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Abstract. Pressure measurements on static and autorotating flat plates have been recently reported by Lin
et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation
of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with
a large scale separation in the wake. To date however, no surface pressures have been measured on auto-
rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment
to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and
allowing the plate to auto-rotate. The forces were determined through the measurement of differential
pressures on either side of the plate with internally mounted pressure transducers and data logging
systems. Results are presented for surface pressure distributions and overall integrated forces and moments
on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range
angle of attack and some variation for different Reynolds numbers. Normal forces determined from
autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting
moment coefficient does not compare well with current analytical formulations which suggest the existence
of a flow mechanism that cannot be completely described through static tests.
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1. Introduction

The determination of aerodynamic effects on wind-borne debris requires the knowledge of the

flow-structure interaction. This can be achieved through physical measurements of the variation of

pressures over the object’s area exposed to wind to allow full description of the external forces

acting on it. Plate-like objects have been identified as representative of a variety of structural

attachments of common use in engineering design. Therefore the definition of the aerodynamic

forces on fixed and auto-rotating plates would provide an extended view on this phenomenon for a

wide range of theoretical and practical applications. Experimental measurement of surface pressure

on plates has been reported since the first half of the last century, e.g. Flachsbart (1932) and

Riabouchinsky (1935). The growth of the aircraft industry encouraged further development, mainly

orientated towards the study of missiles, slender wings, and aerofoils, see for example, Daniels

(1970), Cohen (1976), and Neumark (1963). The case of flat plates that resemble common shapes

driven by strong winds was given further experimental attention by Iversen (1979), Tachikawa
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(1983), and Lugt (1983). These contributions enabled the development of analytical models to

predict the trajectory of flight of objects, classified after Wills, et al. (2002) as compact, sheet-type,

and rod-type debris – see for example Holmes, et al. (2006), Baker (2007), and Richards, et al.

(2008). These models assume that the forces on the plates are those measured in stationary

experiments, magnified in some way to allow for autorotating effects, and generally make use of the

approximation given in Tachikawa (1983) for the autorotation magnification. However, apart from

Tachikawa’s work, there is no evidence regarding the instantaneous variation of surface pressures

during stable autorotation. This investigation focuses on the determination of static and autorotating

pressure coefficients for plates held at various combinations of pitch and yaw angles for three wind

velocities: U = 5, 7.5, and 10 m/s. Force coefficients were computed through a series of wind tunnel

tests carried out at The University of Auckland, New Zealand.

The paper has been organised in five sections. Section 2 describes the experimental arrangements,

while Section 3 presents the results relating to the static and auto-rotational experiments. Section 4

discusses in detail the effect of the auto-rotation on the measured coefficients, with closing remarks

and conclusions given in Section 5.

2 Experimental setting

2.1. Test-sheet

The test-sheet, representing a typical roof cladding panel, is a piece of polystyrene of 1m square,

2.5 cm thick and weighing 2.7 kg. A maximum tension stress of 80 kN/m2 produced by bending

was estimated for the extreme edge of the board’s section, whilst 1.4 kN/m2 was estimated for shear

effects. The resistance of polystyrene ranges between 46 ~ 60 kN/m2 for tension and it is

approximately 50 kN/m2 for shear (Gnip, et al. 2007). The base polystyrene material is thus able to

withstand nearly 50% of tension and 100% of shear stresses. An adherent film with tension

resistance of 600 kN/m2 was thus placed over its surfaces in order to provide additional capacity.

The mass of the sheet-debris is important in determining the trajectory of flight when submitted to

a given wind velocity profile. Using data from Tachikawa (1983) and Baker (2007) an autorotation

frequency of 1 Hz and a time of flight of approximately 1s were predicted. This resulted in a

Tachikawa Number (Ta =ρU2A / (2 mg)) of 2.31 for a wind speed of 10 m/s. This check was carried

out in order to ensure that the test-sheet will tumble at least once during auto-rotational motion or

during free flight experimentation (the results of which are not considered below) so that surface

pressures will be available for angles between 0º ~ 360º. This data thus will enable the trajectory

model outlined in Martinez-Vazquez, et al. (2009a) to be calibrated.

