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Abstract.    This paper describes a study of the influence of a dynamically flexible building structure on 
pressures inside and net pressures on the roof of low-rise buildings with a dominant opening. It is shown that 
dynamic interaction between the flexible roof and the internal pressure results in a coupled system that is 
similar to a two-degree-of-freedom mechanical system consisting of two mass-spring-damper systems with 
excitation forces acting on both the masses. Two resonant modes are present, the natural frequencies of 
which can readily be obtained from the model. As observed with quasi-static building flexibility, the effect of 
increased dynamic flexibility is to reduce the first natural frequency as well as the corresponding peak value 
of the admittance, the latter being the result of increased damping effects. Consequently, it is found that the 
internal and net roof pressure fluctuations (RMS coefficients) are also reduced with dynamic flexibility. This 
model has been validated from experiments conducted using a cylindrical model with a leeward end flexible 
diaphragm, whereby good match between predicted and measured natural frequencies, and trends in peak 
admittances and RMS responses with flexibility, were obtained. Furthermore, since significant differences 
exist between internal and net roof pressure responses obtained from the dynamic flexibility model and those 
obtained from the quasi-static flexibility model, it is concluded that the quasi-static flexibility assumption 
may not be applicable to dynamically flexible buildings. Additionally, since sensitivity analyses reveal that 
the responses are sensitive to both the opening loss coefficient and the roof damping ratio, careful estimates 
should therefore be made to these parameters first, if predictions from such models are to have significance 
to real buildings. 
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1. Introduction 
 

The significant influence that building internal pressure can have on the safety of buildings and 
structures during windstorms is well recognised. This is reflected firstly from regular research 
interests over the decades and secondly from the internal pressure provisions of wind loading 
codes (Standards Australia/Standards New Zealand, 2002; American Society of Civil Engineers, 
2005). The limiting case of internal pressure in a rigid, non-porous, single compartment building 
with a single dominant opening has been thoroughly studied (Holmes 1979, Liu and Saathoff 1981, 

                                                       
∗Corresponding author, Professor, E-mail: r.sharma@auckland.ac.nz 

DOI: http://dx.doi.org/10.12989/was.2013.16.1.093



 
 
 
 
 
 

Rajnish N Sharma 

Vickery and Bloxham 1992, Vickery 1994, Sharma and Richards 1997a, Sharma and Richards 
2003, Ginger et al. 2008 and Sharma et al. 2010, amongst others). However, real buildings can be 
flexible except when constructed from rigid concrete (Vickery 1986, Sharma 2008), are porous 
due to tolerances around fittings or due to provision of ventilation pathways (Oh et al. 2007), and 
are internally compartmentalised (Sharma 2003). While the ideal treatment of a rigid, non-porous, 
single compartment building with a single dominant opening provides great insight into the 
limiting characteristics of building internal pressure, from a design viewpoint however, it is 
imperative that the influence of envelope flexibility, porosity, and compartmentalisation be 
understood. 

The influence of the flexibility of the envelope on internal pressure developed inside relatively 
small residential and light commercial buildings has received relatively little attention in the past. 
Vickery (1986) assumed the building structure to respond in a quasi-static manner (i.e., where 
deflections are assumed to be proportional to the applied load at all times) and proposed the idea of 
an effective volume e∀  to model the influence of building flexibility on the response of internal 
pressure 
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In Eq. (1), ρ  is the density of ambient air; ap  is the ambient pressure; γ  is the ratio of 

specific heats for air; LC  is the opening loss coefficient; oA  is the opening area; eL  is the 
effective length of the air jet / slug at the opening used to define the inertia of the system; 

25.0 hUq ρ=  is the reference ridge-height dynamic pressure based on ridge-height wind velocity 

hU , and qpC epe /=  and qpC ipi /=  are the (opening) area-averaged external and internal 

pressure coefficients respectively. The effective volume e∀  is defined in terms of the nominal 

internal volume of the building o∀  by 
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is the ratio of the bulk modulus of air apγ  to the building bulk modulus bk  defined as the ratio of 
increase in net pressure loading to volumetric strain. Vickery (1986) estimated b  to vary between 
0.2 for stiff structures to 5.0 for flexible large span roof structures. 

