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Abstract. Without output covariance estimation, one reference-based Stochastic Subspace Technique
(SST) for extracting modal parameters and flutter derivatives of bridge deck is developed and
programmed. Compared with the covariance-driven SST and the oscillation signals incurred by oncoming
or signature turbulence that adopted by previous investigators, the newly-presented identification scheme is
less time-consuming in computation and a more desired accuracy should be contributed to high-quality
free oscillated signals excited by specific initial displacement. The reliability and identification precision
of this technique are confirmed by a numerical example. For the 3-DOF sectional models of Sutong
Bridge deck (streamlined) and Suramadu Bridge deck (bluff) in wind tunnel tests, with different wind
velocities, the lateral bending, vertical bending, torsional frequencies and damping ratios as well as 18
flutter derivatives are extracted by using SST. The flutter derivatives of two kinds of typical decks are
compared with the pseudo-steady theoretical values, and the performance of H1*, H3*, A1*, A3*is very
stable and well-matched with each other, respectively. The lateral direct flutter derivatives P5*, P6* are
comparatively more accurate than other relevant lateral components. Experimental procedure seems to be
more critical than identification technique for refining the estimation precision.

Keywords: bridge; parameter identification; flutter derivative; stochastic subspace technique; wind tun-
nel test.

1. Introduction

Flutter derivatives are critical parameters describing aerodynamic characteristics of bridge deck

and predicting the flutter and buffeting performances of long-span flexible bridges. Considerable

efforts and valuable researches concerning 2-DOF and 3-DOF experimental techniques and

identification algorithms have been made on the determination of aeroelastic derivatives using

spring-suspended bridge deck section models in wind tunnels in the last decade. Gu et al. (2000),

Li et al. (2004) and Gianni et al. (2009) used Unifying Least Squares (ULS), ensemble ULS, and

improved ULS techniques to identify eight flutter derivatives of different bridge decks, and some

progresses have been made. Chen et al. (2004) highlighted the techniques and implied approxi-

mations employed in the literature to identify flutter derivatives from section model studies. Then,

the control parameters with a critical influence on the development of inter-modal coupling and the

* Corresponding Author, Assistant professor, E-mail: fuyouxu@hotmail.com

DOI: http://dx.doi.org/10.12989/was.2011.14.5.413



414 F.Y. Xu, A.R. Chen, D.L. Wang and R.J. Ma

generation of aerodynamic damping were identified based on closed-form solutions of bimodal

coupled analysis of bridge aeroelastic system (Chen et al. 2008). Chen et al. (2006) proposed a

Stochastic Search Algorithm (SSA) and improved the identification precision based on the signals

preprocessed by Empirical Mode Decomposition (EMD). Chen et al. (2010) developed the Sub-

section Extended-Order Iterative Least Square (SEO-ILS) algorithm in the state space for direct

identification of system matrices from free vibration data of eccentric section models. The

eccentricity is found to have more influence on the cross flutter derivatives than on the direct flutter

derivatives.

For the reason of the wide and matured study of eight flutter derivatives relevant to vertical and

torsional motions, many researchers paid more attention to the identification of eighteen flutter

derivatives, emphasizing on those pertinent with the lateral motion. Singh et al. (1996) extended the

MITD method to extract all 18 flutter derivatives. However, the values of H6*, A5*, P3*, P5*, P6*

are scattered and the precisions are not satisfactory. Chen et al. (2002) utilized the general least

squares theory and compared the flutter derivatives with those obtained by Computational Fluid

Dynamics. Sarkar et al. (2004a, 2004b) developed a novel elastic suspension system for the study of

the wind tunnel section model, in which 18 flutter derivatives of an airfoil and a bridge deck are

extracted by the newly proposed Iterative Least Square approach. The conception and procedure of

this innovative method are simple, and convenient for programming. However, if the ideal signals

can not be acquired for the noise contamination, the reliability and effectiveness will be seriously

impaired. Mishra et al. (2006) applied the covariance-driven stochastic subspace technique to

identify 18 flutter derivatives of a bridge deck section model in smooth flows. The results have

been approximated by the rational functions, and apparent difference between the two sets of

corresponding data can be observed. As is known that H1*, H3*, A1*, A3*are quite stable for almost

all kinds of wind tunnel tests. Their precision and stability are not ensured from the given graphs.

The major reason is not the identification technique, but probably due to the experimental scheme.

The quality of oscillation signals excited by signature turbulence in smooth flow is not efficiently

ensured. In spite of the objective reality of the comparatively inferior identification results for the

lateral flutter derivatives, more attempts should be made to push the ongoing progress for precisely

predicting various wind-induced responses of long-span bridges.

