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Finite element analysis of 2D turbulent flows
using the logarithmic form of the k-ε model
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Abstract. The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence
variables as k and ε of the k-ε model by using the natural logarithm of these variables. In the present
study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady
turbulent flow analysis. A backward facing step flow using the standard k-ε model and a flow around a
2D square cylinder using the modified k-ε model (the Kato-Launder model) are simulated. These results
show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the
analysis stable during transient or unsteady processes.
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1. Introduction

The k-ε model is one of the widely-used models to simulate turbulent flows around structures

(Lardeau and Leschziner 2005, Yoshie, et al. 2007) and over complex terrains (Maurizi, et al.

1998, Yamaguchi, et al. 2003). There are several types of model, such as the standard k-ε model

(Launder and Spalding 1974), the low Reynolds-number k-ε model (Jones and Launder 1972) and

the non-linear k-ε model (Craft, et al. 1996, Abe, et al. 2003). Most of these models consist of four

variables, the vector of ensemble-averaged velocity , the ensemble-averaged pressure , the

turbulent kinetic energy k and the turbulent dissipation rate ε. The Reynolds stress tensor ,

which is the correlation of the fluctuating velocity , is modeled by using the linear or non-linear

eddy viscosity concepts. In these models, the eddy viscosity νt is calculated from k and ε. For

instance, in case of the standard linear eddy viscosity model, the eddy viscosity is defined as

νt = Cµk
2/ε  where Cµ = 0.09 is a constant. According to the definition k and ε are positive quantities.

However, there are cases that these turbulence variables become negative when undershoot of the

solution occurs in the computation. When the turbulent dissipation rate ε falls into a small negative

value, the eddy viscosity νt varies from a large positive value to a large negative one drastically

since ε is the denominator of νt. Such situation causes instability of the computation.

To circumvent this problem, several approaches such as the clipping and the limiter have been devised
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(Ilinca, et al. 1998). The clipping is a device which replaces a value of the turbulence variables to an

appropriate positive one when it becomes negative. The limiter is a device which corrects a value of the

turbulence variables to a pre-assigned small positive value when it becomes less than the tolerance.

Both devices make it possible to keep the positivity of these turbulence variables. However, strictly

speaking, they are meaningless from the physical point of view, and they violate the conservative law.

Ilinca, et al. (1998) insist the shortcomings of clipping and limiter, that is, they cause noises and

oscillation in the solution field, and make the convergence of iteration solver slow or destroy the

calculation. Thus, they proposed the logarithmic form to avoid using clipping and limiter (Ilinca and

Pelletier 1998).

The logarithmic form is applied to the k-ε model as follows: firstly, new variables K and E which

are the natural logarithm of k and ε are introduced as K = lnk and E = lnε. Secondly, the transport

equations of K and E are derived. Finally, these new equations are solved instead of the k and ε
equations and the value of the original variables k and ε are recovered by using the exponential

functions, k = eK and ε = eE. In the logarithmic form, the use of the exponential function to recover

the original variables guarantees the positivity of them. Therefore, the logarithmic form prevents

negative eddy viscosity without any numerical technique.

Ilinca and Pelletier (1998) applied the logarithmic form to the adaptive remeshing analysis based

on the minimum residual by using the steady k-ε model and this work was followed by Ignat, et al.

(2000), Turgeon, et al. (2000) and Lacasse, et al. (2001). In the adaptive remeshing analysis large

gradients and deviations of curvature in the solution field should be avoided because they disturb

the convergence of the iteration solver.

Luo, et al. (2003) applied the logarithmic form to the computation of compressible flows. In their

paper, they stated that the effect of the use of the logarithmic form can alleviate the stiffness of the

turbulent equations.