Vickery’s study was focused upon the characteristics of internal pressure, but did not include 
the action of the fluctuating external pressure on the flexible envelope. Furthermore, the 
characteristics of net envelope pressures were not addressed. Two theoretical models, those of 
Novak and Kassem (1990) and Vickery and Georgiou (1991) attempted to describe the interaction 
between a flexible roof backed by a cavity with openings as simple two-degree-of-freedom 
systems.   These studies were directed at large span self- or air-supported structures such as arenas 
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and sports stadia. The first validated the theoretical model with experimental tests on scaled 
models in still air, in predicting resonance frequencies and the damping ratios. Vickery and 
Georgiou (1991) considered the effect of the wall opening area to the roof area ratio, on the form 
of transfer functions and RMS values of the fluctuating roof response. The full characteristics of 
roof response and the net pressures were not considered in these studies. Sharma and Richards 
(1997b) also presented an analytical model for internal pressure dynamics with roof flexibility, but 
which did not include the influence of roof external pressure. Pearce and Sykes (1999) reported on 
wind tunnel internal pressure tests on a model-scale cavity resonator with a flexible membrane 
roof in the parameter range 0.02 < b  < 7.5. They concluded that increased flexibility of the roof 
membrane reduced the value of the Helmholtz frequency and also reduced the magnitude of the 
resonant response. This was in agreement with the deductions that can be made from the model, 
Eq. (1), of Vickery (1986), although the influence of roof external pressure is not accounted for in 
this model. 

Recently, Sharma (2008) following from an earlier work (Sharma 1996) presented a general 
model for the response of internal pressure in any flexible building with a dominant opening 
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In Eq. (4) 
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is the ratio of the change in building internal volume o∀−∀  to the nominal volume o∀ ; ∀  is the 
instantaneous physical internal volume of the building; and c  is the opening contraction 
coefficient representing flow contraction past the opening via the formation of a vena-contracta in 
the air jet (Sharma and Richards 1997a).   For the case of the quasi-static flexibility of the roof, 
Sharma (2008, 1996) represented the change in (non-dimensional) internal volume by 
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in which prC  is the area-averaged fluctuating external roof pressure coefficient; and then derived 
an equation 
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which describes the response of building internal pressure to external pressures acting at a 
dominant opening and on the roof structure that responds in a quasi-static manner. It is different 
from the results obtained by Vickery (1986) because the effects of external pressure on the flexible 
component (i.e., the roof) have been included. The un-damped Helmholtz frequency 

πω 2/'' HHHHf =  is readily obtained from Eq. (8) 
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where HHf  is the Helmholtz frequency for a corresponding rigid building. Eq. (7) was also 

linearised and admittance functions were derived. Sharma (2008) combined the above model with 
wind tunnel testing to demonstrate that the flexibility of the building reduces fluctuations in 
internal and net envelope pressures, as indicated by somewhat smaller RMS pressure coefficients 
relative to the case of a rigid building. Furthermore, it was shown that when the roof external 
pressure fluctuations were accounted for, the RMS values of internal as well as net roof pressures 
were lowered further for the cases studied (b  = 0.334, 1.335). 

The work described in the present paper is an extension of the study on quasi-static flexibility 
reported by Sharma (2008), to consider the influence of dynamic flexibility of the building 
envelope. This is a subset of a more comprehensive building internal pressure study of Sharma 
(1996). An extension of this work to include the additional influence of background leakage is 
being published separately; see Guha et al. (2012). 

Personal experiences of the author during windstorms and other literature (e.g., Hoxey and 
Richards 1995) suggest that many residential and light commercial buildings and their envelopes 
may respond significantly, and in some instances behave in a dynamic manner. This is more 
common for the roof than it is for the walls because of the inherent greater flexibility of the roof on 
many tropical buildings. These include the portal frame and concrete wall – corrugated roofing 
constructions. Dynamic heaving action of the roof is not uncommon in such building construction 
types. An example of the portal frame building is the Silsoe Structures Building (SSB) (Hoxey and 
Richards 1995), and the response of its roof during a storm has been documented on video, which 
clearly shows the greater flexibility of its roof in comparison with the walls. Furthermore, 
Robertson (1992) has shown that the SSB has a frame natural frequency of 4 Hz, and for which a 1 
Hz Helmholtz resonance frequency was also recorded. The concrete wall – corrugated roofing 
construction is common in the Pacific Island countries, like Fiji, in which the walls are extremely 
rigid. Lift-off of the entire roof structure in the latter building type is not uncommon. It is therefore 
vitally important that the effects of dynamic building flexibility on internal and net envelope 
pressures be properly understood. 

 
 

2. Dynamic structural response: development of equations 
 

If the structural frequency of the building roof (or wall(s)) is close to the expected Helmholtz 
frequency, then dynamic interaction between the internal pressure system and the flexible 
component may be expected. As discussed earlier, many low-rise buildings are more flexible in 
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the roof than in the walls. To gain insight into the influence of flexibility, such buildings may be 
modelled by a building where the volume changes are provided mostly by vertical roof deflections. 

 
2.1 The dynamic building model 
 
Consider a building of height H  and roof plan area rA  as illustrated in Fig. 1. 