The Eigensystem Realization Algorithm (ERA) belongs to one advanced time domain method for

system identification. Ma et al. (2007) has developed modal parameters and flutter derivatives of

taut strip models by using ERA. Qin et al. (2007) identified the eight flutter derivatives of one twin-

deck and investigated the effects of gap-width. Nevertheless, ERA may not be applicable to the

signals with various noises, unless the original signals are preprocessed by using the appropriate

digital filtering and Random Decrement technique (Quan et al. 2005). The stochastic subspace

techniques (SST) seem to be an ideal method for determining bridge deck flutter derivatives based

on the free vibration signals excited by ambient oncoming or signature turbulences that acquired in

smooth flows (Mishra et al. 2006), turbulent wind flows (Qin and Gu 2004, Gu and Qin 2004) or

wind-rain-hybrid flows (Gu and Xu 2008). Some active attempts are made for extracting six or

eighteen flutter derivatives, and many instructive findings and conclusions are provided by these

researchers. The noise subspaces can be effectively separated and removed by SST. The noise-

immunity performance of SST is better than that of ERA.

However, the previous SST and experimental scheme adopted by different investigators are

characterized by two aspects. The first key aspect is the oscillation amplitudes incurred by

oncoming or signature turbulences may be relatively lower than those obtained in the initial
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displacement impulse excitation, especially for the signature turbulence case in smooth flows.

Therefore, the identification precision may not be effectively ensured, just as presented by Mishra

et al. (2006). Secondly, they are all based on the covariance-driven technique for estimating the

modal parameters, and the time-domain data have to be transformed into the correlation function so

as to calculate the covariance matrices, thus the computation is time-consuming.

To circumvent the possible and potential problems for the improvement of identification precision,

one reference-based SST (Peeters and Roeck 1999) for identifying system modal parameters and

aerodynamic derivatives is developed and programmed in this study. Generally speaking, reference-

based SST may not exert its superiorities in most wind tunnel tests with a few measurements. Only

in the cases (e.g., field measurement of real long-span flexible bridge and high-rise slender building)

that a large amount of signals can not be collected synchronously (e.g., due to lack of adequate

sensors), and step-by-step tests have to be conducted, the reference-based SST can conveniently and

successfully tackle the formidable issues that can not be handled by other SST. Then, the reliability

and identification accuracy is verified by a numerical example before applying to the actual

engineering issues. Subsequently, the frequency and damping ratios stabilization diagrams are

illustrated for deepening the understanding of SST properties On this basis, according to the free

vibration signals generated by the artificial initial displacement impulse, modal parameters such as

the frequencies, damping ratios and 18 flutter derivatives of Sutong Bridge (streamlined deck) and

Suramadu Bridge (bluff deck) 3-DOF sectional models are determined by SST. Finally, the results

are compared with the pseudo-steady theoretical values, particularly with the lateral flutter

derivatives, and a comprehensive analysis is conducted and some meaningful conclusions are

drawn.

2. Theoretical expression of reference-based SST

2.1. Construction of state-space matrix (Peeters 1999)

Assume there are l measurement points or recorded time histories for a bridge deck section model

or full bridge aeroelastic model (lateral, vertical or torsional responses at different locations) in wind

tunnel tests (or in shaking table tests and on-site tests), the former r records serve as references,

then at the kth time, the output vector of accelerations or displacements can be expressed as

(1)

where column vectors , are the references output and non-references

output, respectively. The output matrix appears to be , with the length of m.

The output measurements are gathered in a block Hankel matrix with 2i block rows and j

columns. The first i blocks have r rows, the last i blocks have l rows. For statistical reasons, it is

assumed that . The Hankel matrix can be divided into a “past” reference and a “future” part

(a Hankel matrix is a matrix where each antidiagonal consists of the repetition of the same

element). The block Hankel matrix composed of accelerations or displacements of system output

may be rearranged as
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(2)

where , 

where i is the length of ‘Past’ data, i.e., time delay. j is the length of ‘Future’ data. j/i should be

large enough, e.g., j / i ≥ 10.

Remark that the output data is scaled by a factor . The subscripts of  are the

subscript of the first and last element in the first column of the block Hankel matrix. The subscript

p and f stand for past and future. The matrices  and  are defined by splitting H into two parts

of i block rows. Another division is obtained by adding one block row to the past references and

omitting the first block row of the future outputs. Because the references are only a subset of the

output ,  rows are left over in this new division. These rows are denoted by

. Then H can be rewritten as

 

(3)

Some other matrices need to be defined. Defining the extended observable matrix as

(4)

Assume A and C to be observable matrices, i.e., all vibration modes of system can be observed

according to the output acceleration or displacement signals.

