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Abstract. Articulated tower platforms due to its compliant nature are more susceptible to the dynamic
effects of wind than conventional fixed platforms. Dynamic response analysis of a double hinged
articulated tower excited by low frequency wind forces with random waves is presented in this paper. The
exposed super structure of the platform, housing the drilling and production facilities is subjected to mean
and fluctuating wind loads, while the submerged portion is acted upon by wind driven waves. The
fluctuating component of the wind velocity is modeled by Emil Simiu’s spectrum, while the sea state is
characterized by Pierson-Moskowitz spectrum. Nonlinearities in the system due to drag force, added mass,
variable submergence and instantaneous tower orientation are considered in the analysis. To account for
these nonlinearities, an implicit time integration scheme (Newmark’s-β) has been employed which solves
the equation of motion in an iterative fashion and response time histories are obtained. The power spectra
obtained from random response time histories show the significance of low frequency responses.

Keywords: offshore structures; dynamic response; articulated loading platform; wind driven waves; sea
site wind spectrum; compliant tower; nonlinearities; turbulent wind.

1. Introduction

An articulated tower, as shown in Fig. 1, is one of the compliant offshore structures which are

designed for deep water applications. Typically these structures are supported near the sea bed

through a universal joint. The tower shaft extending through the water surface consists of a ballast

chamber, a steel lattice structure, buoyancy chamber, and a chimney supporting the deck above the

water surface. This type of structure is being used as an efficient means of mooring or as loading

terminal for oil tankers in open waters, flare towers as well as production riser and control tower in

remote offshore environment.

Although wave loading on offshore platforms is generally assumed to be more significant than

wind loading, exceptions can be found. Low frequency deep water articulated towers reduce the
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response to high frequency wave forces. However, the structure vibrates within range of the most

energetic low frequencies of wind excitation. This places greater importance of wind action on the

behaviour of articulated loading platforms.

A sample of studies dealing with the dynamic analysis of single hinged articulated towers (SHAT)

under wind loading has been carried out by Deleuil and Durgiet (1987); Datta and Jain (1990); Bar-

Avi and Benaroya (1997) and Ahmad and Islam (2001). Fatigue and fracture reliability of

articulated joint under wind and wave environment is carried out by Islam and Ahmad (2007). In a

recent paper, Zaheer and Islam (2008) carried out extensive review on aerodynamic behaviour of

single and double hinged articulated towers. Literature concerning the dynamic analysis of double

hinged articulated towers (DHAT) is very limited. Mc Namara and lane (1984) discusses the finite

element analysis of multi-hinged articulated towers. Hanna, et al. (1988) gave a new concept of

Tension Restrained Articulated Platform (TRAP). Their study concluded that multi articulation

concept is an attractive option for deepwater applications. Helvacioglu and Incecik (1988) gave an

analysis and model test of SHAT and DHAT. Zaheer and Islam (2008) compared the responses of

double hinged ALP under different wind spectra. While analytical solutions under uncorrelated wind

and waves have been generally presented, responses under correlated wind and wave environment

are lacking. This study provides a combined effect of wind and wave forces on the tower behaviour.

2. Assumptions

Following assumptions are made in the analysis of the tower.

1. The flexural deformations of the tower are assumed to be small as compared to its displacement

as a rigid body.

Fig. 1 Articulated tower
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2. The platform is idealized as an inverted double pendulum, displacing only in the plane of fluid

loading.

3. The tower has uniform properties over the segments of uniform diameters.

4. The tower shaft is assumed to be hinged at the base and at an intermediate level.

3. Development of equations of motion 

The equations of motion of DHAT are derived using Lagrange’s equation. The tower model

consists of two-degree-of-freedom system, rotations θ1 and θ2 about the vertical axis (Fig. 2a). The
generalized force is derived using the principle of conservation of energy. In the derivation of

equations of motion, “1” stands for lower tower, while “2” stands for upper tower. 

The general form of Lagrange’s equation is:

(1)

where, T, V and  represents the kinetic energy, the potential energy and the generalized force

respectively. 

