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Abstract.    The wind-induced transient response of internal pressure following the creation of a sudden 
dominant opening during the occurrence of high external pressure, in low-rise residential and industrial 
buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction 
coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response 
with the computational fluid dynamics predictions. The effect of a sudden i.e., “instantaneously created” 
windward opening in the Texas Technical University (TTU) test building envelope was studied for two 
different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous 
envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the 
openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that 
for cases where the openings are created in close temporal proximity to the peak pressure, the transient 
overshoot values of internal pressure could be higher than the peak values of internal pressure in the 
pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on 
the level of overshoot was also investigated for the TTU building for the two different envelope 
characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area 
combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings 
with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial 
buildings). While the factors appear slightly on the high side due to conservative assumptions made in the 
analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots 
during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is 
warranted. 
 

Keywords:  internal pressure; transient response; low-rise building; envelope flexibility-leakage; 
nondimensional overshoot factor 
 
 
1. Introduction 
 

Internal pressures induced by the wind in buildings through leakages; through dominant 
openings; and through flexibility of the structure can contribute significantly to the wind loading 
of a low-rise building. Of particular interest, and often the most critical case for wind load design 
consideration, is the internal pressure inside a building due to a single dominant opening, either 

                                                       
∗Corresponding author, Graduate student, E-mail: tguh001@aucklanduni.ac.nz 

DOI: http://dx.doi.org/10.12989/was.2013.16.1.001



 
 
 
 
 
 

T.K. Guha, R.N. Sharma and P.J. Richards 

left open accidently, created by sudden impact of debris carried by the gusting wind against the 
building envelope or by direct wind loading during storms. The ensuing internal pressure response 
caused by the breakage of doors and/or windows during severe storms presents two issues of 
concern; the internal pressure overshoot, if any, and the resonant (Helmholtz) response. While the 
second of these two issues is often observed in wind tunnel studies (Sharma 1996) and is believed 
to produce maximum (hence design) internal pressure, the first issue of transient overshoot is 
usually thought to be insignificant. 

The creation of dominant openings in the building envelope during passage of strong gusts 
(resulting in high external pressure around the opening) by accompanying debris or by direct wind 
loading is far too common to be ignored. Various researchers using wind tunnel and full scale 
studies have however relegated the significance of the transient overshooting of internal pressure 
that follows a cladding failure by concluding that it gets lost amidst turbulence induced 
fluctuations and is usually not larger than the steady-state resonant value. 

Stathopoulos and Luchian (1989) carried out a study of the internal pressure overshoot 
response under simulated wind condition with a sudden opening created using a specially designed 
and fabricated mechanical device. The study concluded that the peak internal pressure after an 
opening is established are always higher than the transient overshoots. Yeatts and Mehta (1992) 
carried out full scale studies of the overshoot internal pressure response of the TTU building by 
breaking tempered glass lite window at a desired time in the data acquisition runs and drew similar 
conclusions. Vickery and Bloxham (1992) measured the overshoot response of internal pressure 
from sudden opening tests carried out in smooth uniform as well as turbulent boundary layer flow 
in the wind tunnel. The low overshoot factors obtained in the study was attributed to the limitation 
of the experimental setup to trigger a sudden opening when the external pressure exceeded a 
threshold level. Matsui et al. (2008) carried out a wind tunnel study of the sudden opening 
response of internal pressure using a shutter opening that could be opened instantaneously. 

