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Abstract. This article presents theoretical investigations on techniques for the improvement of the
dynamic characteristics of slender bridges under wind action. Aerodynamically effective control shields
are applied as controlled actuators. The first part of the article describes the modelling of the uncontrolled
aeroelastic system. Acting aerodynamic forces are consistently characterised using linear time-invariant
transfer elements in terms of rational functions. On this basis, two configuration levels of the uncontrolled
system are represented with linear time-invariant state-space models and investigated. The second part of
the article addresses controller design and the behaviour of the controlled aeroelastic system. Both
fundamental limits for stabilisation and the efficiency for attenuating the influence of gusts are described
for different actuator mechanisms. The results are derived and discussed with methods of control theory.
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1. Introduction 

In recent years, a number of techniques have been investigated to improve the vibration behaviour

of bridges especially under wind action by systematically imposing additional forces. They should

reduce the system deflection due to wind action and avoid the occurrence of aeroelastic instabilities.

This article addresses damping and stabilisation of an aeroelastic system with additional

aerodynamic forces. The forces are generated with rotating control shields that are connected with

the bridge girder. In contrast to actuators like reaction wheels or gyroscopes, which affect the bridge

with inertial or gyroscopic forces (Kirch and Peil 2009), not only the flutter but also the divergence

wind speed of the system can be modified. Moreover, control shields need no minimum mass and,

hence, they only marginally increase the self-weight of the bridge. The forces that are transmitted

from the control shields to the bridge girder are generated by the air flow. Assuming a proper

design, it can be expected that considerably lower forces are thus necessary for the control of the

shields compared to the control of the other mentioned kinds of actuators.

Aerodynamically effective, movable control surfaces have been used in aerospace engineering for

many years to suppress the influences of disturbances on aircraft wings (e.g., Edwards 1977). Their

application to bridge decks was proposed for instance in Klein et al. (1972). It was investigated in

Kobayashi and Nagaoka (1992) and Ostenfeld and Larsen (1992) for the first time. In aerospace
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engineering, the primary task of a wing is to produce a lifting force. Flaps as integrated parts of the

aerofoil modify its surface in order to evoke positive effects without increasing the disturbing

impact of gusts. With respect to bridges, however, control shields are extra components that

augment the area exposed to the wind. The shields cannot bear any significant live load and can

hence not directly fulfil the intrinsic task of a bridge. In addition to motion-induced aerodynamic

forces, new gust-induced forces arise simultaneously, which also need to be suppressed. Therefore,

aerodynamically effective control shields are generally less effective for bridges than for aircraft

wings. Moreover, control shields need a minimum wind speed to work. They are not suited for

damping oscillations in still air. This shortcoming is similar to that of fin stabilisers, which are used

to counteract the rolling of ships. Aircraft wings do not possess this disadvantage either. 

Here, the theoretically investigated two-dimensional bridge-like system is equipped with

aerodynamically balanced flaps. They are attached to both sides of the bridge girder (Fig. 1) and

actively controlled. In contrast to control shields that are located far away from the bridge girder,

adjacent flaps can modify the flow around the girder effectively and favourably. This article

presents new insights into fundamental stabilisation limits and the ability of gust alleviation, which

are derived with mathematically consistent, correct models and tools. Similar systems with actively

controlled shields have been investigated in several journal articles and dissertations (Kwon 1996,

Preidikman and Mook 1997, Hansen 1998, Wilde and Fujino 1998, Cobo del Arco and Aparicio

1999, Piésold and Corney 1999, Hansen et al. 2000, Huynh 2000, Kwon and Chang 2000, Hansen

and Thoft-Christensen 2001, Huynh and Thoft-Christensen 2001, Wilde et al. 2001, Nissen et al.

2004). In addition, a number of conference papers that are written by the same authors are

available. For the sake of completeness, it should be noted that investigations on passively

controlled bridges with aerodynamically effective appendages have been published as well (e.g.,

Preidikman and Mook 1998, Wilde et al. 1999, Omenzetter et al. 2000a,b, Omenzetter et al.

2002a,b, Aslan and Starossek 2008). 

2. State-space model and open-loop characteristics of the aeroelastic system

2.1. Aerodynamic forces

In order to investigate an aerodynamically controlled bridge system with methods of control

theory, a realistic and mathematically consistent description of the forces caused by the wind flow

around the girder is of particular importance. Usually, wind action is divided into several types of

wind loads. 

Fig. 1 Two-dimensional aeroelastic system with four aerodynamically effective degrees of freedom
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Along with its structural parameters, motion-induced wind forces influence the properties of an

aeroelastic system. For an adequate representation of the displacement-force relation, a transfer

equation with a linear time-invariant transfer element is used (e.g., Kirch and Peil 2011).

(1)

The variable G represents the aerodynamic transfer function that is here alternatively termed

aerodynamic admittance. In Eq. (1), the aerodynamic force vector is denoted by f, while the vector

of the aerodynamically effective degrees of freedom is denoted by ξs . In this pure frequency-

domain description, the values are to be regarded as unilateral Laplace transforms. The variable in

the frequency domain p is the reduced complex frequency.

(2)

The complex, non-reduced frequency is symbolised by s, b stands for the half width of the primary

bridge cross section according to the system shown in Fig. 1, and U symbolises the constant

horizontal mean wind speed. The following notation according to Küssner and Schwarz (1940) has

been used in aerospace engineering since early publications on aerodynamics. A factor q0 , which

includes the air density ρ , is usually separated from the transfer function of motion-induced forces.