The kinematic relationships for the double hinged tower model can be expressed as:

(2)

(3)

where L1 = length of the bottom tower and r2j = position vector of an element in the top tower.

Using Eqs. (2) and (3), the resultant velocity is given by

(4)
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Fig. 2 (a) Mathematical model of DHAT (b) Idealized double hinged tower
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3.1. Kinetic energy

The kinetic energy, T for the tower can be expressed as:

T = T1 + T2 (5)

where T1, T2 are the kinetic energies of the lower and upper towers.

(6)

where m1t is the mass of an element in tower “1” and r1t is its position vector. 

T2 consists of three components, viz: kinetic energy of elements submerged in water (T2water),

kinetic energy of elements between water level and underside of deck (Tair) and kinetic energy of

deck (Tdeck) respectively.

The resulting kinetic energy of top tower may now be expressed as:

(7)

The total masses mit = (mi + ami) is used to calculate the kinetic energy of the towers account for the

structural mass and the inertial added mass due to the motion of the structure; md is the mass of

deck; Id is the moment of inertia of deck, Lp is the height of c.g of the deck above mid hinge and

Nw is the number of submerged elements in water.

3.2. Potential energy 

The total potential energy in the system V is due to conservative forces of buoyancy and gravity

which can expressed as:

V = V1eff + V2 (8)

where (9)

V2 consists of the effective potential energy due to top tower and deck. The resulting potential

energy may now be expressed as:
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Where f2j is the buoyancy of an element in the top tower.

Now, treating the kinetic and potential energies of the system as per Lagrange’s equation, we

have:

(11)

where (12)

Similarly (13)

(14)

or (15)

Substituting these values in Lagrange’s equation leads, first equation of motion as follows:

(16)

Treating the same way, various energies with respect to θ2, and putting in Lagrange’s equation, will
yield the second equation of motion as follows:

(17)

where F1, F2  are the buoyancy forces in the lower and upper tower; W1 and W2 are the weights of bottom

and top tower, and C1, C2 are the centre of mass of lower and upper tower from respective hinges.

3.3. Generalized forces and their moments

The environmental forces due to wind, waves and currents are categorized as non conservative

forces (Simiu and Smith 1996). The combined action of aerodynamic and hydrodynamic forces

which constitutes the forcing function is given by:

(18)
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These loads are defined as:

The wind force per unit of projected area is given by: 

(19)

where fa(y, z, t)= force per unit area and is a function of space (y, z) and time (t); ρa =air density; Cp(y, z)

pressure coefficient at elevation z and at horizontal coordinate y; = structural velocity in the horizontal

direction parallel to the fluid loading; u(z) =mean wind velocity, and = fluctuating wind velocity.

The total wind induced drag force is then given by:

(20)

in which Aa is the total projected area of the platform normal to the wind flow.

The drag force is expressed as:

(21)

in which ρw = mass density of sea water, Cd = drag coefficient, vc = current velocity, Dd = drag

diameter,  and  are water particle and structural velocity in the direction of fluid flow.

The inertial force is given by:

(22)

in which CM = inertia coefficient, Di = inertia diameter of ith element and = wave particle

acceleration at the ith element.

4. Super structure model for wind loads

The superstructure details of articulated tower model exposed to wind loads are shown in Fig. 3. The

platform comprises of derrick, helideck, boom, mud houses and flare tower, most of which are latticed in

nature. Under the influence of wind, the platform superstructure is subjected to aerodynamic drag force in

the windward direction. The analysis due to wind forces is carried out by decomposing the wind velocity

component into its mean and fluctuating parts. The latticed area of the tower (which is above water) also

obstructs wind in surge direction and hence is replaced by their equivalent projected areas.

4.1. Mean wind loading

The mean description of wind field is assumed to be governed either by logarithmic or power law.

The logarithmic law is used in the present study and is expressed as:
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where, zref = Reference elevation above the mean sea level, zo = Roughness length which is provided

by specifying the value of sea drag coefficient, defined as 

(24)

where (K = 0.4) is the Von Karman constant (Kareem 1980).