 

        Fig. 1 The dynamic building model with a flexible roof structure 

 
If the roof has mass rm , a structural natural frequency rr fπω 2=  (structural stiffness 

2
rrr mk ω= ) and damping ratio rς  (that includes structural, acoustic, and aerodynamic damping), 

and it is assumed to behave linearly, then its vertical response rx  to fluctuating internal and space 
averaged external roof pressures qCp prr ×=  will be governed by 
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Since volume changes are provided by the vertical movement of the roof, the non-dimensional 
volume change can be expressed as 
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Substitution of Eq. (10) and the time derivatives of v  into the equation of motion for the roof 

described by Eq. (9), yields the result 
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This equation can be solved simultaneously with Eq. (4) for the responses of internal pressure 
and the roof, to external pressures applied at the opening and the flexible roof. The determination 
of the admittance functions however requires a linearized approach. 

 
2.2 Linearized model 
 
Fig. 2 represents a linearized system in which an air jet / slug of mass eoj LAcm ρ=  oscillates 

at the opening with the backing of the building cavity making up a pneumatic spring system. This 
system has an equivalent linear damping coefficient jc  (Sharma 2008, 2011) 
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from which a linear damping ratio jς  may be written 

aeo

upeohL

jj

j
j PLA

ICUcC
km

c
γπ

ρ
ς

22

2 ∀
==                                        (13) 

 
In this model, the roof also behaves linearly. 

 
 

 

 

 

 

 

 

                 Fig. 2 Coupling of the linearized internal pressure and flexible roof systems 

If the air jet and the roof are displaced by jx  and rx  respectively, then the change in internal 
volume is given by the difference 
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which in most cases can be assumed to be significantly smaller than the nominal volume. When 
this applies, then using the isentropic gas law for air, the internal pressure coefficient can be 
expressed in terms of the air jet and roof deflections as  

( )rrjo
o

a
pi xAxAc

q
pC −
∀

=
γ                                                          (15) 

By summation of forces and using Eq. (15), the equations of motion for the air jet and the roof 
can be reduced to the following 
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In order to obtain the admittance functions, these equations are first transformed into the 
frequency domain leading to the final results 
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The admittance functions for the internal pressure and the net roof pressure 2|| iqχ  and 
2|| nqχ  relative to the onset ridge-height dynamic pressure are then obtained from (Sharma 2008) 
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in which the opening external and roof external pressure admittance functions 
2

eqχ  and 
2

rqχ  

respectively are given by 
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and need to be determined experimentally together with the phase difference between the external 
pressures at the opening and the roof re /φ . 

The internal and net roof pressure admittance functions, given by Eqs. (25) and (26), are similar 
to those of a two-degree-of-freedom mechanical system, consisting of two mass-spring-damper 
systems, being excited by two forces acting on the two masses. Such systems exhibit two resonant 
modes, the first where the masses oscillate in phase, and the second where the oscillations are 180° 
out of phase. The corresponding un-damped natural frequencies 1f  and 2f  are obtained by setting 
the damping terms to zero and then equating the denominator of Eq.  (22) to zero, hence 
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It is also possible to derive the admittance function for the roof response over the onset ridge 

height dynamic pressure ( xrS  is the frequency spectrum of roof response rx ) 

( ) ( )2222

42
22

2
2

22

2 ωωςωω

ωχωωχ
rrr

r
nq

pn

per

pnr

rr

q

xr

pnr

rr
qFR C

C
q
x

CA
m

S
S

CA
m

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=−      (29) 

 
The RMS values for the fluctuating internal pressure and roof net pressure coefficients may 

then be obtained by integration respectively, of the corresponding pressure coefficient spectra 
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3. Gain and phase functions || eqχ  ,  || rqχ   and  re /φ  
 

Sharma (2008) measured the functions || eqχ , || rqχ   and  re /φ  for a wall area equivalent to 
an opening of full-scale dimensions 2.25 m x 1.25 m, and that for half of the roof of a rectangular 
1:50 scale model of low-rise building, as shown in Fig. 3. Full details of the tests and analysis 
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procedure will be found in Sharma (2008).  The results are presented in Figs. 4(a) and (b), which 
firstly shows, not surprisingly, that the gain functions for the pressures applied at the opening and 
the roof are attenuated in the high frequency region as discussed in Sharma and Richards (2004).  

More interestingly, the phase difference between the two pressures in Fig. 4(b), clearly shows 
that re /φ  = 180° or π radians over most of the frequency range of interest. This simple 
relationship can easily be implemented in the calculation of the admittance functions. 