(3)

Thus, the matrix Q is only a function of the reduced complex frequency p. Its elements are called

aerodynamic derivatives. For the two-dimensional example displayed above, the theoretical

derivatives based on potential theory are used as proposed in Küssner and Göllnitz (1964) according

to Küssner and Schwarz (1940). In the mentioned references, the results are derived for a wing-

aileron-tab combination, which is typical of aerospace engineering. The geometry and the

derivatives of the airfoil can be linearly transformed into the corresponding properties of the system

shown in Fig. 1. Transformation details are not listed here. Bridges with aerodynamically effective

flaps are assumed to have streamlined cross sections. Therefore the derivatives of the bridge-flap

system are similar to the ones of the flat-plate combination based on potential theory. In contrast to

the aerodynamic forces derived in Theodorsen and Garrick (1941), which are used in many

publications on aerodynamic control of bridges, the case of open gaps between the airfoil

components is additionally considered in Küssner and Göllnitz (1964). The flow through these gaps

is taken into account in the formulas of the corresponding forces. This approach is used here.

The motion-induced aerodynamic forces of the aeroelastic system with four aerodynamically

effective degrees of freedom shown in Fig. 1 can be described with the following detailed equation.

(4)

Forces that act on the total aerodynamically effective cross section are denoted by L and M . The

moments Mc,win and Mc,lee act on the flaps around their hinges. A dimensionless Q matrix is obtained

when using identical dimensions for both the different types of deformations and the different types

of loads. For the investigations presented here, the half width of the flaps is set to bc = 0.1 b. As

can be seen in Fig. 1, the flap hinges, which are fixed relative to the bridge girder, are located at the

f p( ) G p( ) ξs p( )⋅=

p sb/U= σ iω+( )b/U=β ik+=

f p( ) q0 Q p( ) ξs p( )    q0,⋅⋅ πρb
2
U

2
= =

Lb  M  Mc win,  Mc lee,( ) p( )

T
q0 Qjl( )⋅ p( ) h/b   α   αc win,  αc lee,( ) p( )

T
,  j,l = 1 … 4, ,⋅=
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middle of the flaps. The derivatives of the bridge cross section without flaps correspond to the

submatrix of Q in Eq. (4) for j,l = 1,…,2 and bc = 0. For purely imaginary frequencies p = 0+ik ,

the conversion to Scanlan derivatives (Simiu and Scanlan 1996), which are often used in bridge

engineering, can be taken from Kirch and Peil (2009), for instance.

Gusts act on girder and flaps. Similar to Eq. (1), gust-induced forces dg − also called buffeting

forces − which constitute another type of wind forces, can be related to zero-mean fluctuating

velocity components of gusts αg with aerodynamic gust admittances Gg.

(5)

For the system given in Fig. 1, according to the potential theory (Sears 1940), the vector of the

dimensionless gust speeds contains one element only, the dimensionless vertical gust speed αg = wg / U . 

Forces due to flow separation and vortex shedding are not considered here. They are assumed to be

negligible for the streamlined cross section investigated here.

Usually, analytic functions of the complex frequency are taken to express the transfer function of

motion-induced aerodynamic forces. With the aid of these functions, the derivatives of bridge cross

sections, which are available for harmonic oscillations, are approximated. Rational functions are the

most commonly used analytic transfer function approximations in aerospace engineering as well as

in bridge engineering. In this article, rational functions according to the Minimum-State Method

(Karpel 1981) are used.

(6)

This approach is based on rational transfer functions with single, real poles (–γl) , which are the

same for all derivatives. Rational functions are particularly suitable for approximating the

aerodynamic derivatives of girders with streamlined cross sections not only along the imaginary axis

but also in other important areas of the complex frequency plane (Kirch and Peil 2011). The

constant matrices A1 , A2 , D , E and R are determined with elaborate approximation procedures

according to Tiffany Hoadley and Adams (1988). For the following examples, the derivative

approximation is carried out with nL = 5 poles. Steady values of the derivatives are incorporated in

the A0 matrix. Exact matching of the steady values is important for the evaluation of the divergence

wind speed. In Eq. (6), the parameter bc is no longer accessible. Hence, the derivatives for the flap-

free case cannot be obtained as a submatrix of the case with flaps. The approximation is thus

separately carried out for the cross section with and without flaps. As described for motion-induced

forces, the approximation of the gust admittance can be performed as well. Separated from the

derivatives, it is approximated with its own poles.

2.2. State-space model and characteristics of the aeroelastic system without flaps

After inserting Eq. (6) into Eq. (3), a part of the last summand of the resulting equation can be

transformed into a linear differential equation with constant coefficients by introducing artificial so-

called aerodynamic lag states ξa .

  (7)

d
g

p( ) G
g

p( ) αg p( )⋅ q0 Q
g

p( ) αg p( )⋅⋅= =

Q p( ) A0 A1p A2p
2

D pI R–( ) 1–
Ep,   R diag γ1 γ2 … γn

L

,, ,( )–=+ + +=

ξa pI R–( ) 1–
Epξs = ξa′ Rξa– Eξs′=
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The symbol between the equations connects corresponding frequency and time-domain descriptions

assuming that the values of all time-dependent functions are zero prior to time t = 0. The prime ( )´

symbolises the generalised differentiation with respect to the non-dimensionalised time .