4.2. Fluctuating wind loading

Single point simulation of wind velocity field is assumed in the present study i.e. the random

variation of velocity fluctuations is assumed to be coherent all through the projected area. These

fluctuations are simulated by Fourier synthesis of Simiu’s spectrum (Simiu and Leigh 1984) and a

time series of wind velocity is obtained. Expressions of the Simiu’s spectrum Su(z, n) are: 

   (25) 

For various parameters involved in Eq. (25), reference may be made to (Simiu and Leigh 1984).

5. Wind driven waves
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Fig. 3 Super structure detail for wind load assessment (All dimensions are in metres)
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equation in terms of spectral moment may be expressed as (Gran 1992).

(26)

where ρa, ρw is the air and water density; g is the acceleration due to gravity; Ω is the cut-off

frequency or weighted mean frequency; u(z) is the nominal wind velocity.

In order to represent the energy of Eq. (26) in terms of a dimensionless basic sea state variable y, put

  or  (27)

The value of y lies between zero and one. For fully developed seas at infinite fetch length, this

may be taken as unity. The energy equation Eq. (26) may now be represented by the following

differential equation.

  ,  0 < y < 1, (28)

where, ξ is the fetch length; and τ is the wind duration.

The fetch length and wind duration may be obtained by the solution of the above equation as

follows:

 (29)

 (30)

The resultant relation between actual time t and duration τ is

(31)

For known ξ and τ the sea state y, may be found from the Eqs. (29) and (30). The significant

wave height Hs and wave period Tz are then estimated as:
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sea surface elevation η(t) is given by the equation

(34)

where (35)

in which, Ai is the amplitude of the i
th component wave, ki is the wave number of the i

th component

wave, ωi is the wave frequency of the i
th component wave, φi is the phase angle of the i th

component wave randomly chosen between 0 and 2π, and following the normal distribution, K is
the number of wave harmonics considered in the simulation, x is the structural displacement, S(ω) is
the spectral density value of one sided sea surface elevation spectrum at the frequency ωi. 

The selection of frequency ωi is done such that these frequencies are uncorrelated so that they do

not constitute harmonics with each other. First, the range of the frequencies, from the lowest

frequency, ωmin to the highest frequency, ωmax is divided into (k − 1) sub-ranges with the dividing

frequencies constituting a power series of:
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surface elevation spectrum. The random phase angle φi must be chosen such that the resultant function
η(t) follows the Gaussian distribution. This has been done with the generation of random numbers
normally distributed between 0 and 2π. The computation of sea surface elevation by Eq. (34) is done
at discrete intervals of time. The time interval ∆t is set to satisfy the condition:

(43)
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7. Solution procedure

The equation of motion Eqs. (16) and (17) is solved by time stepping numerical integration using

Newmark-β method. At each time step, an iteration cycle is required to find the solution because the
forcing function depends upon the instantaneous structural response. The iteration starts with the

instantaneous responses assumed to be the same as those of the previous time station. After solving

the equation of motion, obtained values of the responses are used for the next iteration. This

procedure is continued until convergence is achieved, i.e. the difference between the two consecutive

responses falls below 0.1%.

8. Numerical study

Numerical studies of a double hinged articulated tower in 350 m water depth is carried out to

investigate the response due to; (i) wave only and (ii) wind and wave acting together. The details of

the idealized tower and environmental characteristics are given in Table 1 and Table 2. Some

configuration details such as ballast size, deck location are shown in Fig. 2b. For wind velocity

spectrum, mean wind velocities of 10 m/s, 20 m/s and 30 m/s are considered. The exposed area of

the tower to wind load is 1288.5 Sq. m. The time domain simulations of the tower response was

obtained by selecting a 1200 s (1024 point) wave train ensuring that r.m.s responses attain their

steady state values. The wave train was decomposed into a Fourier series and simulated using

approximately 50 discrete frequencies. Initial non-stationary phase of the response time histories,

which is roughly 10 times the time period of the structure have been ignored. The realized wind

velocity spectrum from the simulated wind velocity time history is given in Fig. 4. The P-M

spectrum for the sea surface elevation is given in Fig. 5. 