Conducting QR decomposition to block Hankel matrix H
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triangular matrix.
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lines and columns in matrix Q can also be omitted.

 

(6)

 

Further in the algorithm, the Q-factors will cancel out because of their orthonormality. So they are

H
Y0 i 1–

 ref

Yi 2i 1–

 
---------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ YP

 ref

Yf

 
---------

⎝ ⎠
⎜ ⎟
⎛ ⎞

 ¢
ri

li

″past″
″future″
------------------- R

r l+( ) j×∈≡ ≡
↕

↕

Yi 2i 1– Yf

1

j
-----

yi yi 1+ … yi j 1–+

yi 1+ yi 2+ … yi j+

    

y2i 1– y2i … y2i j 2–+

= =
… …

…

Y0 i 1–

ref
Yp

ref 1

j
-----

Y0

 ref
Y1

 ref … Yj 1–

 ref

Y1

 ref
Y2

 ref … Yj

 ref

    

yi 1–

ref
yi
ref … yi j 2–+

ref

= =

…

…

…

1 j⁄ Yi 2i 1– R
li j×∈

Yp

 ref
Yf

r l≤( ) l r–

yi i
 ~ref

R
l r–( ) j×∈

H

Y0

 ref

yi i
 ~ref

Yi 2i 1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ Yp

 ref  +

yi i
 ~ref

Yf

 –⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

       

r i 1+( )

l r–

l i 1–( )

≡ ≡

↕

↕

↕

Oi C CA CA
2
 … CA

i 1–( )
T

R
l i 2n×∈≡

H
Yp

 ref 

Yf

----------
⎝ ⎠
⎛ ⎞≡ RQ

T
=

Q R
j j×∈ R R

r l+( ) j×∈

H

ri

r

l r–

l r 1–( )

   

R11 R00 R00 R00 

R21 R22 R00 R00

R31  R32 R33 R00

R41 R42 R43 R44
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

 Q1

T
 

 Q2

T

 Q3

T

 Q4

T⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

   

ri

r

l r–

l i 1–( )

=

↕

↕

↕

↕

↕

↕

↕

↕



Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique 417

unnecessary and the important significance of data reduction can be achieved. Assume all

information to predict the ‘future’ data are included in the ‘past’ data, the projection of ‘future’

output line space to ‘past’ output line space can be defined as follows.

 (7)

(8)

Projection matrices can be written as

(9)

(10)

Perform SVD to projection matrix 

(11)

Projection matrix  may be transformed into the product of the observable matrix  and

Kalman filtering state series . Similarly, projection matrix  may be transformed into the

product of the observable matrix  and Kalman filtering state series .

(12)

(13)

where, Oi(1 : l(i − 1),:), 
Define the ith output series  of block matrix as
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The least-square solutions of state matrix (A) and output matrix (C) may be expressed as 
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where is one diagonal matrix constructed by the complex eigenvalues of

the discrete system. Ψ∈ C2n×2n is complex eigenvectors matrix of the system, and each column

represents an eigenvector .

For the continuous system state matrix Ac, Eq.(16) may be rewritten as

(17)

(18)

where  is a matrix composed of complex eigenvalues of the continuous

system,  is the sampling time interval.

According to the conjugation characteristics of system complex eigenvalues, the circular

frequency of ω and damping ratio ξ can be calculated with the following formulas

(19)
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where,  and  are the amplitude and real part of . According to the accustomed

description, the eigenvalues of the continuous system can be directly written as .

Modal shape may be written as
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(I is an identity matrix) (26)

According to the above procedures, the system state-space matrix can be obtained based on the

collected displacements or accelerations time histories at different wind velocities. Modal parameters

like amplitude, frequency, decaying ratio, and phase angle can be acquired via eigenvalue decom-

position. 

The above procedures are programmed and the precision as well as the applicability is verified by

one numerical example before being utilized to the actual engineering problems.

3. Mathematical model for flutter derivative extraction

Since the flutter derivatives signs are related to the directions of self-excited forces and the

displacement, whereas the coordinate system definitions may be distinct to different researchers

(Scanlan 1993, Sato et al. 2002). As a result, the determined flutter derivatives are incomparable,

and even result in the wrong application. In this study, the self-excited force and displacement

coordinates of bridge deck section is defined in Fig. 1 (Scanlan 1993). The subsequent estimated

flutter derivatives and their signs match with Fig. 1.