(8)

Together with a linear structure description of the same kind

(9)

the aeroelastic system can be represented by a linear time-invariant state-space model

(10a)

y = Cx (10b)

where x is the state vector and (
.

) symbolises the generalised differentiation with respect to time t .

(11)

The matrices of the structural variables mass, damping and stiffness are denoted in these equations

by Ms , Cs and Ks respectively. A is the system matrix

(12)

where

(13)

In the state Eq. (10(a)) d d represents other disturbance forces originating from traffic for instance.

The control input u is important for closed-loop control, and is to be regarded in this section as

external forces, which correspond to the structural degrees of freedom. The input matrices B, E g

and E d of the control input and the disturbances have the same entries.

(14)

The output equation Eq. (10(b)) cannot extract more than the structural states . In reality, the

mathematically introduced lag states ξa cannot be measured. The mean horizontal wind speed U

occurs in the system matrix A as a parameter.

The dynamic characteristics of the aeroelastic system can be evaluated with an eigenvalue analysis

of the system matrix A . System stability is of major interest in this context. Due to the effect of

motion-induced aerodynamic forces, aeroelastic instabilities can occur in the form of flutter and

divergence. Unless otherwise explained, the two terms should specifically denote the cases when the

system is Lyapunov stable but not asymptotically stable. Since the system matrix contains the mean

t 

 t U/b( )t=

Msξ
··

s Csξ
·

s Ksξs+ + f u d
g

d
 g

+ + +=

x· Ax Bu E
g
d

g
E

d
d

d
+ + +=

x ξ
·

s

T
  ξs

T
  ξa

T( )
T

=

A

M
1–
C– M

1–
K– q0M

1–
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         I                     0                    0  

   E                      0               U/b( )R 
⎝ ⎠
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⎜ ⎟
⎛ ⎞

=

M Ms q0 b/U( )2
A2,   C Cs q0–= b/U( )A1   K Ks q0A0  –=,–= .

B E
g

E
d
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1–

( )
T
    0

T
    0

T( )
T

= = =

ξ
·
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horizontal wind speed U , a parameter-dependent linear eigenvalue problem must be solved.

The two-dimensional, generalised system in Fig. 1 is used as an example with the characteristic

structural properties given in Table 1. The corresponding structural matrices are as follows.

(15)

At the zero crossings of the eigenvalue real-part curves (Fig. 2), flutter appears at U = 47.6 m/s and

divergence at U = 63.7 m/s . This identification is possible when inspecting the eigenvalues and state

eigenvectors. Flutter occurs in two complex-conjugate eigenvectors with complex values. Its

eigenfrequencies are purely imaginary and complex conjugate. In the case of the flat plate, both

structural degrees of freedom appear in the same order of magnitude, as can be predicted for the

classical bending-torsional flutter. Divergence has only one eigenvector, the element values of which

are real and vanish in the velocities  and in the lag states ξa . Its eigenfrequency is zero. In the

Ms
mb

2
    0 

0      I
⎝ ⎠
⎛ ⎞  ,= Cs

chb
2
    0

 0       c
α  ⎝ ⎠

⎜ ⎟
⎛ ⎞

 ,= Ks

khb
2
    0

 0       k
α  ⎝ ⎠

⎜ ⎟
⎛ ⎞

 =

ξs

Table 1. Structural properties of the two-dimensional aeroelastic model

half deck width
mass
moment of inertia
eigenfrequencies
kh = ωh

2 m ; kα= ωα

2 I
logarithmic damping decrements
ch = δh m ωh / π ; cα = δα I ωα / π

b= 15.0 m
m= 25.0·103 kg/m
I= 2.80·106 kgm2/m
ωh= 0.628 1/s
ωα= 1.13 1/s
δh= 0.0126
δα= 0.0126

Fig. 2 Eigenvalues of the aeroelastic system without flaps
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case of uncontrolled bridges, the divergence wind speed is usually higher than the flutter wind

speed and therefore normally not the focus of interest. This statement cannot be held up when

actuators are applied. The sections in the second part of the article explain how and within what

limits the system characteristics can be changed.

2.3 State-space model and open-loop characteristics of the aeroelastic system extended

with flaps

The mathematical description of the flap-extended aeroelastic system depends on the type of the

chosen control input. One possibility is to act on the extended aeroelastic system through forces in

the form of torques around the flap hinges. In this article it is assumed that there is no passive

coupling by devices like springs or dampers between the rotation of the flaps and the bridge girder.

In addition to inertial forces, which arise when accelerating the flaps, the input forces are thus

buffered by motion-induced aerodynamic forces only. This usually leads to very non-robust

controllers and, together with other reasons, to various numerical problems. The situation becomes

worse if the flaps are modelled without a mass. This is done here in order to investigate the purely

aerodynamic effectiveness of flaps. The self-weight of the bridge should not unnecessarily increase

due to attached flaps. Hence, a lightweight construction is preferable and a massless modelling of

the flaps is not unrealistic.

If a control input is chosen in the form of displacements, the mentioned numerical problems are

circumvented. For the derivation of the motion equations of an aeroelastic system with flaps and

displacement input, the following procedure is recommendable. In the transfer equations of

aerodynamic forces and in the transfer matrices of Section 2.1 only those rows are considered that

correspond to forces acting on the total aerodynamically effective system. Accordingly, in the

approximation matrices Aj and D the other rows must be cancelled. The aerodynamically effective

degrees of freedom can be separated. One part still corresponds to the structural degrees of freedom

ξs = (h/b  α)T. The other part represents the displacement inputs ξc , which, in the example of Fig. 1,

include the relative flap angles αc,win and αc,lee . The derivatives can be separated as well. 