Understandably, none of these studies, as shown in Fig. 1 for example, were able to capture the 
overshoot response during very high windward-wall pressure associated with a strong sustained 
gust, since it is virtually impossible to synchronize the creation of a sudden opening with the 
occurrence of a strong gust in wind tunnel and full scale test studies. While advanced experimental 
techniques such as “damage models” might prove useful, it still requires the problem of finite time 
required for opening creation and the associated issue of initial overpressure (Stathopoulos and 
Luchian 1989) to be overcome. On the other hand, analytical modelling, shown to perform 
satisfactorily in both sudden (Liu and Saathoff 1981, Stathopoulos and Luchian 1989, Vickery and 
Bloxham 1992, Sharma and Richards 1997a) and steady state (Sharma and Richards 1997c) 
opening situations, offers a convenient way to study the overshoot effect with greater degree of 
flexibility such as control over the time and “suddenness” of opening creation. This thus offers an 
interesting area of investigation, and Sharma (2000) using analytical modelling for a rigid building 
reported the possibility of significant internal pressure overshoot in the turbulent wind. In response 
to a remark made by Stathopoulos on the relative importance of overshoot versus the steady state 
response of internal pressure, Vickery made the following comment (Cook 1992): “If the failure of 
the window is assumed to be independent of the external wind speed, then the expected value of 
the peak immediately following failure is definitely less than that induced during some extended 
period following the failure. If, however, it is assumed that the failure occurs during an extreme 
gust, then the peak immediately following failure may well exceed the peak achieved during the 
remainder of the storm”. The critical question now is whether, or not, the sudden overshooting of 
internal pressure may be higher than the subsequent steady state (resonant) value under realistic 
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Wind induced internal pressure overshoot in buildings with opening 

opening, acting against an air spring inside the building cavity as shown in Fig. 2. 
Using the unsteady discharge equation of flow through a sharp edged dominant opening 

combined with the mass balance of air flow inside the building and isentropic density formulation 
(assuming small air density change between the immediate external and internal region within the 
convergent flow zone), the internal pressure response can be shown (Sharma and Richards 1997a) 
to be governed by 
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            (1) 

where ρa is the density of fluid (air in this case) inside the building cavity, le is the effective length 
of the oscillatory air slug at the opening of area oA  with flow contraction coefficient and loss 
coefficient of c and CL, eV  is the effective volume of the cavity and equal to oV  (the nominal 
cavity volume) for a building with rigid envelope,  = 1.4 is the ratio of specific heat capacities, 
Pa is the ambient pressure of air, 25.0 haUq   is the ridge height dynamic pressure, qpC ipi 
and qpC epe   are the internal and external pressure co-efficient respectively where ip  and 

ep  are the internal and external pressure around the opening. Ginger et al. (2008) following the 
work of Holmes (1979) non-dimensionalized Eq. (1) as a function of two non-dimensional 
parameters ( *S and 5 ) as 
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where IC  is the inertia coefficient of the oscillating air-slug through the opening, 5  [=

oU A , U  is the integral length of turbulence at ridge height of the building and 0A  is the 
effective opening area] and *S  [=    eohs VAUa 5.12

, as and hU  are the speed of sound and 
mean velocity of wind at building ridge height respectively] are non-dimensional quantities and 

*t  [= UhUt  ] is the non-dimensional time. The Helmholtz frequency of resonance ( HHf ) derived 
from Eq. (1) is given by 

eea
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When the structural frequency of the building components (e.g., the roof) is considerably 
higher than the frequencies over the energy containing region of onset wind turbulence, the 
structure will respond in a quasi-static manner to the applied loading i.e., to envelope external and 
internal pressure). Assuming the structural deflections to be linearly related to the applied loading, 
the resulting analytic equation of internal pressure response as shown by Vickery (1994) and 
Sharma and Richards (1997b) can be represented by Eq. (1) with the nominal cavity volume ( oV ) 
exaggerated by a factor  Ba KP1  such that  Baoe KPVV  1 , where BK  is the bulk 
modulus of the building envelope. 

 
2.2 Building with envelope flexibility and background leakage 
 
The most representative case of a real residential, industrial or a small internally partitioned 

building is the one with a quasi-statically flexible and leaky envelope; both of which act as 
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dampers to the internal pressure response. Guha et al. (2009), following the work of Yu et al. 
(2008), have used an analytical model of internal pressure dynamics for a building with a 
windward dominant opening and background leakage based on lumping of leakages on the 
leeward side along with the usage of a time and area averaged leeward external pressure 
coefficient as forcing function. The resulting non-linear equation with lumped leakage is 
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This can be non-dimensionalized to 
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where LA  is the total or lumped area of the leakages on the leeward side, LC  is the 
representative loss coefficient of the lumped leakage opening and peLC  is the area and time 
averaged leeward wall external pressure coefficient. 