Under the action of self-excited forces, i.e., lift (downward), drag (downwind) and pitching

moment (nose-up), the mathematical model of vertical, torsional and lateral (3-DOF) motion of

bridge deck can be expressed in the following form of coupled differential equations.

 

(27)

 

where m and I are the model mass and mass inertia moment per unit length, respectively; , ,

and  are the mechanical damping ratios in vertical, lateral bending and torsion, respectively; ωh,

ωp, and ωa are corresponding natural mechanical frequencies, respectively; 

are displacements, velocities and accelerations of vertical, lateral bending, torsional movement,

respectively;  is the air density; flutter derivatives , , and  are
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Fig. 1 Self-excited force and displacement coordinates
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width B scaled by the mean oncoming wind velocity U.

Eq.(27) can be rewritten as

 
(28)

where

If the displacement vector is given as , Eq. (28) may be rewritten

concisely in the matrix form

(29)
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C e and K e are the damping and stiffness matrices of the wind-model system.

Eq. (29) can be rewritten as
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omitted modal coupling. However, the modal coupling exists among different modes of almost all

tests, so the non-diagonal elements in matrices C0 and K0 may not equal to zero, especially in 3-

DOF section models with attack angle and full bridge aeroelastic models. In the ensuing extracted

flutter derivatives, the non-zero portion should be subtracted, or the errors will be inevitably

incorporated. 

4. Simulation example for modal parameter identification

4.1. Numerical example description

Consider a 3-DOF structure system with independent modes, the vibration equilibrium equation is

written as

(31)

For this system, if it is immersed in flows at certain wind velocity, the self-excited forces may

occur, and the state-space matrix will change. A bridge deck section model may be assumed to be

characterized by the unity mass, inertia and width. Under certain circumstances, the corresponding

vibration equilibrium equation may be rewritten as

(32)

For the two states, the modal parameters (frequencies and damping ratios) are calculated and

listed in Table 1.

4.2. Parameters identification and analysis

In the following, the accuracy and effectiveness of SST and the corresponding identification

programs are demonstrated by utilizing the above system(Eq. (32)). This system is excited by

impulse action, and the displacement responses (see Fig. 2, contaminated by noise) are recorded for
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Table 1 Modal frequencies and damping ratios for two states

Parameters  ωα (rad/s)  ωh (rad/s)  ωp (rad/s)  ξa (%)  ξh (%)  ξp (%)

Eq.(31) 3 2 1 6.66 10 5

Eq.(32) 3.1960 2.2364 0.8395 9.8562 10.3100 6.4827

 

0 3.1960 2.2364 0.8395 9.8562 10.3100 6.4827

0.1 3.1968 2.2463 0.8313 9.9637 10.5076 6.9106

0.2 3.1880 2.2470 0.8143 9.9968 10.4526 6.5619

σN σS⁄
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10s at 0.01s interval. The three sets of records are taken as both reference and non-reference

outputs. The structural damping and stiffness matrices are constructed by using SST, and the results

are listed in Table 2. The eighteen flutter derivatives are extracted and provided in Table 3. The

theoretical flutter derivatives can be directly obtained by subtracting Eq.(31) from Eq.(32) and

dividing the corresponding parameters in Eq.(28). They are also offered in Table 3 for the further

comparison. 

Fig. 2 Ill-conditioned decaying signals contaminated by noise

Table 2 Identification results of modal parameters using SST

Parameters
 c11
k11

 c12
k12

 c13
k13

 c21
k21

 c22
k22

  c23
k23

 c31
k31

 c32
k32

c33
k33

Theoretical 
values

0.500
10.00

0.200
1.000

0.200
1.000

0.200
1.000

0.500
5.000

0.200
1.000

0.200
1.000

0.200
1.000

0.200
1.000

 