(16)

Motion-induced aerodynamic forces are thus assigned to their different origins. Correspondingly, the

approximation matrices must be separated or remain unchanged. 

(17)

The transfer from displacement inputs ξc to control forces u, which act on the total aerodynamic

cross section, can be described with a state-space model

(18a)

(18b)

where

f q0 Q
s
  Q

c( ) ξs

T
   ξc

T( )
T

q0Q
s
ξs q0Q

c
ξc+= =

Aj Aj

s
     Aj

c( ),= E E
s
     E

c( ),= D D
s

D
c

         R, R
s

R
c

= = = =

ξ
·

a

 c
Acξa

 c
Bcxc+=

u Ccξa

 c
Dcxc+=
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(19)

The matrices of the state-space model can be derived from the approximation matrices of Eq. (17)

as follows.

(20)

The equations of motion of the flap-extended aeroelastic system comply in their form with Eq. (9).

When applying flaps without a mass, the structural matrices Ms , Cs and Ks remain unchanged

compared to Eq. (15). The forces on the right-hand side of Eq. (9) must be specified as explained in

this section. As a consequence of separating the aerodynamically effective degrees of freedom, the

approximation matrices Aj and E inside the system matrix A and the aerodynamic lag states ξa in

the state vector x must be replaced by Aj, E
s and , respectively.

Since the derivatives Qs und Qc are approximated simultaneously, the aerodynamic lag states can

be added and a single new state ξa can be defined. If the summand Bu is replaced by  where

(21)

both state-space models can be combined into a single one with the following state equation.

(22)

The state-space model can be easily modified with summands taking inertia effects of the flaps into

account.

When extending the aeroelastic system with unmoved flaps, its eigenvalue curves are altered (Fig. 3).

Since a larger area is exposed to the wind, the flutter wind speed decreases to U = 43.5 m/s and the

divergence wind speed to U = 53.1 m/s. To systematically influence the extended aeroelastic system,

the displacement inputs of the extended aeroelastic system must depend on its outputs or states.

Hence, the control loop must be closed. 

As a consequence of the rational function approximation, the vector xc contains not only the

displacement inputs ξc , but also their derivatives  and . These subvectors are not independent

xc ξ
··

c

 T
   ξ

·
c

 T
   ξc

 T( )
T

= .

Ac
U

b
----R

c
,     Bc 0    E

c
   0( ),   Cc q0D

c
,     Dc q0

b

U
----⎝ ⎠

⎛ ⎞
2

A2

c
  

b

U
----A1

c
  A0

c

⎝ ⎠
⎛ ⎞= = = =

ξa

s

B̃xc

B̃ BDc( ) 0
T
  Bc

T( )
T

+= ,

x· Ax B̃xc E
g
d

g
E

d
d

d
+ + +=

ξ
·

c ξ
··

c

Fig. 3 Eigenvalues of the aeroelastic system with unmoved flaps
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of one another and necessitate the application of an additional actuator model for the differentiation

(ZAERO 2004) to allow the use of standard methods of control engineering. Hence, this actuator is

at least mathematically motivated. For this purpose, a state-space model can be used that represents

parallel third-order lag elements.

(23)

(24)

The submatrices only have nonzero entries on the main diagonal.

(25)

If the transient response is tuned to be sufficiently fast and non-oscillating, the input uac can be

transferred to itself and its derivatives with sufficient precision. The transfer function from a single

element of uac to the corresponding one of ξc is as follows.

(26)

In this article its poles are placed on the negative branch of the real axis at s1 = –100 1/s , s2 = –150 1/s

and s3 = –200 1/s. Identical poles for different displacement inputs are unproblematic, because they

are connected to different eigenvectors. 

The model of the mathematical actuator in Eq. (23) can be combined with the state-space model

of Eq. (22).

(27a)

(27b)

The block triangular form of the system matrix in Eq. (27(a)) shows that the eigenvalue curves

described above are not affected by the dynamics of the mathematical actuator. To keep the

eigenvalues of the mathematical actuator out of the closed loop, a state transformation into the

canonical form is performed. In the canonical state space, these actuator eigenvalues can be

separated.

The dynamic behaviour of sensors and other actuators is neglected in this article. They are assumed

to be fast compared to the components of the extended aeroelastic system that are investigated here.

With linear relations, the displacement inputs can be kinematically coupled to one another. For the

numerical example, three different cases are considered: separately driven flaps, flaps rotated in

opposite directions (αc = –αc,lee = αc,win) and flaps rotated in the same direction (αc = αc,lee = αc,win) .

The first two cases require information about the flow direction. 
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Basis for the following investigations is the state-space model of Eq. (27). Its abbreviated state

equation and output equation are as follows.

(28a)

(28b)

By comparing these equations with Eq. (27), the definition of the introduced vectors and matrices

can be found. 

The following sections of the second part of this article describe how and within what limits the

open-loop characteristics of the aeroelastic system can be changed with controlled motions of the

aerodynamically effective flaps. The used methods are standard procedures in control engineering

and described in books on principles of control theory. For this article, the authors have worked

mainly with the textbooks Lunze (2004, 2005).