Wide-span low-rise light industrial buildings and warehouses (with a large un-partitioned 
internal volume) with leaky and flexible envelopes are usually designed as static structures such 
the internal pressure response may be sufficiently modelled using Eq. (5). For such buildings, the 
envelope usually has a greater flexibility, especially in the roof. The roof, though not very 
common, under certain conditions such as during tropical cyclone with an inherent shift in the 
spectrum towards higher frequencies near the natural frequency of the envelope (roof), may 
respond dynamically to the fluctuating wind. 

Sharma (1996) and Sharma and Richards (1997b) following the work of Novak and Kassem 
(1990) and Vickery and Georgiou (1991) have proposed a coupled non-linear model of internal 
pressure response of such dynamically flexible roofed buildings but without background leakage 
in which the interaction between the roof-internal pressure system is inherent. It represents a 
coupled mechanical system consisting of two mass-spring dampers exhibiting double resonance 
with natural frequencies displaced somewhat from the uncoupled situation. The resulting dynamic 
equations of internal pressure and roof responses respectively are 
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were r , r , rm and rA  are the natural (structural) frequency, damping ratio, mass and area of 
the flexible roof respectively while eVV , where V is the instantaneous volume of the 
building, is the time varying non-dimensional volumetric ratio. The structural frequency of the 
roof (or of the supporting beams) can be approximately estimated as shown by Vickery (1986) to 
be 
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where DL  and LL  are uniform dead and live loads per unit lengths, g is the acceleration due to 
gravity, N is 180-360 (unit less) for industrial and residential structures for which the constant F 
approximately varies from 60-90 m1/2/s. 

Eqs. (6) and (7) need to be solved simultaneously to yield the response of internal pressure and 
roof being forced by the turbulent external pressure fluctuations at the opening. A non-dimensional 
form of Eqs. (6) and (7) in terms of the inverse of Mach number 2 (= hs Ua ), *S  and 5  can 
be written respectively as 
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where (Sharma and Richards 2009) 
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is the inverse of the time taken for the internal pressure fluctuations to be transmitted inside the 
building cavity through the opening and 
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is a non-dimensional quantity that depends on the roof height, nature of roofing material, overall 
dimensions of the roof in comparison to the gust size as well as the building and roof geometry. In 
Eq. (12), r  is the density of the roof, h  is the building ridge height and t  is the thickness of 
the roof slab/sheet. The roofs of low rise industrial buildings, warehouses and factory sheds, with 
ridge heights of the order of 5-20 m, are usually made of fibre-cement or galvanized-steel 
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corrugated sheeting 1-6 mm thick in addition to lap and fastenings. For roofs of such materials and 
for typical ridge height integral length scales of velocity (~100-150 m), values of 6  ranging 
from 25-100 can be considered as an upper-bound estimate in cyclonic areas with a high potential 
for dynamic overshooting of internal pressure following a sudden breach in the envelope. Eqs. (9) 
and (10) can be simultaneously solved for a range of realistic values of non-dimensional 
parameters S*, 5  and 6  to turbulent external pressure forcing. 

Eq. (6) representing the coupled model of the internal pressure response of buildings with 
dynamically flexible envelope have been further extended to incorporate the effect of background 
leakage using the lumped leakage model presented in Eq. (4) yielding 
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Non-dimensionalizing Eq. (13) leads to 
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Eq. (14) can be solved simultaneously with Eq. (10) to yield the response of internal pressure 
under forcing from external pressure. 

In order to correctly simulate the internal pressure response using the governing equations (a) 
appropriate values of the uncertain or ill-defined parameters of the internal pressure system, 
namely c and CL and (b) characteristics of external pressure at the opening, are required. 
 
 
3. Determination of flow contraction and loss coefficient using CFD 

 
The first objective here is satisfied through Reynolds-averaged Navier Stokes (RANS) CFD 

modelling of the internal pressure response of the rigid walled TTU building cavity following the 
creation of a sudden windward opening (area ratio 5%). 3D modelling of the problem has been 
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Wind induced internal pressure overshoot in buildings with opening 

Fig. 5 compares the “smooth flow” and “static test” CFD predictions to the analytic solution of 
Eq. (1) to a step change in external pressure. A loss coefficient of 1.2 along with a flow contraction 
coefficient of c = 0.6 and le = 4oA  is found to give a reasonably good match in terms of 
predicting the damping characteristics and the Helmholtz frequency of fluctuating internal pressure 
for the TTU building with the opening. 