 
 

 

 

 

 

 

Fig. 3 Model details and pressure averaging areas 
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Fig. 4(a) Gain functions || eqχ  and || rqχ and (b) Phase difference function re /φ  

 
 

                 
4. Analysis, results and discussions 
 

4.1 Analysis method 
 
As an example, we consider the same building considered in Sharma (2008) for the quasi-static 

flexibility analysis 
 

184mm

276mm

80mm 

53mm
Wall / opening area: 

25mm x 45mm

Roof pressure averaging area: 
138mm x 184mm 
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o∀ = 497 m3 oA = 2.813 m2 eL = 4oAπ  

c = 0.6 LC = 1.2, 2.5, 10, 50 

hU = 30 m/s uI  = 0.18 

ρ = 1.22 kg/ m3 γ = 1.4 ap = 101300 Pa 

pepi CC =  = 0.57 prC  = –0.65 prC~  = 0.17 

rA = 127.1 m2 rm = 3500 kg rω = rfπ2 , 

rf = 3 Hz,  5 Hz,  10 Hz rς   =  0.00, 0.05,  0.10,  0.15,  0.20,  0.25 
 

For comparison purposes, it is noted that Sharma (2008) considered quasi-static flexible 
buildings with the ratio of the bulk modulus of air ( apγ ) to that of the building ( bk ), 
b p ka b= γ  =  0 for a rigid building, 0.334 and 1.335 for two different flexible buildings.   The 
two non-zero values for b  were estimated by assuming roof structural frequencies rf = 10 Hz and 
5 Hz respectively, with rectangular roof plan area rA = 127.1 m2 and mass rm = 3500 kg. In this 
paper, an additional value of the flexibility parameter b  = 3.707 corresponding to rf = 3 Hz is 
considered. The building height h  was taken as 4 m, and assumption of vertical roof deflections 

applied. The building bulk modulus could then be estimated, ( ) 22 /2 rrorb Amfk ∀= π  or 
22 / rrpb ωω=  where rrprp mk /=ω  and oarrp pAk ∀= /2γ  is the pneumatic stiffness of the roof 

with respect to the contained air. 
The internal and combined pressure admittance functions, the roof response admittance 

functions and the corresponding spectra were calculated using the equations developed in Section 
2. The gain functions for the pressures at the opening and the roof || eqχ  and || rqχ  were taken 
as those measured in the wind tunnel (see Section 3), with the frequency being scaled to full-scale 
by preserving the Strouhal number hwall UAf / . The measured phase differences re /φ  were 
used for the entire frequency range, scaled to full-scale up to 10 Hz (see Fig. 4(b)).  Pressure 
coefficient spectra were generated from admittances in Fig. 4(a) and the Kaimal turbulence 
spectrum (Stull 1988) 
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with == hz  4m. In Eq. (32), uS  is the spectrum of wind turbulence, while 2/ qSS qCq =  is 

the spectrum of dynamic pressure coefficient ( qqCq /= ) fluctuations. 
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4.2 Admittance functions and spectra for internal and net roof pressures 
 
Figs. 5(a) and (b) compare internal and net roof pressure admittance functions respectively for 

a flexible building ( rf = 5 Hz or b= 1.335) obtained from the dynamic flexibility model to those 
obtained from the quasi-static flexibility and rigid building models. Three roof damping ratios rζ  
= 0.00, 0.10 and 0.20 together with a fixed opening loss coefficient LC = 1.2, were used for the 
dynamic flexibility model calculations. Fig. 5(a) shows that the most significant difference 
between the dynamic and quasi-static models is in the presence of the second resonance peak in 

2|| iqχ  obtained from the dynamic model. The position of the first resonant peak(s) are however 
very similar from the two models. These observations also apply to the combined roof pressure 
admittance functions presented in Fig. 5(b). The two peaks represent two resonant modes; first 
where the air slug oscillations at the opening are in-phase with roof oscillations; while the higher 
frequency mode where the air slug oscillations at the opening are anti-phase with roof oscillations. 
This behaviour is very similar to a two-degree-of-freedom mechanical system. 

It should be noted however, that the peak responses from the dynamic model will be dependent 
on the roof damping ratio rς , the effect of which on the admittance functions is illustrated also in 
Figs. 5(a) and (b). The expected result that with smaller ς r = 0.10 compared to a larger ς r = 0.20, 
the peak response is stronger, is shown. In particular, the response at the second resonance appears 
to be much more sensitive to ς r . Vickery and Georgiou (1991) in their formulation used ς r = 0 
on the assumption that the interactive damping might be dominant. The responses shown here 
suggest otherwise, although their assumption might be considered to be conservative. However, if 
the second resonance is in the tail of the onset turbulence spectrum, then using ς r = 0 might not 
be an unreasonable assumption. Calculation of the RMS responses will shed more light on this. 
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Fig.5 (a) Internal pressure admittance functions (QS Flex = quasi-static flexibility; Dyn Flex = dynamic 
flexibility) and (b) Net roof pressure admittance functions (QS Flex = quasi-static flexibility; Dyn Flex = 
dynamic flexibility) 