3. Controller design

3.1 Design objectives, closed-loop structure and controller design method

The objective of closed-loop control is to force an aeroelastic system to behave in a desired

manner. For bridges, the controller design aims at disturbance rejection. Acting disturbances should

excite the system states or the measured system output as little as possible. In addition to technical

feasibility and economic efficiency, the design should fulfil a set of requirements. Due to the occurring

instabilities, a certain level of stability is particularly important for aeroelastic systems. This article

addresses stabilisation limits of aeroelastic systems when the described flaps are used. In this case it is

hence sufficient to design the controller mainly with respect to a specific stability level.

When closing the control loop with a linear proportional controller K, 

(29)

stability of the closed loop can again be examined by regarding its eigenvalues. To achieve the

intended objective, the controller is designed as a function of the system parameter, the mean

horizontal wind speed U . The controller gains are calculated for very closely spaced discrete nodes

of the wind speed and cubically interpolated afterwards. There is no assumption for the gains in

terms of analytical functions. This gain scheduling can be considered as adaptive control with one

drawback. As gain scheduling has no feedback of the actual system behaviour, an incorrect schedule

cannot be compensated.

The state feedback chosen in Eq. (29) requires information about all system states which are

defined in the first part of the article. While measuring all structural states ξs and  and actuator

states xc can be problematic, it is impossible to measure the mathematically introduced

aerodynamical states ξa . However, state estimators like Kalman filter or Luenberger observer can

reconstruct the system state from the output provided that the system is realistically modelled and

observable with its output. The design of the state estimator is not dealt with in this article. As a

result of the separation theorem, the mentioned estimators do not modify the closed-loop

x· ol Aolxol Boluac Eol

g
d

g
Eol

d
d

d
+ + +=

y Colxol=

uac Kxol–=

ξ
·

s
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eigenvalues that are based on state feedback. 

If − in addition to guaranteeing a specific stability level − there are no further conditions for the

controller matrix, the design generally leads to an active controller. It allows for energy input into

the system and, when combined with the chosen state feedback, it is the most favourable controller

type concerning stabilisation. Output feedback can only produce worse results. Passive controllers

can be seen as a special kind of output feedback. For instance, tuned mass dampers, which are also

used for stabilisation of aeroelastic systems (Pourzeynali and Datta 2002, Boonyapinyo et al. 2007,

Ubertini 2010), can be considered as passively controlled, movable masses. Due to their dissipative

nature, passive controllers can only perform less effective compared to active ones. Safety aspects

of active stabilisation in permanent operation are not contemplated in this article. At least for

construction stages of bridges with undesirable aeroelastic characteristics, active controllers are

considered to be a useful option.

The chosen linear-quadratic control, which is also called optimal control, reduces the controller

design to the minimisation of a quadratic cost functional. This functional includes the states and

inputs of the system. In order to simplify the analysis, a different weighting of the states and inputs

is not primarily taken into account. A specific level of stability can easily be achieved for optimal

controllers. The system matrix is modified by adding (–σmax) times the identity matrix. Hence, all

eigenvalues of the closed loop are placed to the left of the bound σmax in the complex frequency

plane. For the numerical example σmax = – 56.5·10−3 1/s is assumed.

3.2 Controllability and observability of the extended aeroelastic system

Controllability and observability are basic characteristics of a dynamic system which crucially

influence the feasibility of closed-loop control. Only the part of a system that is both controllable

and observable can be controlled in a closed loop. These properties can be examined for instance

with the Hautus criteria, which are commonly known in control theory. They not only allow

statements to be made about the controllability or observability of a system, but also whether a

particular eigenvalue has these properties. If controllability or observability only vanish for certain

discrete wind speeds, the use of these criteria will be numerically cumbersome because the speeds

must be known very precisely. For systems with a single input and a single output, the lack of

controllability or observability can be better detected with pole-zero cancellations in the transfer

function of the aeroelastic system. For these kinds of systems, transfer zeros become decoupling

zeros if controllability or observability vanish. The reduced poles become non-controllable

eigenvalues when input decoupling zeros occur and non-observable eigenvalues when output

decoupling zeros occur. If the real and the imaginary part of the poles and zeros are graphically

displayed against the wind speed, singularities of controllability and observability can be found

without difficulty. 

When using the Minimum-State Method for approximating the derivatives of motion-induced

aerodynamic forces, all eigenvalues of the extended aeroelastic system investigated here −
disregarding the a priori excluded eigenvalues of the mathematical actuator − are generally

controllable with the chosen input. Exceptions will be described in Section 3.3 . If the output signals

are selected appropriately, disregarding again the eigenvalues of the mathematical actuator, the

extended system is completely observable as well. For this purpose, the output of the bridge rotation

angle α is sufficient for all wind speeds without exceptions.

Another form of the rational approximation according to Roger (1977) and Abel (1979) leads to
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several non-controllable eigenvalues for all wind speeds in the case of the theoretically described

flat plate. Their occurrence can be explained with identical parallel subsystems within the state-

space model due to the other way of approximation. The non-controllable eigenvalues are, however,

located in the stable, left part of the complex frequency plane and do not need to be stabilised.

When using the canonical form of the state-space model, these eigenvalues can be separated. Then

the controller can be designed for the controllable part of the system. All results presented here can

be derived with this approximation alternative as well. Any associated stumbling blocks are not

addressed in this article.