The calibrated values of c, CL and le as 0.6, 1.2 and oA89.0  respectively were hence used to 
simulate the internal pressure response in buildings with a thin windward door opening ( dle <<1, 
d  being the effective diameter of the opening) for all the configurations investigated. The chosen 
values of c and CL have previously been validated experimentally by Sharma and Richards 
(1997a,c). Chaplin et al. (2000) also reported values of CL similar or very close to those being used 
here from their wind tunnel measurements. Owing to computational complexities however, CFD 
was not used to model the building with a flexible envelope. 
 
 
4. Generation of synthetic velocity and pressure time history 

 
An Inverse Fast Fourier Transform (IFFT) method was used to generate a synthetic external 

pressure time history (Shinozuka and Jan 1972, Yang 1972) after applying appropriate 
aerodynamic admittance (Vickery 1965) and randomized phase to the Fourier coefficients derived 
from Kaimal spectrum (Kaimal et al. 1972) at 100 Hz. Fig. 6 summarizes the steps involved in the 
synthesis. The internal pressure response was forced by the external pressure time series by 
creating the opening at different time leads/lags corresponding to the peak external pressure in the 
generated time series. 
 
 
5. Numerical simulations of the over-shoot response: Results and discussions 
 

Due to the recognized practical difficulties of experimentally simulating such scenarios,  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Synthesis of external pressure time series and simulation of internal pressure response 
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peinĈ =1.25 f
shooting is p
harma (2000

ly multi-part
y flexible and

ng with openin
of peak extern

HHf , ±
external 

se for a 
( piosĈ ), 
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envelope. The internal pressure response of such a building representing the full scale TTU setup 
was obtained by numerically simulating Eq. (4) for a porosity ratio ( oL AA ) of 10%, b = BA KP
= 1.5, LC =2.78 and peLC = -0.2 and a ridge height wind speed of 30 m/s. One such realization of 
the internal pressure response for different leads and lags with respect to the peak instantaneous 
external pressure are presented in Figs. 8(a) and (b), respectively. A porosity ratio (ratio of the area 
of leakage to that of the dominant opening) of 10% can be considered as an upper-bound estimate 
for typical residential and industrial buildings in the temperate climates of Australia/New Zealand; 
porosities beyond this value lead to significant damping of internal pressure fluctuations (Vickery 
and Bloxham 1992). 

The overall response of internal pressure for C2 is lower compared to C1, but the overshoot 
response ( piosĈ ) of internal pressure is approximately 1.15 times higher than the corresponding 
peak external pressure ( peinĈ ) at the instant of opening creation, notwithstanding the enhanced 
damping due to the envelope flexibility and background leakage. 

The importance of the timing of opening creation in relation to the peak external pressure and 
its effect on overshoot internal pressure response is illustrated in Table 1 for the two cases (C1 and 
C2). Comparison is made with the subsequent steady state peak response. To account for the 
statistical variability in numerical simulation, results are presented as the ensemble average of ten 
representative 10 second simulations for each lead/lag time and envelope configuration. It is 
evident that strong overshoot response of internal pressure ( piosĈ ), higher than the subsequent 
steady state response ( sspiC 

ˆ ), is possible for openings created at the instant (in bold in Table 1) of 
high external pressure near the opening. For most other time lead/lags investigated, the overshoot 
response ( piosCˆ ) was found to be lower than the subsequent resonant response of internal pressure 
( sspiC 

ˆ ). 
 
5.2 Overshoot vs. existing resonant response of internal pressure 
 
In order to investigate the effect of high external pressure near the opening on the resonant 

response of internal pressure and vis. a vis. its severity in relation to the overshoot response in the 
case of openings created almost instantaneously during a similar peak event, numerical 
simulations were carried out for cases C1 and C2. Ten different 100 second time histories of 
representative external pressures for a ridge height wind speed of 30 m/s were used to force the 
response of internal pressure. The peak instantaneous pressures in each of these external 
 
 
Table 1 Comparison of overshoot and subsequent resonant response of internal pressure with openings 
created at different lead/lags to peak external pressures for the TTU building 