2.2. Pressure transducers

Twenty four pressure transducers were located on the test-sheet and arranged to cover the regions of

expected peak pressures and suctions, i.e., along bisecting perpendiculars, edges and corners. Fig. 1

shows the distribution of sensors and data loggers and also the typical position of a sensor within

the thickness of the board. The sensors with the polystyrene protection were fitted into square

sections previously cut out from the board, placing the wiring over the surfaces oriented towards the

corresponding data logger, which were positioned along the borders of the specimen in such a way
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that their mass was uniformly distributed.

Compatible pressure sensors and portable data loggers were selected for the experiment.

Differential pressure transducers manufactured by Sensortechnics with output voltage within

0.25 ~ 4.5 V, pressure range 0 ~ 2.5 mbar, and resolution of 12 bit, were used. The test-sheet was

submitted to wind velocities up to 10 m/s, from these values a peak pressure of the order of 60 N/m2

was estimated, corresponding to a surface pressure coefficient of 1.0. This value was suitable for the

range of pressure accepted by the sensor and also for the resolution which represented 4 × 10-4 times

the predicted peak pressure. For the data logger a portable card manufactured by Omni instruments

(XR440-M) was considered suitable to work in combination with the sensors. One data logger

supports 4 sensors, accepts an input signal of 0 ~ 5 V dc, and it provides a resolution of 8 ~ 12 bits

with a maximum sampling frequency of 200 Hz. The device has a storage capacity of 129024

readings distributed in 4 channels working at 8 bits resolution; it has its own battery from which it

can power to the pressure sensors. Its dimensions are 120 × 61 × 24 mm, and it weighs 156 g. After

testing the data from the logger can be downloaded to a PC via an interface cable.

2.3 Wind tunnel facilities

The experiments were carried out at the University of Auckland, New Zealand. In this facility the air

is blown through a 3.5 m square nozzle towards an open area for testing with a turntable on the floor.

Wind speeds U=5, 10 m/s were selected for the static and U=5, 7.5, 10 m/s for auto-rotational tests.

The test duration was approximately 36 minutes for each static experiment, with a sampling

frequency of 10 Hz which allowed several cases to be fitted into any one test period. The

corresponding experimental period and sampling frequency for the auto-rotating tests was ~120 s

and 200 Hz respectively. The sampling frequencies were chosen in order to provide data at every

0.1 s in static runs and at about every 2o for auto-rotation runs.

Fig. 1 (a) Distribution of sensors and data loggers and (b) sensor fitted within the thickness of the test-sheet
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2.4 Supporting system

Two metallic frames of height 1.5 m were built to support the test-sheet. The test-sheet was fitted

into an aluminium frame which in turn was connected to the lateral stands via metallic pins. A

mechanism for static and auto-rotating tests was implemented which consisted of two parallel plates

connected through bearings and bolted in place every 15o. This arrangement allowed the plate to

adopt the static positions by varying the pitch angle whilst yaw angle variation was given by

rotating the base platform. The definition of local and global coordinates, pitch and yaw angle is

given in Fig. 2. The plate was allowed to auto-rotate by releasing the parallel plates at the bearings.

This supporting system caused some disturbance on static pressure measurements taken on the

lower half of the board, mainly due to the blockage produce by the vertical stands. Inaccuracies

caused by this effect were corrected during analysis as described in Section 3.

2.5 Cases for testing

The wind tunnel tests were divided into two categories: static (test-sheet restricted from translation

and rotation) and auto-rotational (only rotation around the local axis z was permitted – see Fig. 2).

Rotation of the board around the global Y and Z axis defines yaw and pitch angle, respectively -

zero pitch and yaw corresponds to the flow normal to the larger face of the plate as indicated in

Fig. 2. The pitch and yaw angles were varied from 0 ~ 90o in 15o increments with an additional run

at the pitch angle where the stall region was detected. For auto-rotation tests the board was released

at an angle of 15o clockwise from a horizontal plane. Additional details relating to this experiment

can be found in Martinez-Vazquez, et al. (2009b).