 
Figs. 6(a) and (b) compare internal and net roof pressure admittance functions respectively 

obtained from the dynamic flexibility model for a flexible building ( rf = 5 Hz) with a dominant 
opening, to those obtained: for the case when the influence of roof external pressure fluctuations 
on internal pressure through the flexible roof are excluded (w/o || irχ ); and also to those when the 
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opening is closed off (w/o || ieχ  i.e., internal pressure is induced only via the flexible roof). These 
reveal firstly that a building without a dominant opening but with a flexible roof could induce 
significant internal pressure fluctuations. The two peaks in the admittances w/o || ieχ  correspond 

to the pneumatic spring mode of the roof – internal air system (natural frequency rpf ) and the roof 

structural resonance ( rf ) modes. Since mean internal pressure is zero for this case, the 
admittances rapidly fall off towards zero as f  approaches 0. Secondly, the plots show that when 
the influence of roof external pressure fluctuations on internal pressure via the flexible roof is 
ignored (shown as w/o || irχ  in Figs. 6(a) and (b)), then the responses that are calculated are very 
different and likely to lead to erroneous results. Interestingly, previous studies have tended to 
ignore the contribution of internal pressure generated by transmission through a flexible building 
envelope. 
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   Fig. 6(a) Internal pressure admittance functions (Dyn Flex = dynamic flexibility) and (b) Net roof pressure
                 admittance functions (Dyn Flex = dynamic flexibility) 

 
 

In Figs. 7(a) and (c), the admittance functions for internal pressure and net roof pressure are 
compared on the basis of the roof structural natural frequency f r . The corresponding admittances 
obtained using the quasi-static flexibility model are shown in Figs. 7(b) and (d), and which are 
very different to those from the dynamic flexibility model. In particular, the quasi-static model 
shows enhanced damping of the resonance, whereas the reduction in response at the first resonance 
in Figs. 7(a) and (c) are not as severe. The second peak obviously is not captured by the quasi-
static flexibility model. Returning to Figs. 7(a) and (c), increasing building flexibility, represented 
by decreasing values of f r , has the effect firstly of decreasing considerably the first resonance 
frequency f1 . Secondly, whilst it decreases the peak internal and combined pressure responses at 
f1 , it however increases the responses at the second resonance frequency f2 . The values of f2  

are also reduced, but to a lesser extent than f1 , since it is limited by the pneumatic stiffness of the 
roof. These effects are clearly reflected in the internal and net roof pressure coefficient spectra 
presented in Figs. 8(a) and (b). The significance of the reduction in the natural frequencies, as 
discussed previously by Sharma (1996) and by Sharma and Richards (1997b), is that the energy 
available for excitation of the resonance modes is increased for buildings that are more flexible 
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than those that are less so. This possibly offsets the reduction in response due to the increased 
damping of the first mode. 

 

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10

Rigid case b=0
Dyn Flex fr=10Hz, hr = 0.10
Dyn Flex fr=5Hz,   hr = 0.10
Dyn Flex fr=3Hz,   hr = 0.10

102

101

100

10-1

10-2

10-3

ζ r
ζ r
ζ r

(a) 

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10

Rigid case b=0
QS Flex b=0.334
QS Flex b=1.335
QS Flex b=3.707

102

101

100

10-1

10-2

10-3

(b)

Fig. 7 (a) Internal pressure admittance functions – dynamic flexibility (Dyn Flex) and (b) Internal 
                       pressure admittance functions – quasi-static flexibility (QS Flex) 
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Fig. 7(c) Net roof pressure admittance functions – dynamic flexibility (Dyn Flex) and Net roof 
                         pressure admittance functions – quasi-static flexibility (QS Flex)
 
 

4.3 RMS pressure coefficients and correlation coefficients – influence of roof flexibility 
 
The RMS pressure coefficients obtained by numerical integration of the respective spectra are 

presented as functions of the flexibility parameter b  in Figs. 9(a) and (b). The first observation 
here is that the fluctuations in both internal and roof net pressure, indicated by the RMS 
coefficients, increase with a dynamically flexible roof. Only when the roof damping ratio ς r  
becomes high, to around 0.50, that the fluctuations reduce to the levels for a rigid building case. As 
previously reported by Sharma (2008) and shown here, a quasi-statically flexible roof effects 
internal and net roof pressure fluctuations that are reduced relative to the rigid building case.  The 
RMS coefficients decrease with increasing quasi-static flexibility of the roof. Only when the roof 
damping ratio approaches the critical value ς r = 1, that the RMS coefficients from the dynamic 
flexible model approach those for the quasi-static flexibility case. These demonstrate that estimates 
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of internal and roof net pressure fluctuations from a quasi-static flexibility model are likely to be 
non conservative when applied to a dynamically flexible building. 
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Fig. 8(a) Internal pressure coefficient spectra – dynamic flexibility and (b) Net roof pressure coefficient 
spectra – dynamic flexibility 
 