3.3 Properties of the controller matrix

Figs. 4 and 5 show the graphs of one element of the calculated controller matrices that connects

the input αc or αc,lee with the bridge rotation angle α . The behaviour of this element is typical of

the controller. When calculating the gains, the algorithm fails at U = 60.9 m/s . For this wind speed,

the extended aeroelastic system shows the transition from two distinct real to two complex-

conjugate eigenvalues (cp. Fig. 3). At the mentioned wind speed there is a double eigenvalue with

two identical eigenvectors. A diagonal canonical form of the system matrix does not exist for that

case. Numerically, the developed algorithm produces an artefact in the form of a narrow-spaced

Fig. 4 Controller gains for kinematically coupled flaps; moved in the same direction on the left, moved in
opposite directions on the right

Fig. 5 Controller gain for separately driven flaps
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pole in the controller gain. The problem can be circumvented by interpolating the results at two

wind speeds that are sufficiently far away from the critical point. This has been done before plotting

Figs. 4 and 5 .

At U = 43.5 m/s , which is the flutter wind speed of the extended aeroelastic system, no distinctive

behaviour appears in the controller graph. Therefore, the crossing of the imaginary axis by complex-

conjugate eigenvalues constitutes no significant point for the dimensioning of the controller. For

kinematically coupled flaps, the controller gain shows a pole-like singularity at another wind speed.

This behaviour can be explained when regarding the pole-zero graphs. For flaps that are rotated in

the same direction, there is a pole-zero cancellation on the real frequency axis at σ = 0.153 1/s for a

wind speed of U = 60.7 m/s (Fig. 6). As state feedback is chosen, this corresponds to a non-

controllable eigenvalue. When moving in the modal shape of the non-controllable eigenvalue, the

effect of the generated motion-induced aerodynamic forces is neutralised by the excited structural

forces. The non-controllable eigenvalue, which is located in the positive frequency half plane,

cannot be stabilised by the controller. When approaching the singularity, the controllability of the

aeroelastic system decreases. The controller design algorithm tries to compensate this by increasing

the controller gain. The gain thus tends to infinity when the singularity of controllability is reached.

The controller values below and above the pole significantly differ in their ordinates. If the

kinematically coupled flaps are moved in opposite directions, a pole occurs in the controller gain

exactly at the divergence wind speed U = 53.1 m/s of the extended aeroelastic system (Fig. 4). The

reason is a non-controllable eigenvalue in the origin of the frequency plane. Another explanation

can be given as follows. The motion of the flaps produces an additional steady lift force but no

additional steady aerodynamic moment. Due to non-existent couplings, the possible modification of

the steady translational aerodynamic stiffness has no effect on the steady rotational aeroelastic

stiffness that vanishes in the case of divergence. Fig. 5 illustrates that there are no non-controllable

eigenvalues or singularities of the controller gain if the flaps are driven separately.

Comparative analyses for control inputs with forces show the same singularities of controllability.

For aerodynamic forces of a plate combination with sealed gaps according to Küssner and

Göllnitz (1964) and Theodorsen and Garrick (1941) or for hinges that are positioned at the edges of

the bridge cross section, there are poles of the controller gain at similar locations as described

above. The consideration of a flap mass affects the position of the singularity − concerning the wind

Fig. 6 Real parts of poles and zeros of the transfer function of the aeroelastic system extended with
kinematically coupled flaps that are moved in the same direction
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speed − only for kinematically coupled flaps that are moved in the same direction. This very small

shift is caused by the location of the non-controllable eigenvalue outside the origin of the frequency

plane. Edwards (1977) describes similar singularities of controllability for force inputs on the

leeward flap.

The non-controllable eigenvalues are not a consequence of poorly approximated aerodynamic

forces. The relative difference between the approximated values and the original values is

sufficiently small for s = 0.153 1/s . In the origin of the frequency plane, the values of the

approximation and the ones of potential theory are identical as it is explained in Section 2.1. When

higher, not really realistic levels of damping are chosen for the controller design, further

singularities of the controller gain emerge. They are caused by non-controllable eigenvalues on the

stable, negative branch of the real frequency axis. These eigenvalues originate from the

approximation of the aerodynamic forces with rational functions whose poles create large

differences from values of potential theory (Kirch and Peil 2011).

4. Characteristics of the closed-loop system

After inserting the feedback Eq. (29) into the state Eq. (28(a)) of the extended aeroelastic system,

the behaviour of the closed-loop-controlled system can be simulated. The dynamic characteristics of

Fig. 7 Eigenvalues of the aeroelastic system controlled with kinematically coupled flaps that are moved in
the same direction

Fig. 8 Eigenvalues of the aeroelastic system controlled with kinematically coupled flaps that are moved in
opposite directions
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the controlled system can again be found with an eigenvalue analysis of its system matrix Acl .