Time histories of mid hinge shear response under different wind velocities and correlated waves

Table 1 Geometrical and mechanical characteristics of the tower

Main features values

Height of bottom tower 240 m

Height of top tower 160 m

Structural mass of top and bottom tower 2.0 E 4 Kg/m

Structural mass of ballast 44840 Kg/m

Deck mass 2.5 E 6 Kg

Fundamental frequency (first and second mode) 0.20 & 0.22 rad/sec

Effective diameter of tower shaft

For drag 17.0 m

For buoyancy 7.50 m

For inertia and added mass 4.5 m

Effective diameter of Buoyancy chamber

For drag 20 m

For buoyancy 19.5 m

For inertia and added mass 7.5 m
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are given in Fig. 6, which shows significant fluctuations or reversal of shear. These fluctuations

resulting from the repeated application of wind gusts are responsible for fatigue stresses in the

articulation points. Fig. 7 shows the power spectral density function of mid hinge shear under long

crested random wave alone, and combined action of wind and wave for a wind velocity of 30 m/s.

The highest peak occurs at half the natural frequency, which shows super harmonic resonance.

Other peak corresponds to natural frequency of the tower at ωn = 0.2 rad/sec. In this case, the

system responds at lower frequency of the two. That is, at the forcing frequency for the super

harmonics. Several other smaller peaks signify nonlinearity in the system. The PSDF clearly

Table 2 Hydrodynamic and aerodynamic characteristics

Environment

Water depth 350 m

Mass density of sea water 1025 Kg/m3

Air density 1.27 Kg/m3

Current velocity 1.0 m/s

Drag coefficient (Cd) 0.6

Inertia coefficient (Cm) 2.0

wind drag co-efficient (CD) 0.002

Aerodynamic center above SWL 27.2 m

Total equivalent area for wind load 1288.5 Sq.m

Emil Simiu’s wind spectrum constants

β 6.0

f s 0.2

fm 0.07

Roughness length (zo) 0.001266 m

Length of longitudinal turbulence(Lu) 180 m

Fig. 4 Emil Simiu spectrum of longitudinal velocity fluctuations
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indicate that the energy content at the given frequencies is enhanced for the combined effect of

wind and waves. The comparative PSDF of base and mid hinge shear is shown in Fig. 8 and is

characterized by a prominent peak at a frequency of 0.4 rad/sec. The energy content at this

frequency is increased appreciably for mid hinge shear as compared to the base hinge shear.

Fig. 9 shows the PSDF of maximum bending moment of DHAT at a distance of 76.52 m (node

no. 25) from mid hinge. The PSDF indicate super harmonic resonance in the system for a wind

speed of 20 m/s. As Emil Simiu spectrum has significant energy content at low frequencies;

therefore, 20 m/s wind speed contributed appreciably to the bending response. With an increase in

the wind speed (30 m/s), wave height and wave period increases nonlinearity in the system leading

to the response attenuation.

Fig. 5 Pierson-Moskowitz sea surface elevation spectrum

Fig. 6 Mid hinge shear time histories under different wind speeds
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Fig. 7 Effect of wind on PSDF of mid hinge shear of DHAT

Fig. 8 Comparative PSDF of hinge shear of DHAT under wind loading

Fig. 9 Comparative PSDF of maximum B.M of DHAT under wind loading
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Fig. 10 shows the comparative time history of deck displacement under various wind velocities

for the stabilized sea states. It is observed that mean wind displaces the tower off the mean position

where it vibrates under wind gustiness. The corresponding power spectra in Fig. 11 show a low

frequency super harmonic resonance. Another peak appears close to the structural fundamental

frequency. The third prominent peak occurs in the vicinity of forcing frequency of wind driven

waves.

Due to stochastic nature of the responses, the results are also presented statistically in Tables 3 to 5.