Lead/Lag time to 
peak gust 

C1 (flexible envelope) C2 (flexible and porous envelope) 

piosĈ / piosCˆ  sspiC 
ˆ  piosĈ / piosCˆ  sspiC 

ˆ  

-3/fHH 1.10 

1.80 

1.40 

1.72 

-2/fHH 1.35 0.90 
-1/fHH 1.85 1.71 
0/fHH 2.02 1.95 
1/fHH 1.75 1.55 
2/fHH 1.45 1.20 
3/fHH 1.50 0.75 
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pressure time histories occurred between the 30th and the 60th second. This ensured that the initial 
transients of internal pressure for the opening created right at the beginning of the simulation (i.e., 
at time zero) get attenuated before the occurrence of the peak external gust, and the steady-state 
response of internal pressure, if any, is induced primarily by resonance. The overshoot response of 
internal pressure was triggered at the instant of that peak gust. 

Figs. 9(a) and (c) show one such realization of the internal pressure responses (resonant and 
transient) for configurations C1 and C2 respectively. Also plotted are the external pressure traces 
used to force the responses. 
For the particular realization shown in Fig. 9(a) for configuration C1 (and in Table 2, Simulation 
no. 10) and a blow-up of the peak responses in Fig. 9(b), the overshoot internal pressure 
coefficient ( piosĈ ≈ 2.07) is found to exceed the global peak resonant response ( sspiC 

ˆ ≈1.53) of 
internal pressure by around 26%. It is interesting to note that the peak resonant response ( sspiC 

ˆ ) 
and the overshoot response ( piosĈ ) of internal pressure occurred at the same instance in time 
associated with the peak external pressure in the time series. This implies that while the resonant 
response of internal pressure may usually be the guiding design criteria for already existing 
openings left open accidentally during storms, the overshoot response associated with strong 
external pressures near the opening could well exceed this value under exceptional circumstances. 
Similar conclusions can be drawn for configuration C2 in Fig. 9(c) with a blow-up of the peak 
responses in Fig. 9(d), in which the overshoot response ( piosĈ ≈1.88) exceeds the global peak 
resonant response by approximately 23%. However, both the overshoot and resonant response of 
internal pressure for C2 are comparatively weaker to those for C1 due to additional damping by 
background porosity in the envelope. 

This investigation, thus reveals that the internal pressure overshoots should not be seen in 
isolation to that of the resonant effects, but the implication of the severity of such overshoots, at 
the time of high external pressures near the opening, should be carefully analyzed in relation to the 
situation of an already existing opening with equalized (or nearly so) mean pressures for design 
considerations. 

 
5.3 Duration of opening creation 
 
The above analyses of internal pressure overshoot response are based on the assumption of an 

instant opening creation (or almost so when the opening is created much faster compared to the 
time constant of the building volume-opening combination). In certain situations involving 
ductile/malleable building envelope materials however, it may take some time for a façade or a 
cladding to fully breach so that the severity of the overshoot response may be reduced. Such 
scenarios have been numerically investigated for the TTU building with configurations C1 and C2 
using four different “opening durations” namely HHf5.0 , HHf0.1 , HHf5.1  and HHf0.2 . 

 The size of the opening was assumed to linearly vary from 1 to 100% of the final size ( oA = 
1.94 m2) over the different “opening durations”. As before, openings were initiated at different 
leads/lags with respect to the peak instantaneous pressure in the external pressure time series. In 
order to minimize the effect of localized random peaks of external pressure on the overshoot 
internal pressure response, an ensemble average of the overshoot response of internal pressure for 
a given time lead/lag and “opening duration” was calculated using ten different representative 
external pressure time histories of 50 seconds duration each. Fig. 10(a) presents the averaged 
overshoot factors ( R ) for case C1 while Fig. 10(b) presents the same for C2. The over-shoot 
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occurrence of the peak external pressure for cases C1 and C2 both. This is because a slightly early 
initiation of the opening creation (but close enough to be in the temporo-spatial zone of influence 
of the peak external pressure) that grows steadily in size with the peaking gust induces a strong air 
mass movement through the opening dominated by inertia resulting in significant overshooting of 
internal pressure. 