Although these studies discuss the effects of the logarithmic form with respect to the convergence

of the iterative solver and the mesh refinement, they do not mention to the transient process and the

flow around bluff body with vortex sheddings. In this paper, we incorporated the logarithmic form

into the finite element solution procedure for the unsteady turbulent flow analysis. We calculated a

backward facing step flow and a flow around a 2D square cylinder. From these results, we discuss

the effect of the logarithmic form to the transient process as well as the flow around bluff body.

2. Governing equation

The k-ε model which is used in this paper consists of the Reynolds Averaged Navier-Stokes

equation [Eq. (1)] and the continuity equation [Eq. (2)] as described below:

     in Ω, (1)

     in Ω. (2)

In Eqs. (1) and (2), Ω is the computational domain with the boundary Γ,  is the vector of

ensemble-averaged velocity,  is the force vector,  is the stress tensor which is defined as follows:

, (3)

with

ρ ∂U
∂t
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. (4)

 is the ensemble-averaged pressure, ρ is the density, µ is the viscosity, I is the identity tensor. The

term , the Reynolds stresses, is modeled in the k-ε models as follows:

, (5)

with

, (6)

where µ t is the turbulent viscosity, νt is the eddy viscosity (or the turbulent kinematic viscosity), k

is the turbulent kinetic energy, ε is the turbulent dissipation rate and Cµ is a constant.

The transport equations for k and ε are described as follows:

     in Ω, (7)

     in Ω, (8)

where the standard values of the model constants appearing in Eqs. (6), (7) and (8) are:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (9)

In Eqs. (7) and (8), Pk is the production term. In the case of the standard k-ε model and the Kato-

Launder model (1997), both of which are employed below in this paper, the production term is

defined as follows:

     (the standard k-ε model), (10)

     (the Kato-Launder model), (11)

where

,  . (12), (13)

On the boundary Γ of the computational domain Ω, the following boundary conditions can be

imposed at different segments of the boundary Γ:

,  k = gk,  ε = gε on Γg, (14a, b, c)

, , on Γh, (15a, b, c)

where , gk, gε, , hk and hε are the prescribed values, and n is the unit outward normal vector

on Γ.
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3. Logarithmic form

According to the physical meanings and the definition, both the turbulent kinetic energy k and the

turbulent dissipation rate ε are positive quantities. However, the positivity may not be guaranteed in

the computation. Ilinca and Pelletier (1998) proposed the logarithmic form to guarantee the

positivity of the turbulence variables mathematically.

The logarithmic form employs new variables which are the natural logarithm of the original

turbulence variables. In the case of the k-ε model, the new variables are defined as:

,   , (16a, b)

where K is the natural logarithm of k and E is that of ε.

To derive the transport equations for K and E from the original equations [Eqs. (7) and (8)], the

following differential relations are applied.

,   , (17a, b)

,   . (18a, b)

After dividing Eq. (7) by k and Eq. (8) by ε, the application of Eq. (17a, b) and Eq. (18a, b) leads

to the transport equations for K and E:

     in Ω, (19)

     in Ω, (20)

where the last term in Eq. (19) is rewritten by using the following eddy viscosity relation:

. (21)

The boundary conditions of the new variables, K and E, can be described as:

K = gK, E = gE on Γg,  (22a, b)

,   on Γh,  (23a, b)

where gK, gΕ
, hK and hE are the following prescribed values:

,     , (24a, b)

,     . (25a, b)

The second terms of the R.H.S. in Eqs. (19) and (20), the square of the gradient, are called “the

second diffusion term”. The presence of the second diffusion terms is the greatest difference

between the equations using the logarithmic variables and the original ones. In the followings, we
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call the k-ε model described in terms of the original variables as “the normal form”.

4. Finite element method

The computational domain Ω is subdivided into the finite elements Ω e, e = 1, 2, …, Nel, where

Nel is the number of elements. Then the SUPG stabilized finite element formulation of Eqs. (1), (2),

(19) and (20) can be written as follows:

[Momentum equation]

(26)

[Continuity equation]

. (27)

[K equation (K = lnk)]

(28)

[E equation (E = lnε)]

(29)
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where , qh,  and  are the weighting functions.