3. Static tests

The first group of tests consisted of combinations of pitch and yaw angles within the range 0º~ 90o

at every 15o. Preliminary results from the investigation showed the stall behaviour at the mid pitch

angle range, and therefore additional data were collected at the intermediate angle of 37.5o. Raw

Fig. 2 Definition of (a) pitch angle, (b) yaw angle, local and global coordinates
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data collected during testing were numerically processed in order to correct imprecision caused by

blockage effects in the tunnel. Such correction consisted of establishing symmetry conditions on

data series from sensors located at the bottom half of the board such that their mean value tended

towards the average registered at the corresponding sensor in the upper half. The correcting factor

for symmetry was linearly varied from its maximum value when the stands were aligned with the

test-sheet held parallel to the flow (pitch and yaw angles equal to 90o, 0o, respectively) to a value

Fig. 3 Net pressures for a group of sensors all pitch angles at 90o yaw, U = 10 m/s

Fig. 4 Normal force coefficients all pitch angles at 90o yaw, U = 5, 10 m/s

Fig. 5 Normal force coefficients all pitch and yaw angles, U = 10 m/s
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equal to 0 when the board was held horizontal and the chord length was parallel to the flow (pitch

and yaw angles equal to 0o, 90o, respectively). The resulting static force coefficients are shown in

Figs. 3~5. Fig. 3 shows how the net pressure coefficients, CNP=P/(ρU2/2) (where P is the local

pressure), vary with pitch angle for sensors located along the vertical axis of the board for wind

velocity U=10 m/s. These sensors are labelled in Fig. 1 as #3, #8, #13, #18, and #22 – Fig. 3 also

shows the average value for these sensors. 

From Fig. 3 it is noticeable that all curves stall at a range of angles between 25o ~ 45o. The

asymmetry in the pressure distribution for intermediate pitch angles (for example at 25o pitch) has

been captured by the pressure at opposite symmetric positions, e.g. sensor#3 / sensor #22, sensor #8

/ sensor #18. The pressure values at these positions tend to similar values at pitch angle equal to 90o

where minimum asymmetries are observed. The average normal pressure computed from this

sample is similar to the normal force coefficient presented below, where the contribution of all

sensors over the area is included.

Measured normal coefficients, CN = FN / (ρU2A/2) – where F is the total force and A the area of

the board, for 90o yaw angle and U = 5, 10 m/s, are presented in Fig. 4. The flow around the board

stalls within the interval pitch angle 25o ~ 45o with slightly higher values for U = 5 m/s than for U =

10 m/s. Holmes, et al. (2006) and Richards, et al. (2008) reported peak values of about 1.6 at the

stall region and a constant value of about 1.2 for angles of attack above 45o, i.e. a rather better

defined stall characteristic than shown in Fig. 4. The Reynolds numbers, defined as Re =ρUL /µ -

where µ represents dynamic viscosity and L is a characteristic dimension of the board (e.g. the

width), are 3.34 × 105 and 6.69 × 105 for U = 5 m/s and 10 m/s, respectively. 

The differences observed in Fig. 4 might be the result of higher turbulence in the approaching flow when

increasing the wind velocity. For example, the net pressures registered at sensor #13 at the combination

pitch, yaw angle={90o, 90o} are CNP=1.22, 1.07, for U=5, 10 m/s, i.e. a lower surface pressure has been

registered at the same point by increasing the wind speed. Fig. 5 shows the normal force coefficients CN

for all yaw angles plotted against pitch angle for U=10 m/s. It can be seen in this figure that all curves stall

within the interval 25o~60o, i.e. this effect was observed at slightly different angles for yaw positions

below 90o. It can also been observed that the value of the force coefficient for any combination pitch, yaw

angle (pº, qº) is the same if the pitch and yaw angles are interchanged, i.e. CN (pº, qº)=CN (qº, pº) indicating

that the correction of blockage effects in the raw data tend to reflect ideal flow conditions where pressure

measurements that result from varying the pitch angle only should be expected to be the same than those

obtained by varying the yaw angle to give the same angle of attack.