Within the zone of maximum overshoot, the effect of the duration of opening creation on the 
overshoot response seems less obvious though. Over a broad zone of influence and opening 
duration, however, the overshooting of internal pressure is found to be significant (> 1) for the 
cases analyzed. 

Thus, it appears from the above analyses for the TTU building that adequate provisions such as 
over-shoot factors may need to be provided for such buildings in the wind loading standards, 
especially for cyclone prone areas, where potential for opening creation during strong external 
pressures remains high. However, the TTU building setup with its relatively smaller internal 
volume and a comparatively larger door opening is representative of small workshops or 
partitioned halls in a larger residential building for which the results of the study can roughly be 
extended. As such it represents only one of the several combinations of design scenarios possible 
and hence would not be prudent to base an inference on the above analyses alone. The 
non-dimensional governing equations offer a distinct advantage in such cases where simulations 
carried out for a vast range of realistic non-dimensional parameters can be used to derive 
conclusive inferences as to whether or not such provisions are necessary at all or if necessary 
under what circumstances. 

It is also worth noting at this stage that the level of internal pressure overshoot obtained through 
numerical analysis is highly sensitive to the value of loss coefficients used for simulation. While a 
value of CL = 1.2 used here is based on matching the analytical and the CFD predictions as 
discussed in section 3, a summary provided by Oh et al. (2007) and Holmes and Ginger (2010) of 
the value of loss coefficient reported in literature shows a wide-spread scatter. Values as high as 
44.44 and 100, obtained through spectral match of the measured and the predicted internal 
pressure spectra in some studies, when used for numerical simulations will generally lead to 
smaller overshoots than presented in Figs. 7-10. 
 
 
6. Non-dimensional overshoot factors 

 
For building configurations C1 and C2, non-dimensionalized over-shoot factors ( R ) already 

defined in Eq. (15) were derived by numerically simulating the respective non-dimensional 
equations to obtain a family of curves of R  as a function of S* ranging from 0.5 to 15 for realistic 
values of 5  varying between 20 and 100. Values of 5  are based on a typical longitudinal 
integral length scale ( U ) of 100m (Ginger et al. 2008) for low-rise buildings. A loss coefficient 
( LC ) of 2.78 and an area and time averaged external pressure coefficient ( peLC ) of -0.2 was used 
to simulate the leakage properties (Yu et al. 2008) for porous envelopes. Overshoot factors 
(calculated by triggering the internal pressure response at the instance of peak external pressure) 
are presented as an ensemble average of ten realizations to account for the statistical variability in 
the magnitude of the peak external pressures in the time series used. 

Figs. 11(a) and (b) present a family of non-dimensional curves of over-shoot factors for 
configurations C1 and C2 obtained by numerically simulating Eqs. (2) and (5) respectively. A 

18



 
 
 
 
 
 

Wind induced internal pressure overshoot in buildings with opening 

porosity ratio of 10% used for simulation and can be considered to represent one extreme for leaky 
buildings (both residential and industrial) in temperate climates, no leakage in the envelope being 
the other extreme end. Overshoot factors for buildings with intermediate leakages (or porosities) 
can be linearly interpolated from Figs. 11(a) and (b). 

It can be seen that the overshoots are still significant for the range of building cavity-opening 
combinations investigated but gradually decreasing with increasing area of the opening for a given 
S* due to the corresponding increase in internal volume induced damping. As discussed earlier, the 
significantly high overshoot ratios (R) in excess of unity obtained in Figs. 11(a) and (b) can also be 
partially attributed to the small loss coefficient value of CL = 1.2 used in the analysis, in addition to 
the high external pressure used to force the internal pressure transient response. The overshoot 
factors also tend to gradually diminish with reduction in S* (or increase in envelope flexibility) for 
a given 5  (i.e., opening size) and beyond S* of around 2, the overshoot factors are found to be 
more or less constant. 

The damping influence of background porosity is reflective in the relatively smaller overshoots 
in Fig.11(b) than in Fig. 11(a) for a given value of S* and 5 . The overshoot factors of the TTU 
building configurations investigated as a ‘control’ corresponding to S*=0.698 for a rigid envelope 
and S* = 0.279 as a quasi-statically flexible envelope are also marked (as black dots) in Fig. 11(a) 
while that of a quasi-statically flexible and porous TTU building is shown in Fig. 11(b). 