0
0.500
10.00

0.200
1.000

0.200
1.000

0.200
1.000

0.500
5.000

0.200
1.000

0.200
1.000

0.200
1.000

0.200
1.000

0.1
0.494
9.973

0.189
1.012

0.199
1.013

0.225
1.042

0.510
5.044

0.219
1.004

0.199
1.196

0.228
1.122

0.220
1.027

0.2
0.472
9.949

0.180
1.022

0.302
1.045

0.207
0.999

0.489
5.027

0.207
1.013

0.257
1.300

0.334
1.196

0.253
1.027

Table 3 Identification results of flutter derivatives using SST

Parameters 1 2 3 4 5 6

Theoretical values

 − 0.03650 − 0.05108 − 0.07991 − 0.16321 − 0.19449 − 1.15850

 − 0.07300 − 0.02554 − 0.07991 − 0.16321 − 0.19449 − 1.15852

 − 0.07300 − 0.05108 − 0.07991 − 0.16321 − 0.09736 0

Computational values

 − 0.03649 − 0.05107 − 0.07992 − 0.16326 − 0.19462 − 1.15850

 − 0.07301 − 0.02555 -0.07998 − 0.16324 − 0.19442 − 1.15852

 − 0.07300 − 0.05107 − 0.07992 − 0.16323 − 0.09356 0

σN

σS

------

Hi
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Ai
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*
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*
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For checking the noise-immune performance of the SST program, the original signals are

contaminated by introducing Gaussian white noise where the noise-to-signal ratio (refer to 

in this study, where  are respectively RMS values of noise and original signals, respectively)

was specified as 10% and 20% (assuming the similar noise levels are in the response records in

wind tunnel test). The identified modal parameter results based on the contaminated signals are listed

in Table 1 and Table 2. If the contaminated records are digitally filtered and the high-frequency

components are removed (such manipulation is feasible for the real wind tunnel tests), the theoretical

targets can also be achieved closely. Similar precision of the flutter derivatives, which have been

omitted here for the sake of brevity, can also be obtained. Once the precision of the stiffness and

damping matrices is ensured, the flutter derivatives accuracy is undoubtedly satisfactory.

From Table 1, Table 2 and Table 3, it can be observed that the theoretical solutions can be found

out by SST if the signal is not contaminated by any noise. Thus the computational accuracy, the

validity of SST, and the programs are verified. The parameter errors basically increased with the

risng noise level. In addition, poor accuracy of c13, c31, c32, k31, k32 can be detected. The similar

characteristics can also be found in Bartoli et al.(2009). The major cause may be the weak coupling

between vertical mode and lateral mode, torsional mode and lateral mode. Consequently, the

corresponding flutter derivatives are sensitive to signal quality and noise, and the phenomena reflect

the actual conditions of most bridge decks in wind tunnel tests.

It should be mentioned that the identification results are related to the stochastic response, the

random noise, and the lengths of the ‘past’ and ‘future’ data. On the whole, the steady identification

results can be acquired by SST; the computational precision and speed are satisfactory. Encouraged

by the success of parameters identification by using SST in the numerical simulation example, we

can further utilize SST to carry out the identification of modal parameters and flutter derivatives for

the actual bridge decks in wind tunnel tests. 

4.3 Stabilization diagram for frequency and damping

Stabilization diagram is a very important tool. The inherent modes can be firstly distinguished

intuitively according to the stabilization diagrams, then calculate the stiffness and damping matrices,

and the state matrix can be constructed subsequently. If the results of modal parameters

σN σS⁄
σN σS,

Fig. 3 Frequency stabilization diagram 
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identification are unstable, it may owe to the mingled color noises, the non-linear and non-stationary

characteristics of the signals. Figs. 3 and 4 respectively depicts the frequency and damping ratios’

stabilization diagrams with noise-free signals.

The curves of three auto power-spectra-density are also plotted. In any the system order, three

steady frequencies appear all the time. They are almost equal to those frequencies corresponding to

the peak values of the auto power-spectra-density. There are many pseudo modes in the interval of

0 ~ 10 rad/s. Also, there are three types of stable damping ratios assembled in three lines, by which

the inherent modes frequencies and damping ratios can be distinguished. The damping ratios are

marked with bold dots. The grids are fitted and interpolated with the calculated damping ratios. The

damping ratios of some scattered dots located at the top right corner are relatively higher and the

corresponding frequencies are above 10 rad/s. Thus the corresponding modes are factitious.

The simulation example reveals that the identification precision is very satisfactory. Thus the

reliability and applicability of the technique as well as the developed programs are verified. At the

same time, the above numerical example may be regarded as one benchmark for verifying any

identification techniques.

5. Parameter identification of bridge deck models in wind tunnel test

5.1 Experimental wind tunnel and test setup

The wind tunnel tests are carried out in TJ-1 boundary layer wind tunnel at Tongji University in

China. This wind tunnel is an open boundary layer one with a work section of 1.8 m (width) ×

1.8 m (height), and the wind velocity can be continuously adjusted between 0.5 ~ 25 m/s. In this

study, the bridge deck section model is suspended with 8 vertical springs and 4 horizontal springs

(as depicted in Fig. 5). 

