequency when the square section is almost at rest, and 
therefore, it should be almost independent of the mechanical properties *m andζ . A least-square 
fitting gives the following dependence 

)1(10     *,28.09.7 *1.2* d*
UL eUdU −−=+=                                         (15)   
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Fig. 8 Griffin--plot: peak amplitudes of oscillation, MA∗ , as a function of the mass--damping parameter for 
the square cylinder (black circles corresponds to results of the present study). Symbols (excluding black 
circles) stand for experimental measurements by other researchers [Kumar and Gowda (2006); Nguyen and 
Naudascher (1991); Amandolèse and Hemon (2010); Cheng et al. (2003)]

 
 

Fig. 9 Lock-in (range of resonance) domain as a function of the damping value ( * * 0.3d m ζ= − ) 
 
 

4. Conclusions  
 
Most of the experimental studies into VIV have been involved with circular cylinders 

oscillating in cross-flow, and comparatively few literature is devoted to the case of square prisms. 
Here, an experimental apparatus has served as a key tool to study the free vibration due to VIV 

of a spring-mounted square prism. This allows to vary the mechanical damping without changing 
the others parameters in the problem (conditions of the incident flow, mass ratio or the aspect 
ratio). Then, the effect of the mass damping parameter has been studied in detail, and the measured 
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peak amplitude of vibration presents the following dependence: A*
M = 0.47 – 1.1d* + 0.91d*2

 – 
0.24d*3,  where 3.0** −= ζmd   is a convenient variable introduced to exclude the range of 
values where galloping appears combined with VIV ( 3.0* <ζm ). With respect to the range of 
resonance (lock-in), experiments show a behavior similar to that of the circular cylinder. The lower 
limit, defined as the initial reduced velocity at which oscillations are of significance is almost 
independent of the mass damping parameter. 

However, the upper limit (end of lock-in) increases as the mass damping parameter diminishes, 
being the lock-in extension inversely proportional to the mass damping parameter. 

During the experiments the hysteresis phenomenon typically observed for circular cylinders did 
not take place. Several tests were carried out with different initial conditions and, whatever the 
initial condition (square prism at rest or at a high amplitude), the final response was always the 
same. This fact is consistent with previous experiments and visualization studies. 

Finally, it should be noted that here we have studied principally the influence of the mass 
damping--parameter in the peak amplitudes during VIV. However secondary parameters were 
present in the experiments, like the turbulence characteristics of the incoming flow. Turbulence can 
also play an important role in VIV. It is reasonable to think that turbulence disturb vortex shedding 
reducing the lift and drag fluctuations and, therefore, the amplitude of oscillations. However, this 
is a very complex open question that needs further study. Also the square prism was mounted with 
no end plates and, in spite of its relatively high aspect ratio ( 15/ =DL ), it is expected that three 
dimensional effects could have an influence. 
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