It can thus be inferred from Figs. 11(a) and (b) that the effect of the sudden opening tends to get 
negated by the damping influence of the building flexibility and background leakage such that for 
porous structures with large flexible envelope, sudden overshooting of internal pressure may be 
quite small. In addition to the practical difficulty in synchronization of the creation of an opening 
to a strong gust event with high external pressures, this partially explains the reason why sudden 
opening overshooting have never been captured in limited wind tunnel and full scale studies under 
turbulent wind conditions (e.g., Stathopoulos and Luchian 1989, Yeatts and Mehta 1992). 

Of paramount importance and ultimate interest to structural engineers is the response of the 
building envelope to sudden overshooting of internal pressure following envelope breakage during 
the occurrence of strong gust. The response, whether dynamic or quasi-static, depends on the 
relative magnitude of the structural frequency of the buildings components such as the roof with 
respect to the Helmholtz frequency of the building. An estimation of the non-dimensional 
volumetric ratio overshoot R  (=̂ , where ̂  is the peak non-dimensional volumetric ratio 
following the creation of an opening;   just at the instant of opening creation being unity) 
following a sudden opening will help to ascertain whether the structural deflection of the envelope 
is within permissible limits or not and what precautions, if necessary, should be undertaken to 
keep the structural response within the allowable limit states (ultimate and serviceability). Fig. 12 
provides a realization of the non-dimensional volumetric ratio overshoot ( R ) vs. S* for different 
values of 5  and 6 = 25. 

The volumetric overshoots are relatively higher at lower values of S* (higher internal volume 
and roof area) for a given 5 , because at lower structural frequencies, the dynamic or inertial 
response of the roof becomes significant. On the other hand, at higher values of S* corresponding 
to higher roof structural frequencies (smaller roof areas), the stiffness of the envelope (roof) 
mitigates the dynamic volumetric overshoot response.  Marked as black dashed line in the figure 
is the approximate divide between dynamically sensitive and quasi-statically responsive envelopes 
depending on the roof natural frequency being lower or higher than 1 Hz (ACSE 7-05, 2005), 
calculated as a function of the roof area using Eq. (8) for different values of S* and 5  ( 6  being 
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overshooting of internal pressure, higher than the pre-sequent or subsequent steady state resonant 
values, are possible when the openings are created almost instantaneously during the occurrence of 
high external pressure near the opening. For all other situations, the steady state resonant response 
of internal pressure was found to supersede the overshoot response. Investigation into the effect of 
the “suddenness” of opening creation on the TTU building, with different envelope-leakage 
combination, using five different “opening durations” revealed the influence of the duration of 
opening creation on the internal pressure response.  In particular it was found that the maximum 
overshooting of internal pressure is produced by the opening creation initiated 0-1 periods 
preceding the occurrence of high external pressure, the level of overshoot being inversely 
proportional to the duration of opening creation. 

Non-dimensional overshoot factors are presented for a variety of cavity volume-dominant 
opening combinations for: (1) buildings with rigid/quasi-statically flexible but non-leaky envelope 
and, (2) buildings with rigid/quasi-statically flexible and leaky envelope (representing most low 
rise residential and industrial buildings) by simulating the non-dimensional form of the governing 
equations.  These show that significant overshooting can occur when a sudden opening creation 
is well-synchronized with high external pressures near the opening. The transient response and the 
level of internal pressure overshoot are, as expected, found to diminish with increase in flexibility 
and background porosity in the building envelope. 

However, it is also concluded that the values of overshoot factors obtained in this study are 
slightly high, due to a relatively lower value of loss coefficient used in the analysis than some 
previously reported studies. This adds to the higher overshoot values obtained under the 
conservative assumptions of high external pressures at the time of instantly created openings. 

A sensitivity analysis was carried out to quantify the effect of loss coefficient on the level of 
overshoot obtained numerically. It is shown that for very high values of the loss coefficient used 
for numerical simulation, the overshoot internal pressure response practically ceases to exist. 

It is suggested that a careful consideration regarding the implication of the timing and level of 
internal pressure overshoots, associated with high external pressure near the opening, be made in 
relation to the situation of an already existing opening, especially in cyclonic regions with high 
possibility of such occurrence. 
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