The vertical and horizontal motion time histories s1(t), s2(t), s3(t), s4(t), s5(t) at different wind

velocities are collected with 5 laser displacement sensors (ANR1282, with the measuring range of

±20 mm and the linearity error of 0.2%,among which 3 sensors are for the vertical displacements

and the other 2 sensors are for horizontal displacements). The vertical bending displacement can be

Fig. 4 Damping ratios stabilization diagram



Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique 425

calculated to be the average of s1(t) and s3(t) (vertical signals), and the torsional displacement can

be acquired by the sum of s1(t) and s2(t) scaled by the distance between the two corresponding

sensors. The lateral bending displacement is the average of s4(t) and s5(t) (horizontal signals). All

the signal means are removed from the time histories before applying to parameters identification.

In general, s1(t), s3(t) and s4(t) are necessary and sufficient in most cases. In our experiments, two

additional sensors are setup to simultaneously record the signals for checking the possibility of

model torsional motion around the other two axes. The correlation (refers to Eq.(33) between s1(t)

and s2(t), s1(t) and s3(t), s2(t) and s3(t), s4(t) and s5(t) can be determined, and the ideal values should

be -1,-1,1,1, respectively, by which the testing signal quality can be examined to offer the

precautions for the signal employment. The self-excited force and displacement coordinates are

depicted in Fig. 1.

 

(33)

5.2 Features of section models

Two typical cross sections of bridge decks are investigated in this study. One is a streamlined

type, i.e., Sutong Bridge (a cable-stayed bridge with main span of 1088 m in China, which is also

the largest span for the same bridge style in the world until now) deck (see Fig. 6), and the other is

a bluff  type, i.e., Suramadu Bridge (a cable-stayed bridge with the main span of 434 m in

Indonesia, which is the largest span bridge in Southeast Asia at present) deck (see Fig. 7). 

r i j,( )
si si–( ) sj sj–( )∑

si si–( )2 sj sj–( )2∑⋅∑

--------------------------------------------------------------=

Π

Fig. 5 Schematics of a bridge deck section model

Fig. 6 The cross section of the Sutong Bridge deck (unit: mm)
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Based on the theory of similarity, design parameters for Sutong Bridge (denoted by ‘B1’) and

Suramadu Bridge (denoted by ‘B2’) section models can be determined, as listed in Table 4. The

initial attack angles are both 0o, and the aerostatic force (i.e., drag, lift and twist moment, see Fig. 1)

coefficients (CD, DL, CM, all with deck width B = 2b as the reference size, see Fig. 8) and the

derivatives ( ) about the attack angle may beC
′
D dCD dα⁄    C

′
L dCL dα⁄    C

′
M dCM dα⁄=,=,=

Fig. 7 The cross section of the Suramadu Bridge deck (unit: mm)

Table 4 Relevant parameters for section models of Sutong Bridge and Suramadu Bridge decks

Bridge/Stage Scale L (mm) B (mm) H (mm) m (kg/m) I ( /m)

Sutong/Erection 1 : 50 1700 820 80 15.78 2.950

Suramadu/Service 1 : 50 1700 600 66.5 9.64 0.407

Bridge/State  ωh(rad/s)  ωa(rad/s) ωp(rad/s)  ξh  ξa ξp

Sutong/Erection 9.23 15.99 7.37 0.0037 0.0015 0.0037

Suramadu/Service 12.94 22.67 9.12 0.0023 0.0031 0.0032

Bridge/State CD  CL CM 

Sutong/Erection 0.0295 -0.2615 0.0135 -0.0493 3.982 1.1402

Suramadu/Service 0.13555 -0.11 0.042 -0.2217 5.02 0.7448

kg m
2⋅

CD

′
CL

′
CM

′

Fig. 8 Aerostatic coefficients
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easily achieved.

For the two section models, the testing wind velocities respectively ranges from 3 m/s to 14 m/s

and 2 m/s to 10 m/s in smooth flows. The free vibrations are excited by the impulse excitation

(initial displacement). Evidently, the amplitude of the decaying signal decreases with time, and

consequently the noise-to-signal ratio increases. Therefore, the subsequent records below specific

amplitudes (e.g., 2 mm for horizontal and vertical responses and 0.5o for torsional angle) were

discarded to improve the estimation accuracy. The absolute values of correlation between s1(t) and

s2(t), s1(t) and s3(t), s2(t) and s3(t), s4(t) and s5(t) are mostly in the interval of (0.99, 1), except for

the cases at high wind velocities with intolerable high noise-to-signal ratios that can not be

effectively circumvented. Therefore, the flows stability and the signal effectiveness are verified.