 

The RMS coefficients obtained when the influence of the flexible roof on internal pressure is 
not included in the calculations, are shown in Figs. 10(a) and 10(b). When compared to the 
coefficients in Figs 9(a) and (b), these show that the component of internal pressure fluctuations 
induced via a flexible roof can be significant, even for a quasi-statically flexible roof. The RMS 
coefficients are therefore a lot different in the comparisons, for example the RMS internal pressure 
coefficients are seen to decrease in Figure 10a whereas they increase in Fig. 9(a) with building 
flexibility. 

 
4.4 Influence of roof damping coefficient   and opening loss coefficient 
 
A poorly defined and much debated parameter in the building internal pressure dynamic 

problem is the opening loss coefficient CL. Researchers have used, assumed, or determined values 
ranging from 1.2 (Sharma and Richards 1997a) through 2.5 (Vickery 1994, Oh et al. 2007) to 40 
(Holmes 1979, Ginger et al. 2008). Furthermore, the damping ratio of a flexible roof could range 

from close to zero ς r = 0 (as assumed by Vickery and Georgiou 1991) to the critical value ς r = 1 
(the quasi-static flexibility case). The sensitivity of the results to these parameters was therefore 
investigated and which are presented in Figs. 11(a) and (b). As might have been expected, the 

RMS coefficients of internal and net roof pressure fluctuations decrease with increases in both ς r  

and LC . In the real situation, the values for ς r  and LC  may be difficult to estimate. Nevertheless, 

the sensitivity analysis for the building and wind conditions considered here, reveal that piC~  could 

range from nearly 0.3 when ς r  and LC  are both low, to approximately the value of the opening 

external pressure RMS coefficient peC~  when LC  is high (~ 50). Correspondingly, pnC~  varies 

between 0.4 and 0.27. Note that if piC~  ≈ peC~ = 0.15 were assumed for high values of ς r  and LC , 
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and since prC~ = –0.17, then if there were (a) 100% correlation (coefficient irρ = –1.0), and (b) 0% 

correlation ( irρ = 0), between internal and roof external pressures, then the limiting values for 

prpiirprpipn CCCCC ~~2~~~ 22 ρ−+=
 = 0.32 and 0.23 are obtained, respectively. The lower bound 

value of 0.27 from the dynamic flexibility model calculations lies within this range. 
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Fig. 9(a) RMS internal pressure coefficients and (b) RMS net roof pressure coefficients 
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Fig.10 (a) RMS internal pressure coefficients – without || irχ  influence on piC~  and 

                             (b) RMS net roof pressure coefficients – without || irχ  influence on piC~  
 
 
5. Experiments 
 

5.1 Model details and experimental methodology 
 
With the difficulty associated with modelling a flexible roof on a model building to proper 

scale and detail, a somewhat simplified cylindrical model was studied in turbulent shear flow 
generated in the wind tunnel. The model as illustrated in Figure 12, has a cavity volume 140 mm 
diameter by 247 mm long ( o∀ = 3.8×10-3 m3), with one end having a rubber diaphragm onto 

108



 
 
 
 
 
 

Internal and net roof pressures for a dynamically flexible building with a dominant wall opening 

which a 50g Perspex plate is glued (total mass rm = 83g and rA = 1.539×10-2 m2). The flexible 
diaphragm is attached to a clamp that can be pulled over the cylinder so that the flexibility could 
be varied readily. Since the opposite end of the cylinder is removable, the opening geometry could 
also be varied relatively easily. Two such configurations were studied over 0 - 90° wind angle 
range (relative to normal of end containing the opening), the first denoted CYLINDER-1 (CYL-1) 
with a 25 mm diameter-19 mm long aperture, and second denoted CYLINDER-2 (CYL-2), with a 
19 mm diameter-60mm long aperture. The flexibility of the diaphragm was measured by sealing 
the opening, and then beating the diaphragm as a drum, and the measured internal pressure 
spectrum displayed a peak at a frequency 222

rprR fff += . The diaphragm natural frequency rf  is 

then readily obtained since its pneumatic frequency rpf  can be calculated from the expression 

rporarrp fmpA πγω 2/2 =∀=  included with Eqs. (16) and (17) in Section 2.2. 
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Fig. 11(a) RMS internal pressure coefficient as a function of opening loss coefficient and roof damping and 
          (b) RMS net roof pressure coefficient as a function of opening loss coefficient and roof damping 