(30)

Figs. 7-9 show the eigenvalues of the closed loops. As expected, the controllers move the low-

damped or unstable parts of the curves below the selected level of the frequency real part except for

the eigenvalues that are not asymptotically stable and non-controllable. Due to interpolation

deficiencies of the controller gain, the instability of the closed loop arises slightly below the wind

speed where a non-controllable eigenvalue occurs and disappears slightly above it. Active

controllers are able to stabilise the aeroelastic system for all other wind-speed ranges if a linear

theory is applied. For both cases of kinematically coupled flaps, system states that are Lyapunov

stable but not asymptotically stable appear in the form of an aeroelastic divergence. Fig. 7 shows a

divergence wind speed at U = 60.6 m/s for flaps that are rotated in the same direction. Concerning

its numerical value, this speed is comparable to the divergence wind speed of the flap-free

aeroelastic system. For flaps that are rotated in opposite directions, divergence occurs at the

relatively low speed of U = 53.1 m/s (Fig. 8), which is also the divergence wind speed of the

uncontrolled, flap-extended aeroelastic system. Compared to the flap-free system, the critical wind

speed is only increased by about 11.6% . Based on this result, coupled flaps that are moved in

opposite directions perform distinctly worse than the ones that are moved in the same direction.

Close to the points where instability occurs, the loop can be so sensitive that the interpolation

causes a noticeable drop below the required damping level. In the right part of Figs. 7 and 8, this

lack of robustness causes the noose-like eruptions of the eigenvalue paths. A powerful sorting

algorithm for the calculated eigenvalues allows these curves to be determined. For separately driven

flaps, there is no instability (Fig. 9). When using a linear theory, the aeroelastic system can be

stabilised for all wind speeds by separately driven flaps. 

The high feedback gains around the wind speeds at which instabilities of the closed-loop systems

occur are effective only to a certain extent for real systems due to the linearisation of the model.

Additionally, these theoretically derived wind speeds are associated with uncertainties as a result of

modelling errors. In combination with the step-like change of the controller values, the aeroelastic

system remains unstable in a non-negligible interval. Even advanced adaptive control strategies with

feedback of the system behaviour are likely to fail due to these problems. Based on these

explanations, the wind speeds where non-controllable eigenvalues of the flap-extended aeroelastic

Acl Aol BolK–=

Fig. 9 Eigenvalues of the aeroelastic system controlled with separately driven flaps
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systems occur must be regarded as an upper limit for the application of kinematically coupled flaps

even when using active control. 

All results are based on small rotations of the plates. The size of the acting disturbances determines

whether the limits that have been found so far can be reached at all. Hence, the behaviour of the

aeroelastic system under the influence of gusts will be investigated in the next section.

5. Performance of the controlled system under the influence of a gust disturbance

The gust-induced forces dg in the state-state space models of the aeroelastic system have not been

specified so far. Using the variables that are introduced and explained in the first part of the article,

they can again be described with a state-space model in an elegant way

(31a)

(31b)

where

(32)

The matrices of the state-space model can be derived from the matrices of the rational function

approximation of the gust admittances as follows.

(33)

As has been shown in Eq. (27) for the model of the mathematical actuator, the disturbance model

can be combined with the models of the aeroelastic system into a single state-space model. For the

controlled aeroelastic system, the equations are as follows.

ξ
·

a

 g
Agξa

 g
Bgag+=

d
g

Cgξa

g
Dgag+=

ag a··g

T
   a· g

T
  ag

T( )=
T

Ag
U

b
----R

g
   Bg 0  E

g
  0( )= ,   Cg=q0D

g
,   Dg, q0

b

U
----⎝ ⎠

⎛ ⎞
2

A2

g
 
b

U
----A1

g
  A0

g

⎝ ⎠
⎛ ⎞= =

Fig. 10 System responses to a gust disturbance for kinematically coupled flaps; moved in the same direction
on the left, moved in opposite directions on the right. (abbr.: w. / wo. inp. con.: with / without input
constraints)
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(34a)

(34b)

The elements of the gust disturbance ag can be generated from given spectra in the frequency and

the time domain. In the numerical example, the vertical turbulence is described with a v. Kármán

spectrum that has a turbulence intensity of Iw = 0.07 and an integral time scale of Tw = 0.75 s .

The system response to the gust disturbance can be calculated for linear systems in both the

frequency and the time domain. Figs. 10 and 11 display the standard deviation σα of the bridge-deck

rotation of the controlled systems. These graphs are based on sufficiently long time-domain

simulations. Additionally, the rotations of the flap-free system are displayed. Especially near the

unstable points of the systems that are controlled with kinematically coupled flaps, the rotation

angles noticeably increase. In these ranges, the rotations of the girder cross section and particularly

those of the flaps have large numerical values that are not realistic. In addition they violate the

assumption of small rotations especially for the model of aerodynamic forces. Fig. 11 shows

simulation results for the same controller gains as before where the flap rotations are limited to

αc,lee, αc,win ≤ 20o . Under these assumptions, the stabilisation with flaps fails for all cases in the

range of U = 51.0 ÷ 53.0 m/s . This wind-speed limit is only 10÷15%  higher than the comparable

one of the flap-free system.

A possible weighting of the states and inputs in the cost function of the optimal controller design

primarily causes a reduction of the bridge-girder rotation by larger flap rotations and vice versa. The

given statements about the behaviour of the closed-loop system under a gust disturbance

qualitatively remain unchanged. A real application of the favourable state feedback requires state

estimators. They worsen the results of Figs. 10 and 11. Below U = 42.0 m/s , the deflections of the

aeroelastic system under the effect of gust disturbances are in some ranges practically not alleviated

with flaps when state estimation is taken into account.
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Fig. 11 System responses to a gust disturbance for separately driven flaps (abbr.: w./wo. inp. con.: with/
without input constraints)



458 Arno Kirch and Udo Peil

6. Conclusions

Unlike their application to aircraft wings, aerodynamically effective control shields are additional

components for bridges. They do neither directly bear any live load nor increase the stiffness of the

bridge girder. Unintentionally, not only motion-induced aerodynamic forces but also additional gust-

induced forces are generated. In this article, flaps are investigated that are attached to both sides of

the bridge cross section. Concerning their ability to stabilise bridges under wind action, the

following results are obtained in the article for the considered system and the different flap

mechanisms: While, under linear assumptions, separately driven flaps can stabilise the bridge at all

wind speeds, non-controllable eigenvalues limit the application range of kinematically coupled flaps.