6. Results and analysis

6.1 Modal parameters and frequency stabilization diagram

For Sutong Bridge streamlined deck section and Suramadu Bridge bluff deck section, Figs. 9 and 10

show the vertical, lateral bending and torsional modal frequencies and damping ratios estimated by

Fig. 9 Modal frequencies (Sutong Bridge and Suramadu Bridge deck models)

Fig. 10 Modal damping ratios (Sutong Bridge and Suramadu Bridge deck models)
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SST. In Eq.(1), yref = y~ref = [Sp, Sh, ]T, where, Sp, Sh,  are lateral, vertical and torsional

responses, respectively.

Some findings: With the increasing wind velocity, the torsional frequencies decrease remarkably,

whereas the vertical bending frequencies increase slightly, and the lateral frequencies seem to be

consistent. The vertical bending damping ratios increase with the rising wind velocity and approach

to 15% and 10%, respectively, at the critical flutter wind velocity. The torsional damping ratios

increase to the top of 1.5%, and then decrease to zero at the critical wind velocity. The lateral

bending damping ratios increase slowly with wind velocity.

Fig. 11 shows two types of frequency stabilization diagrams of Sutong Bridge and Suramadu Bridge

deck vibrating models. If the testing wind velocities are altered, the diagrams will change

correspondingly. For Sutong Bridge model, since the wind velocity is low (3 m/s), the modal

frequencies at different system orders are very stable. For Suramadu Bridge model, since the wind

velocity is higher (10 m/s), which is close to the critical flutter wind velocity, the higher damping ratio

of vertical bending induces the poor identification precision, and the modal frequencies at different

system orders fluctuate sharply. The diagram shows that the torsional motion component is dominant at

this wind velocity. This motion approaches the critical state of torsional flutter. The above phenomena

are irrelevant to the identification approach (SST), but more depending on the signal quality.

6.2 Flutter derivatives

Fig. 12 provides the 18 flutter derivatives of Sutong Bridge deck section and Suramadu Bridge

deck section. Moreover, for a further comparative investigation, flutter derivatives based on the

pseudo-steady theory (PST for short) and those of theoretical flat plate (FP for short) are also

depicted, which are denoted by ‘PST1’, ‘PST2’and ’FP’, respectively. Just as Fig. 9 shows that the

modal frequencies change with the testing wind velocity, the corresponding values are utilized to

obtain the non-dimensionally reduced velocity in all cases, instead of the zero-wind frequencies.

It must be mentioned that the self-excitation expression adopted in many literatures (Chen et al.

2000, Chowdhury et al. 2004) is not completely identical for the application of ρU2B or 0.5ρU2B, k 

or K, b or B,  or ,  or ,  or ,  or , and even the definition of

S
α
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Fig. 11 Frequency stabilization diagram (Sutong Bridge and Suramadu Bridge deck models)
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Fig. 12 Flutter derivatives
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Fig. 12. Continued-1
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the coordinates. So the flutter derivatives versus the reduced frequency plots offered in different

references may appear “distinct”, which should be consistent with the corresponding formulations. 

Pseudo-steady formulation for some flutter derivatives are provided in many literatures (Scanlan

1993, Chen et al. 2000, Chowdhury et al. 2004) and presented here as (corresponds with Eq.(27))

(34) 

Flutter derivatives , , ,  are all in good tendency and monotony with the reduced

wind velocities for both different section type models. They are all well-matched with the values

based on the pseudo-steady formulation and flat plate. If all of them are calculated directly by the

flat plate theoretical values only with minor errors, it may be negligible from the actual engineering

viewpoint. For the above four types flutter derivatives, the streamlined section (B1) parameters are

more close to those of flat plate, which is not difficult to understand. Owing to the relative

satisfactory experimental precision of  (all of them are not sensitive to section

configuration and attack angle compared with  and ),  based on the pseudo-

steady theory are comparatively more stable. An interesting phenomenon is observed: for the two

distinct sections, the flutter derivatives’ differences between the identification results are lower than

those between values derived from pseudo-steady theory. Is it a lucky coincidence or a kind of

inevitability? It remains as a pending problem, requiring further investigations and the mysterious

mask will finally be unveiled.