Important statistics such as maxima, minima, RMS, mean and standard deviation are reported. Table

Fig. 10 Time history of tip displacement under different wind speeds

Fig. 11 Comparative PSDF of tip displacement under various wind speeds
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3 shows the effect of wind on hinge angles of DHAT. The maximum hinge angle for upper tower θ2
is more as compared to the lower tower θ1 for both the loading environments. The RMS values of

upper hinge angle under wind and waves increases 8.6 times over wave alone when wind velocity

is 10 m/s, whereas for wind velocity of 30 m/s, a marginal increase in the RMS hinge angle is

observed. It is also seen that the dynamic effect of wind assumes significance at lower wind

velocity when the wave’s significant energy contents are far away from it. The standard deviation

for wave becomes closer to the standard deviation obtained for combined wind and wave when the

wind velocity is 30 m/s.

Table 4 shows the effect of wind on the hinge shear response of the tower. Hinge shear is an

important parameter due to reversal of stresses, which cause fatigue at the articulation points. These

stresses are subsequently used for the reliability analyses. It is seen that mid hinge shear values are

Table 3 Hinge angle response of DHAT under different ocean environments

Sea environment

Statistics

θ1  (radians) θ2 (radians)

Wind
velocity

Wind driven 
waves

Wave
alone

Wave
+wind

Wave
alone

Wave
+wind

10 m/s

Max. 7.31E4 4.72E-3 1.65E-3 1.17E-2

Hs = 2.015 m Min. -7.9E-4 -1.24E-3 -1.61E-3 4.98E-4

Tz= 4.94 sec RMS 3.70E-4 2.05E-3 7.95E-4 6.85E-3

Mean -1.2E-5 1.52E-3 -2.70E-5 5.75E-3

S.D 3.70E-4 1.37E-3 7.95E-4 3.18E-3

30 m/s

Max. 1.35E-2 2.57E-2 6.12E-2 1.06E-1

Min. -5.53E-2 -2.78E2 -1.48E-1 -5.69E-2

Hs = 17.76 m RMS 1.43E-2 1.04E-2 4.11E-2 4.46E-2

Tz = 14.64 sec Mean 1.07E-2 3.84E-3 -2.47E-2 3.08E-2

S.D 1.01E-2 9.70E-3 3.29E-2 3.22E-2

Table 4 Hinge shear response of DHAT under different ocean environments

Sea environment

Statistics

Base hinge shear (N) Mid hinge shear (N)

Wind
velocity

Wind driven 
waves

Wave
alone

Wave
+wind

Wave
alone

Wave
+wind

10 m/s

Max. 3.10E5 1.76E5 2.54E5 -3.55E4

Min. -3.0E5 -8.5E5 -2.4E5 -1.58E6

Hs = 2.015 m RMS 1.00E5 3.90E5 9.00E4 8.367E5

Tz = 4.94 sec Mean 2.71E3 -3.3E5 4.70E3 -7.61E5

S.D 1.00E5 1.96E5 8.98E4 3.465E5

30 m/s

Max. 1.65E7 9.58E7 2.94E8 1.65E8

Hs = 17.76 m Min. -4.7E6 -7.8E6 -8.8E6 -1.4E7

Tz= 14.64 sec RMS 1.16E7 9.02E6 2.99E7 2.24E7

Mean 4.91E6 1.29E6 2.13E7 1.28E7

S.D 1.05E7 8.93E6 2.10E7 1.83E7
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higher as compared to base hinge shear as a heavy deck is placed on the top tower. An increase in

wind speed from 10 m/s to 30 m/s results in a 17-fold increase in the mean value of hinge shear

response (mid hinge shear) under combined effect of wind and wave, whereas for base hinge shear,

a four-fold increase in the mean value is noticed for the same loading. 

Table 5 shows the statistics of the bending moment response. It is observed that the standard

deviation for both the upper and lower shafts of DHAT decreases when the combined effect of wind

and wave force is considered. 

9. Conclusions

Following conclusions are drawn from the present study.