For the numerical example used here, the bounds are located between the flutter and the divergence

wind speed of the flap-free system. Even active control, which is favourable for stabilisation, cannot

overcome these limitations. Concerning their use in the natural, turbulent wind field, all investigated

configurations show − with respect to the quality of the model − that the maximum wind speed for

the used bridge model can be enhanced by about 10÷15% . Moreover, flaps do not seem to be a

proper tool for effectively suppressing the effects of gusts within the range of application of the

flap-free system.

Further theoretical investigations of stabilisation and disturbance rejection of aeroelastic bridge

systems with actively controlled flaps should be performed with a more realistic modelling of the

flow around the girder for large displacements. This could be done with the help of CFD algorithms

that are for instance applied by Ostenfeld and Larsen (1997) and Preidikman and Mook (1997).

Additionally, the parameters of the structure and the dimensions of the aerodynamically effective

cross-sections should be more systematically varied. The conclusions drawn for section models

should, moreover, be checked with three-dimensional models and, if necessary, be modified.
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Appendix

The following notation is used in this article. Table 1 defines additional variables.

f vector of motion-induced aerodynamic forces

G aerodynamic transfer function or aerodynamic admittance function of motion-

induced aerodynamic forces

ξs vector of aerodynamically effective degrees of freedom including or not

including the flap rotations

p reduced complex frequency

β , k real and imaginary part of the reduced complex frequency

s complex frequency

σ , ω real and imaginary part of the complex frequency

U horizontal mean wind speed

b half width of the aerodynamically effective bridge cross section without control

shields 

q0 factor in the aerodynamic transfer equation

ρ air density (1.25 kg/m3)

Q matrix of aerodynamic derivatives 

L , M motion-induced aerodynamic vertical force and moment acting on the total

aerodynamically effective cross section 

Mc,win , Mc,lee motion-induced aerodynamic moments acting on the flaps around their hinges
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h , α structural degrees of freedom of the bridge cross section 

αc,win , αc,lee rotational angles of the flaps relative to the bridge deck

bc half width of the flaps

d g vector of gust-induced forces

G g aerodynamic transfer function of gust-induced forces

α g vector of dimensionless fluctuating wind velocity components 

wg fluctuating speed of vertical gusts

A j , D , E , R matrices of the rational function approximation of the derivatives of motion-

induced aerodynamic forces

I identity matrix

γl elements on the main diagonal of R

nL order of the square matrix R and total number of poles for the rational function

approximation

ξa vector of aerodynamic states of motion-induced aerodynamic forces

time and non-dimensionalised time

Ms , Cs , Ks structural matrices of mass, viscous damping and stiffness

x , y state vector and output vector of the state-space model 

u , dd vectors of the control input and other disturbance forces 

A , C system matrix and output matrix of the state-space model of the aeroelastic

system

B , Eg , Ed input matrices relating to control input, gust forces and other disturbance forces

matrices of mass, viscous damping and stiffness including aerodynamic effects

ξc displacement inputs

Qs, Qc submatrices of the derivatives corresponding to the structural degrees of freedom

and the displacement inputs

submatrices of the rational function approximation corresponding to the structural

degrees of freedom

submatrices of the rational function approximation corresponding to the displacement

inputs

vectors of aerodynamic states corresponding to the structural degrees of freedom

and the displacement inputs

Ac , Bc , Cc , Dc matrices of the state-space model for the transfer from displacement inputs to

control forces

xc input vector of the state-space model for the transfer from displacement inputs to

control forces

input matrix of the combined state-space model with displacement inputs

Aac , Bac matrices of the state equation of the mathematical actuator

uac displacement input of the mathematical actuator

submatrices of the system matrix of the mathematical actuator

elements of the submatrices 

transfer function from one element of uac to the corresponding one of ξc 

αc variable for kinematically coupled flap rotations

 system matrix and output matrix of the combined state-space model including

the model of the mathematical actuator

t t ,
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input matrices of the combined state-space model including the model of the

mathematical actuator

xol state vector of the combined state-space model including the model of the

mathematical actuator

K matrix of feedback gains

σmax intended maximal value of the eigenvalue real parts of the controlled system

Acl system matrix of the controlled system

Ag , Bg , Cg , Dg matrices of the state-space model of gust-induced forces

ag input vector of the state-space model of gust-induced forces

matrices of the rational function approximation of the transfer function of gust-

induced forces

vector of aerodynamic states of the rational function approximation of the

transfer function of gust-induced forces

Iw turbulence intensity

Tw integral time scale

σα standard deviation of the rotation α

j, l matrix and vector indices

( )T transposition

(
.

), ( )´ generalised differentiation with respect to the time t and the non-dimensionalised

time 

Symbol connecting corresponding time (○) and frequency-domain (●) descriptions

i imaginary unit; i2 = –1 

win, lee indices for windward and leeward variables

Bol Eol

 g
Eol

 d, ,
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