 
 

Internal and external pressure measurements were conducted in a 1:50 scale terrain category 2 
(Standards Australia., Standards New Zealand 2002) boundary layer simulation in the de Bray 
wind tunnel at the University of Auckland. Full characteristics of the boundary layer simulation 
are described in Sharma and Richards (2005). For both arrangements, the internal pressure to onset 
mid-opening height dynamic pressure admittance function 
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were determined from spectral measurements - the procedure being exactly the same as that 
described in Sharma and Richards (2004). For CYLINDER-2, the statistics of internal pressure 
against wind direction were also measured according to the procedure described in Sharma and 
Richards (2003, 2005). 
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5.2 Results and discussions 
 

Figs. 13(a) and (b) show the admittance functions for CYLINDER-1 at normal 0° and oblique  
50° wind respectively. Each plot includes an admittance function for the corresponding rigid 
cylinder. The results presented here are in qualitative agreement with theory and analytical results 
examined earlier for the dynamic model. In particular, the first resonance frequency is lowered, 
and the peak value is decreased due to increased damping. It is interesting to note that for an 
oblique 50° wind, the phenomenon of Helmholtz resonance under oblique flow is evident, since 
the admittance peak values are several orders of magnitude higher than for 0° wind. This 
phenomenon has previously been discussed in detail by Sharma and Richards (2003). This is 
particularly noticeable for the case of the rigid cylinder. 

The flexibility of this cylinder was measured to give f f fR r rp= +2 2 = 111 Hz, so that a 

calculated value of f rp = 51.4 Hz means f r = 98.4 Hz. With a measured (or predicted) Helmholtz 

frequency f HH = 98 Hz at 0° wind, Eq. (28) yields the two undamped natural frequencies 
f1 = 77.6 Hz and f2 = 125.8 Hz. These compare reasonably with the measured values of 75 Hz 

and 127 Hz. At 50° wind flow the predicted values of 75.3 Hz and 127.7 Hz also compare well 
with the measured values of 77 Hz and 127.3 Hz.  

 

 

 
                      Fig. 12 Details of the flexible cylindrical model 

 
These results are summarised in Table 1, which also shows the RMS values of fluctuating 

internal pressure coefficient. At 0° wind, the values of piC~  are the same for the rigid and the 
flexible arrangements of CYLINDER-1. For this particular case therefore, flexibility does not 
reduce the dynamic component of internal pressure, but maintains it at the same level as that for a 
rigid case. The reasons for this are not clear cut. However, it might be speculated here that, 
pressure fluctuations associated with vortex dynamics on the leeward end, where the flexible 
diaphragm is located, perhaps induces strong internal pressures fluctuations via the flexible 
diaphragm.   This situation is significantly different to a flexible roof where vortex dynamics may 
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not be present. On the other hand at 50° wind, a considerable reduction is observed in the value of 
piC~  for the flexible case over the rigid case. This corroborates the deductions from the analytical 

model developed earlier. 
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Fig.13(a) Internal pressure admittance functions for CYLINDER-1 at 0° wind and 
                              (b) Internal pressure admittance functions for CYLINDER-1 at 50° wind 
 
 
 Table 1 Natural frequencies and RMS internal pressure coefficients for the two cylinders 

 f HH  fr  f rp  f1  (Hz) f2  (Hz) piC~  

 (Hz) (Hz) (Hz) Pred’n Meas’d Pred’n Meas’d Rigid Flex 
CYL-1  0° 98 98.4 51.4 76.6 75 125.8 127 0.21 0.21 

CYL-1  50° 97 98.4 51.4 75.3 77 126.7 126.3 1.22 0.35 

CYL-2  0° 53 58.7 51.4 35.6 33.5 87.3 83 0.23 0.25 

CYL-2  80° 54 58.7 51.4 36.1 36 87.7 85 0.52 0.29 

 
 

The admittance functions for CYLINDER-2 are plotted in Figs. 14(a) and (b) which generally 
show the same trends observed for CYLINDER-1. While in general, the predicted values of the 
natural frequencies agree fairly well with the measured values, for normal 0° wind however, the 
second resonance which is much weaker, occurs at 83 Hz rather than closer to the predicted 
frequency of 87.3 Hz; see Table 1. Another similar peak occurs at just over 100 Hz, which might 
be associated with vortex shedding effects at the rear of the cylinder. Since the second resonance is 
not strong, it is believed that the model is not flexible enough, and therefore displays a quasi-static 
type of behaviour. A slight increase is observed in the value of  piC~  at normal 0° wind, for the 
flexible case as compared to the rigid case. The comments made for CYLINDER-1 regarding the 
response under oblique flow are also applicable to this cylinder. 