For the flutter derivatives related to the lateral self-excitation force, the direct flutter derivatives

 and  are relatively more stable than the other four cross ones, which indicates the similar

characteristics for the two types of sections. For  and , the experimental and pseudo-steady

plots for bridge B2 show a comparatively steeper slope. This particular phenomenon may be result
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from the higher drag coefficient generated by the bluff deck. Apparent differences exist in the

results  from the experimental and pseudo-steady theory. In addition, the

direct flutter derivative  indicates the impact of lateral deflection on the drag aerodynamic force,

which should not be set as zero as mentioned in the relevant literature (Chen et al. 2000). The

above similar phenomena were also observed by Chowdhury et al. (2004). These observations may

be attributed to both the experimental technique and the pseudo-steady theory.

Cross flutter derivatives  indicate the performances of the vertical velocity, the

torsional angular velocity, and the angle effects on the drag aerodynamic force. In consideration of

the reality for the experimental sampling with the coupling simultaneous motions in the lateral,

vertical, and torsional directions, parameters  and  are sensitive to the incidence angle (the

effective angle incorporating the initial and the additional components). Therefore, the computational

accuracy based on the pseudo-steady theory, as well as the experimental identification precision are not

satisfactory. Moreover, two distinct formulations for  can be referred to Eq. (34). The obvious

differences include: the inverse signs, the different denominators, and the different aerostatic

coefficients or their derivatives. From the two distinctly even ‘strange’ expressions, one can

conclude that the determination of  may be quite difficult. The results obtained from the two

formulations are also presented in Fig. 12, in which CHEN1 and CHEN2 represent the results based

on utilized by Chen et al.(2000). Just as the predictions, the three set of

results are incomparable.

Cross flutter derivatives,  are assumed to be zero by Chen et al.(2000). Such an

assumption indicates that the vertical deflection has no effect on drag force, and lateral deflection

has no effect on lift force and torsional moment either. It is fundamentally reasonable and liable to

be accepted. From the plots in Fig. 12, all the experimental results are close to zero without obvious

monotonic trend at the reduced velocity, and comply with the assumption.

Flutter derivatives  shows the inverse tendency at the reduced wind velocity for two section

types. The excitation vertical forces induced by the torsional motion are opposite for Sutong Bridge

and Suramadu Bridge deck at higher wind speeds. One plausible reason is the attack angles

corresponding to the zero (i.e., separatrice) lift coefficient (see Fig. 8) are about 3.5o and 1.5o,

respectively. At higher wind speeds, the added attack angel may exceed 2o for the positive torsional

moment (see Fig. 8). During the oscillation course, even at the same attack angle (inclusive of the

added angle) state, the orientation of the aerodynamic force caused by the rotation velocity may be

different for two sections. 

Compared with the deck width, the size of height is much smaller. Therefore, the identification

precisions of the flutter derivatives concerning with the lateral motion are unsatisfactory. It should

be mentioned that the sharp fluctuations may occasionally appear at the curves of the flutter

derivatives versus the reduced wind velocity. Unexpected interruptions may be caused by the

contaminated non-ideal signal. It is admittedly that 1-DOF and 2-DOF techniques are more effective

in accuracy than that of 3-DOF method. Of course, the subsequent experimental and computational

task is more time-consuming.

7. Conclusions

The modal parameters and eighteen flutter derivatives of 3-DOF models for two types of typical

deck section are simultaneously identified by using the reference-based Stochastic Subspace
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Technique. The main conclusions and findings in this study are summarized as follows:

(1) SST is one practical approach for identifying the bridge system modal parameters and the

aerodynamic derivatives. If the signals are ideal, i.e., without any external interference and noises,

the achieved results may be indefinitely approach the theoretical values, which are verified by a

numerical example.

(2) Although the parameter identification may be carried out by using the oscillation signals induced

by oncoming or signature turbulence in turbulent and smooth flows, the accuracy can not be

effectively ensured. Comparing the identified results in this study with those in the previous

investigations, it can be observed that the artificial impulse experimental schemes made by the

authors are more feasible and accurate results can be achieved. The experimental procedure seems

to be more critical than the identification technique for the estimation precision refining.

(3) Whether for the streamlined deck section or the bluff deck section, the identified values of

 are all in good consistency with those based on pseudo-steady theoretical values.

Therefore, the pseudo-steady theory can provide acceptable estimation for the aforementioned four

components. The lateral direct flutter derivatives  are comparatively more accurate than

others related lateral components. The main causes for the poor precision of some flutter derivatives

should be ascribe to the negligible coupling, the high noise-to-signal ratio, and the sensitivity to the

signal variation. To a great extent, the reasonable and practical experimental setup and procedure

play the key roles in the refining of the identification precision of flutter derivatives.
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