1. Participation of wind induced forces in the response is governed by the size of wind driven

waves. High wind speed generates larger waves (higher HS and TZ), the wind participation to

the response is marginal due to the wave significant frequency becoming smaller and in the

vicinity of wind frequency and thereby suppressing  the response caused by the wind.

Whereas, in case of low mean wind speed, the contribution of wind forces is significant,

because the significant wave frequency becomes higher and moves away from the wind

frequency.

2. Wind loads may increase the static offset significantly so that the tower behaviour may become

nonlinear. In the presence of waves together with wind, drag force causes sub and super

harmonic response, which gives significantly different response than due to wave alone

loading.

3. The response of articulated tower to wind is primarily in resonant mode, emphasizing the

significance of a reliable estimate of damping. Due to a small source of damping, both from

structural and hydrodynamic sources, surge motion even at low wind speeds has the potential

of introducing problems from a fatigue viewpoint.

4. For fatigue reliability evaluation, central hinge is more critical in comparison to base hinge

because of significant energy content at the central hinge.

Table 5 Bending moment response of lower and upper shaft of DHAT (N m)

Sea environment

Statistics

At  114.78 m from base hinge At  76.52 m from mid hinge

Wind
velocity

Wind driven 
waves

Wave
alone

Wave
+wind

Wave
alone

Wave
+wind

10 m/s

Max. 1.66E7 7.03E6 4.48E7 2.31E7

Min. -1.7E7 -2.0E8 -4.6E7 -3.0E7

Hs = 2.015 m RMS 5.69E6 1.07E7 1.51E6 1.03E7

Tz = 4.94 sec Mean 9.75E4 -9.6E7 5.43E6 -3.5E6

S.D 5.69E6 4.77E7 1.51E6 9.69E6

30 m/s

Max. 3.94E9 1.13E9 2.1E10 2.20E9

Min. -2.8E8 -1.9E8 1.35E9 -3.2E8

Hs = 17.76 m RMS 3.12E8 1.25E8 1.65E9 2.25E8

Tz = 14.64 sec Mean 1.45E8 -1.2E8 8.21E8 6.99E7

S.D 2.76E8 1.25E8 1.43E9 2.46E8
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Nomenclature

KE = kinetic energy

PE = potential energy

θ1, θ2 = rotation angle of bottom and top tower about the respective hinges

Μθ1, Mθ2 = generalized moment due to non conservative forces w.r.t θ1 and θ2
, = angular velocity of bottom and top tower 

, = angular acceleration of bottom and top tower 

, = moment of inertia of bottom and top tower including added mass

Id = moment of inertia of the platform deck

md = mass of deck

L1, L2 = length of bottom and top tower respectively

C1 = centre of mass of lower tower from bottom hinge

F1, F2 = buoyancy forces in the lower and upper tower respectively

W2 = weight of top tower

= mass of top tower including added mass

C2 = centre of mass of upper tower from top hinge

ρa = mass density of air

ρw = mass density of water

Cp(y,z) = pressure coefficient at elevation z and at horizontal coordinate y

u(z) = mean wind velocity

u'(y,z,t) = fluctuating wind velocity

= structural velocity in the direction of fluid motion

Aa = projected area of the platform

z ref = reference elevation

zo = roughness length

K = Von Karman constant

Su(z,ni) = spectrum of fluctuating wind energy

U* = friction velocity

f = non dimensional frequency

fm, fs = Emil Simiu’s constants

g = acceleration due to gravity

Ω = cut-off frequency

ξ = fetch length

τ = wind duration

Hs, Tz = wave height and wave period

φi = phase angle

Ca = coefficient of wind drag

Ai = amplitude of the ith component wave 

ki = wave number of the ith component wave

ωi = wave frequency of the ith component wave

φi = phase angle of the ith component wave 

K = number of wave harmonics considered in the simulation

S(ω) = spectral density value of one sided sea surface elevation spectrum 

ωmin = lowest frequency

θ· 1 θ· 2
θ··1 θ·· 2
I1
*

I2
*

M2

*

x· t( )
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ωmax = highest frequency 

ωi = component frequency

∆ωi = bandwidth 
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