The variation of internal pressure coefficients for CYLINDER-2 with wind direction are plotted 
in Figures 15a and 15b. The peak-ratios (i.e., ratio of peak pressure to peak dynamic pressure) 

2
2
1

ˆ/ˆ ˆ/ˆˆ/ˆ haqp UpqpC ρ==  (see Sharma and Richards 2003) are consistently higher in magnitude 
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than the mean internal pressure coefficient piC  at all wind flow angles. As discussed by Sharma 
and Richards (2003), peak-ratio is a good indicator of the influence of phenomena such as 
Helmholtz resonance, due to which the quasi-steady assumption ( piqip CC =ˆ/ˆ ) breaks down, that 

is piqip CC ≠ˆ/ˆ . Of note in the context of discussions on the effects of flexibility are:  

(a) Over the 0-60° wind angle range, the values of qpC ˆ/ˆ  and the RMS coefficients piC~  from 
the flexible model are very similar to those obtained for the rigid model. This might appear to be 
an unexpected result from the viewpoint of the analysis of Section 4. However, it is noted that the 
flexible diaphragm is located at the leeward end of the cylindrical model. It is very likely that 
vortex shedding at the leeward end has considerable influence on the flexible diaphragm (as 
discussed already) and therefore on the internal pressure.  

(b) Beyond a 60° wind, several significant observations are made. First, the values of piC~  are 
considerably larger for both the rigid and flexible models, compared to the corresponding values 
over smaller wind angles. Second, the external RMS pressure coefficients peC~  over this range are 
also enhanced, peaking at a wind angle of around 75°, most probably arising from separation 
vortex dynamics. Thirdly, the level of enhancement in fluctuations in internal pressure is clarified 
when the RMS coefficient ratios piC~  / peC~  are examined in Fig. 15(c). This shows that the ratios 
over this range are much larger than those at wind angles lower than 60°, therefore the 
enhancement in peC~  alone cannot be responsible for this. A more probable explanation is that 
intense Helmholtz resonance under oblique flow effects are at play, as discussed already. Fourthly, 
which is more important in the context of this paper, the magnitudes of qpC ˆ/ˆ  and piC~  for the 
flexible cylinder model are significantly smaller than the corresponding values obtained from the 
rigid cylinder model. Again, this corroborates the findings from the analysis of Section 4: envelope 
flexibility reduces fluctuations in internal pressure. 
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Fig. 14(a) Internal pressure admittance functions for CYLINDER-2 at 0° wind and 
                                (b) Internal pressure admittance functions for CYLINDER-2 at 80° wind 
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Fig. 15(a) Mean and peak-ratio internal pressure coefficients for CYLINDER-2, (b) RMS internal pressure 
                 coefficients for CYLINDER-2 and (c) Ratio of RMS pressure coefficients for CYLINDER-2
 
 
6. Conclusions 
 

An analytical model has been developed for internal and net envelope pressures acting on a 
building having dynamic envelope flexibility and a dominant opening. Linearised equations were 
also obtained for the case where an envelope, for example the roof, responds in a dynamic manner. 
Equations describing the admittance functions for internal pressure, net roof pressure and the roof 
responses have also been obtained.  It is shown that dynamic interaction between the flexible roof 
and the internal pressure results in a coupled system that is similar to a two-degree-of-freedom 
mechanical system consisting of two mass-spring-damper systems with excitation forces acting on 
both the masses. Two resonant modes are present, the natural frequencies of which can readily be 
obtained from the model. These are dependent upon the Helmholtz frequency of the corresponding 
rigid building cavity, the roof structural natural frequency and the frequency associated with the 
pneumatic stiffness of the roof.  

As observed for the case of increasing quasi-static building flexibility, the effect of increased 
dynamic flexibility is to reduce the first natural frequency as well as the corresponding peak value 
of the admittance, the latter being the result of increased damping effects of building flexibility. 
Consequently, it is found that the internal and net roof pressure fluctuations (RMS coefficients) are 
also reduced with dynamic flexibility. Some experiments conducted using a cylindrical model 
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(with a leeward end flexible diaphragm) provides validity to this model via good match between 
predicted and measured natural frequencies, reduction in peak admittance with the flexible model  
relative to those of the rigid model, and significant reductions in RMS response with flexibility. 

It is also found that significant differences exist between internal and net roof pressure 
responses obtained from the dynamic flexibility model, and those obtained from the quasi-static 
flexibility model. Hence it is concluded that the quasi-static assumption should be applied with 
care, and is not applicable to dynamically flexible buildings. 

Furthermore, sensitivity analyses have revealed that the responses are sensitive to both the 
opening loss coefficient and the roof damping ratio.  Careful estimates should therefore be made to 
opening loss coefficients first, if the predictions from such models are to have significance to real 
buildings. 
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