The position of the centre of pressures was determined from static measurements for the range of

angles of attack 0o <= ε<= 90o at constant yaw angle = 0o. The ordinate of this point, ycp is presented

in Fig. 5 as a fraction of the chord length L of the test-sheet. The value of ycp is similar for U = 5,

10 m/s for pitch angle over 15o, with an increasing difference as ε approaches to zero, where the

estimated values are ycp / L = 0.35, 0.25 for U = 5, 10 m/s respectively. Based on this data the

exponential expression given in Eq. (1) is assumed – where ε is given in radians. Eq. (1) was

formulated empirically based on the form of the curves obtained with experimental data, using a

fixed point of 0.3 for zero angle of attack to represent the midpoint between the curves for U = 5, 10

m/s. Fig. 6 also shows how the experimental and exponential curves compare to equivalent

approaches suggested in Holmes, et al. (2006), and Richards, et al. (2008). 

(1)
yCP

L
-------- 3

10
------ε

3ε 2⁄– ε

18π
---------–=
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4. Auto-rotation

Two stages can be identified before a plate settles into a stable rotation. These are when the plate

acquires enough angular momentum during the supporting period (defined in Lugt (1983) as torque

acting in the direction of autorotation) in order to overcome the retarding period, followed by the

transition where the peak pressure increases to a nearly constant value. In this experiment, the plate

was released at a pitch angle of about 15o from its horizontal position passing the initial stages

relatively soon, as shown in Fig. 7. Every autorotational test lasted about 107 seconds, i.e., 30 s for

the initial over run of the wind flow plus 77 s which covered the autorotational event. Only the last

30 seconds were considered for analysis in order to guarantee that the flow was fully developed and

the board was under stable autorotation. Fig. 7 shows the normal pressure coefficient from the

moment in which the board was released until it freely rotated, i.e., the last 77 s. It shows the four

sensors at the corners: #1, #5, #20, and #24, plus sensor #13 which is located at the centre of the

board, see Fig. 1. Fig. 8 shows a five-second segment of the series shown in Fig. 7 in order to

observe the various pressure registered by these sensors.

Computation of instantaneous forces and moments on the plate was achieved through an

integration of the net pressure coefficients. The autorotational data series had to be corrected due to

a time delay of a fraction of a second detected in some of the logging cards used for the

experiment. This alignment consisted in defining the peak value of a ten point moving averages (in

Fig. 6 Position of the centre of pressure determined through various experimental approaches

Fig. 7 Time series of net force coefficients at four sensors on the board, U = 7.5 m/s
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order to avoid local spurious peaks) in the first cycle after the plate was released - t 12 seconds.

At this point the angular speed was rather low, so a peak positive was expected to occur at the same

time for all sensors. Using the aligned series, force coefficients were observed on an averaged

characteristic cycle. These cycles for the normal force coefficient acting on the board are shown in

Fig. 9 for the three testing velocities, U = 5, 7.5, and 10 m/s.

It is observed in Fig. 9 that the averaging process has reduced the peaks from all sensors, i.e. the

force coefficients CN 4 presented in Figs. 7, 8 are local maxima. From the above data shown in

Fig. 9 the average rotation periods can be inferred: 2.36 s, 1.48 s, and 1.12 s, for wind velocities of

U = 5, 7.5, and 10 m/s, respectively. Tachikawa (1983) uses the tip velocity in order to define the

frequency of rotation of square plates and application of his method leads to the calculation of

theoretical periods of rotation of 1.96 s, 1.31 s, and 0.98 s. The difference in these values can be

attributed to frictional effects at the bearings. This is considered further in a dynamic analysis of the

experimental situation described in Appendix A.

It is possible to compare the overall normal force coefficients determined through static and auto-

≈

≈

Fig. 8 Five-second series of net force coefficients at four sensors on the board, U = 7.5 m/s

Fig. 9 Normal force coefficient on averaged cycles, U = 5, 7.5, 10 m/s
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rotational experiments. Fig. 10 shows values of CN for U=5, 10 m/s for these two types of test in the

range of pitch angle 0o ~90o. The present data indicates that static forces are higher within the stall

region, otherwise auto-rotational forces dominate. This figure also shows that static coefficients for

U=10 m/s are consistently lower than those for U=5 m/s, which does not happen in autorotation

where the curves switch their relative position at 50o pitch angle. The differences depicted in Fig. 10

suggest that static and auto-rotational forces might be the result of different flow mechanisms.

The derived auto-rotational drag, lift and moment coefficients are presented in Figs. 11~ 13, and

are formally defined as: CD =FNX / (ρU2A/2), CL =FNY / (ρU2A/2), CM =T/ (ρU2L3/2) - where T is the

acting torque, L is a characteristic length (e.g. chord length), and FNX, FNY are the total forces

resulting from integrating surface pressures acting in the X and Y global directions, respectively, as

indicated in Fig. 2 - note that whilst Figs. 9 and 10 show the normal coefficient in local coordinates,

drag and lift are presented in global coordinates. Figs. 11 ~ 13 show the effect of Re ={3.34×105,

4.46 ×105, 6.69×105} when varying U={5, 7.5, 10 m/s}, this effect is more clear in the moment

coefficients shown in Fig. 13 (although it must be noted that moment coefficients are based on the

instantaneous variation of pressures over the surface of the board rather than on averaged forces, as

drag and lift coefficients). In Fig. 13, where positive torque is defined as to increase the pitch angle,

Fig. 10 Static and autorotational force coefficients

Fig. 11 Drag coefficient, U = 5, 7.5, 10 m/s
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it is clear why the plate undertakes stable auto-rotation. However, since the rotational speed is not

constant throughout a cycle, an approximate function to define the moment coefficient was calculated

from the solution of the equation of motion that approximates the rotational movement of the test-

sheet, see Appendix A. Once the variation of angular velocity was determined, data collected in the

time domain could be analysed and then represented in angular units as in Figs. 11~13.

It is interesting now to observe how the measured moment coefficients compare with the quasi-steady

values, i.e. forces derived from the normal force coefficients presented in Fig. 9 combined with the

exponential variation of the position of the centre of pressure formulated in Eq. (1) and represented in

Fig. 6. Fig. 14 show this comparison for U=7.5 m/s only, although all three levels of wind velocity show

similar characteristics. The difference between these two sets of data is here referred to as co-rotation.

The rotational scenario depicted in this figure suggests the existence of two mechanisms, quasi-steady

and co-rotation, which are almost symmetric with regard to zero values. These mechanisms would define

the total torque acting on the rotating plate. From the present analysis it appears that co-rotation is

consistent for the three Reynolds numbers studied. This is shown in Fig. 14 in which curves are

Fig. 12 Lift coefficient, U = 5, 7.5, 10 m/s

Fig. 13 Moment coefficient, U = 5, 7.5, 10 m/s
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characterised by a switch between positive and negative values with well defined intervals. 

Lugt (1983) noted that under certain conditions a rotating plate may trap a vortex which would

then be released at a constant rate or after several revolutions, depending on the frequency of rotation

of the plate. One possible way to estimate the rate at which vortices are released is to observe the

force variation over a number of cycles. Table 1 presents this variation in the form of an index of

variation (σ /µ -where σ and µ represent rms and mean value respectively) for the positive and

negative pressure peaks computed over subsequent cycles of surface pressure, normalised by the

corresponding mean force value µ f, for the three testing velocities U =5, 7.5, 10 m/s. 

The resulting index of variation Iv is close to zero for all wind speed which indicates there is little

cycle to cycle variation in the peak pressures, and suggests there is no multi-cycle vortex shedding. Lugt

(1983) suggested that a rapidly rotating plate would release a vortex after several revolutions (super-

harmonic modes), whilst a slow rotating plate would not affect the shedding frequency (sub-harmonic

mode) in which case the vortex shedding frequency would approach that value of a static plate. The

intermediate lock-in case seems to be represented in this experiment. Fig. 9 shows very high normal

force coefficients, which according to the values presented in Table 1 are likely to be caused by vortices

released at every cycle, building in this way the moment coefficient scenario presented in Fig. 14.

5. Discussion of magnified coefficients

Tachikawa (1983) suggested a method for the computation of magnified pressure coefficients.

These were expressed as the sum of the average and fluctuating part of an assumed Magnus effect.

The average value depended on the frequency of rotation whilst the dynamic part was

approximated by the difference between the corresponding static coefficient at a given position with

Fig. 14 Autorotational scenario, U = 7.5 m/s

Table 1 Index of variation of areas for subsequent cycles of acting normal pressure

Iv =σ/µf, U = 5 m/s Iv =σ/µ f, U = 7.5 m/s Iv =σ/µ f, U = 10 m/s

Pressure range (+) 0.0133 0.0156 0.0142

Pressure range (−) 0.0110 0.0162 0.0168
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regard to the wind velocity and the average static value during a cycle. The case of interest here is

that of stable auto-rotation, i.e., CQr / CQr0 = 1, CMr = 0 given that ω /ω0 = 1 in Tachikawa’s (1983)

Eq. (5). The expression for this particular case is given in Eq. (2) where cKr0 is the K force

coefficient determined under stable autorotation as indicated by the sub-index r0 and CKs is the

corresponding static. Tachikawa suggested CDr0 = 1.19, and CLr0 = 0.41 for a square shape.

 ;  ; (2) 

Holmes, et al. (2006), Baker (2007), and Richards, et al. (2008), have all suggested values for

normal pressure coefficients. Baker (2007) has also given explicit expressions for drag, lift and

moment coefficient, whilst Richards, et al. (2008) ignored the stall region for angles adjacent to

150o and 330o. Figs. 16 ~ 19 below show how these three approaches compare. 

Based on the force coefficients presented in Figs. 16 ~ 19, the magnified values determined with

Eq. (2) have been calculated, and are presented in Figs. 20 ~ 23. These figures also include the

corresponding coefficients that resulted from the present experiment. Holmes, et al. (2006), Baker

(2007), and Richards, et al. (2008) are now referred in their magnified form as Holmes-Tachikawa,

CD CDr0 CDs CDs–+= CL CLr0 CLs+= CM CMs=

Fig. 15 Co-rotational mechanism, U = 5, 7.5, 10 m/s

Fig. 16 Normal force coefficient after Holmes (2006), Baker (2007), and Richards, et al. (2008)
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Baker-Tachikawa, and Richards, et al.-Tachikawa, respectively. The superscript M in the new notation

(i.e. CM
M) refers to the magnified form.

A difference in drag coefficients observed between the experimental and classical approaches (Fig.

21), will result in underestimations of velocities when computing flight trajectories using the classic

methods. The underestimation of drag forces in the intervals 60o ~ 140o and 240o ~ 320o is somewhat

Fig. 17 Drag coefficient after Holmes (2006), Baker (2007), and Richards, et al. (2008)

Fig. 18 Moment coefficient after Holmes (2006), Baker (2007), and Richards, et al. (2008)

Fig. 19 Lift coefficient after Holmes (2006), Baker (2007), and Richards, et al. (2008)
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compensated for by their overestimation at other angles of attack. Lift coefficients derived from the

experiment do not reflect the asymmetries relative to zero values that result from the classic

magnification method. The moment coefficients obtained through the present experiment (even

though they are affected to some degree by frictional effects at the bearings) show significant

differences in relation to values computed through existing approaches magnified using Tachikawa’s

method, all of which predict zero cumulative torque during a cycle.

Fig. 20 Magnified normal coefficients compared to experimental results

Fig. 21 Magnified drag coefficients compared to experimental results

Fig. 22 Magnified lift coefficients compared to experimental results
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6. Conclusions

Static and auto-rotating pressure coefficients derived from an experiment using a novel on-board

system have been presented. In some respects the results seem to be consistent with data reported

by other authors, while in other respects differences are considerable. In the case of static

measurements the stall affect appears in the experimental data in similar intervals of pitch angles to

previous experiments. In this case the peak normal coefficient oscillates between 1.2 ~ 1.3 in the

stall region and between 1 ~ 1.1 for angles above 45o for the two testing velocities (U= 5, 10 m/s). A

broad range of combinations of pitch and yaw angles seem to confirm the stall and steady region

for static coefficients. With regard to autorotation, high values of normal pressure were recorded

apparently due to a lock-in effect occurring between vortex shedding frequency and the frequency

of rotation of the board. This hypothesis is supported by a low index of variation of areas under

positive and negative peaks which indicates that all mechanisms that generate auto-rotational forces

are present in every cycle at similar rates. Until now, auto-rotational moment coefficients have been

inferred by using measured forces and assuming the position of the centre of pressures as

determined from static measurements (quasi-steady approach). As illustrated, this results in a

moment coefficient which does not match the present experimental measurements. It is suggested

here on a heuristic base that quasi-steady torque is coupled with what has been termed a co-rotation

and that these two mechanisms would define total torque. At this point however, there is no

numerical or experimental argument to affirm that total forces derived from net pressures act on

each of these mechanisms at the same level. The same would apply if we used forces determined

through static tests acting on the quasi-steady mechanism only, since, as it has been shown during

the present analysis, the forces derived from static and auto-rotational conditions does not seem to

be determined by the same physical phenomena. In order to clarify this point it is necessary to

undertake more detailed analysis, such as principal or independent component analysis, through

which a more refined description of the force-mechanisms involved in autorotational events can be

estimated. Finally, the magnification approach given in Tachikawa (1983) has been revisited in the

second part of this paper. It was observed that experimental data compares fairly well to force

coefficients computed as in Holmes, et al. (2006), Baker (2007), and Richards, et al. (2008), magnified

using Tachikawa’s method. There are some differences for drag coefficients which appear underestimated

Fig. 23 Magnified moment coefficients compared to experimental results
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by classical approaches in the range of angles of attack between 60o ~120o and 240o ~ 300o, although

these are overestimated elsewhere. Moreover, experimental data reports a lack of symmetry for the

lift coefficient with regard to zero values; this differs from Tachikawa’s approach which clearly

predicts asymmetries in the lift forces due to the Magnus effect. With regard to magnified moment

coefficients computed throughout the classic approach, these results in an accumulated momentum

during a cycle equalling zero, i.e. no autorotation would be predicted through them.
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Appendix A – Method to transform time to angular coordinates

Considering inertial and frictional forces it can be shown that the following angular equation of

motion is valid:

(A.1)

where ω is the angular velocity, θ is the angular co-ordinate, t is time, I is the moment of inertia, k

is a damping coefficient generated by frictional effects, ρ is the density of air, A is the plate area, h

is the plate length, U is the free stream velocity and CM is the pitching moment, which is a function

of θ. Now defining:

 ; (A.2)

where T is the period of rotation, one can write the equation as follows:

(A.3)

Now Refining:

 ; (A.4)

and letting the pitching moment form be given by

(A.5)

(which is an approximation to experimental values), results in the equation:

(A.6)

γ is the semi-amplitude of the pitching moment (approx 0.15), and δ is the offset of the mean

from zero divided by the semi-amplitude (approx 0.15). Applying the following boundary
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Fig. A1 Relationship between unitary time and angular position
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conditions (which simply state that the angular velocity is the same at the start and end of the cycle,

and that the angular length of the cycle is 2π).

 ; (A.7)

this equation has the solution:

(A.8)

Also the boundary conditions result in the identity:

(A.9)

which implies the offset on the pitching moment coefficient curve (δ) represents the torque required

to overcome frictional effects (α). Fig. A-1 shows the rotational speed computed through this

method, for a cycle with unitary period.
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