In this paper, Q1P0 elements are employed, where the trial solutions and weighting functions

described above are defined in each element as follows:

,   ,   ,   ,

,   ,   ,   , (30a~h)

where  is the matrix of the bilinear shape functions, NK and NE are the vectors of the bilinear

shape functions,  is the piecewise constant shape function. , Ke and Ee are the elementwise

local nodal value vectors,  is the piecewise constant pressure in the element. ,  and 

are the vectors of the elementwise weighting functions, qe is the piecewise constant weighting

function for the continuity equation. , τΚ and τΕ are the SUPG stabilization parameters calculated

as follows:

, (31)

where φ corresponds to , K or E.  and  are the component of the velocity vector evaluated at

the center of the elements. hξ and hη are the element length on the local coordinates ξ and η. Fig. 1

shows the definition of the , , hξ and hη. The parameters ξφ and ηφ in Eq. (31) are calculated

as follows:

,   , (32a, b)

,   , (33a, b)

where kφ is the diffusivity of equations. αξφ and αηφ are the element peclet number.

Substituting Eqs.(30a~h) into Eqs.(26), (27), (28) and (29), the following matrix form of the finite

element equations are obtained.
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where u, K and E are the global vector of nodal values. The definitions of their vectors and

matrices are given in Appendix A. These equations are solved by the predictor-corrector method

(Brooks and Hughes 1982). The details of the time integration loop are shown in Appendix B.

5. Wall boundary conditions

We adopted the wall function to the boundary condition on solid boundaries (Mohammadi and

Pironneau 1994, Mohammadi and Puigt 2006). Specifically, the wall shear stress is used as the

boundary condition. Fig. 2 shows the location of computational solid boundaries and the definition

of variables to evaluate the wall shear stress when the wall function is used. In the finite element

analysis, the computational solid boundaries are located at the distance δw away from the actual

solid boundary (Lacasse, et al. 2004). To evaluate the wall shear stress τw, we refer to the tangential

component of velocity  and the turbulent kinetic energy kp at the computational boundary

nodes. The wall shear stress τw is defined as follows:

, (38)

Uref

τw

ρCµ

1 4⁄
kp

1 2⁄

1

κ
--- CEy

+( )ln

--------------------------–= Uref  y
+

yc

+≥( )⋅

Fig. 1 Definition of local coordinate for estimating the SUPG parameter for the bilinear quadrilateral element

Fig. 2 Definition of variables to determine the wall shear stress
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, (39)

where

, (40)

is the nondimensional distance from the wall. Then, the equivalent nodal forces of the wall shear

stress τw are used as the boundary condition for the momentum equation [Eq. (1)]. κ (= 0.4187) is

the von Karman constant and CE (= 9.793) is the roughness parameter.  indicates the border

between the logarithmic region and the viscous sublayer, which is set as 11.63.

According to Launder and Spalding (1974), to incorporate the effect of the wall shear stress at the

wall boundary nodes, the production term Pk and the dissipation term ε in the k equation [Eq. (7)]

are rewritten as follows:

, (41)

. (42)

Therefore, the production term e−KPk and the dissipation term Cµe
K/νt in the K-equation [Eq. (19)]

are also rewritten as follows:

, (43)

. (44)

In the E-equation [Eq. (20)], the value of E at the wall boundary nodes is given by the following

relation:

. (45)

6. Flow over a backward facing step

6.1. Computational conditions

The problem of flow over a backward facing step has served as a benchmark test for turbulent

flow simulation in which the reattachment length is the primary concern to be compared (Le, et al.

1997, Bauer, et al. 2000). We employed the standard k-ε model to this problem and compared the

result using the logarithmic form with the normal form. The result was also compared to the

experimental study by Kasagi, et al. (1994).
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Fig. 3 shows the computational domain and boundary conditions. Fig. 4 shows the computational

mesh around the step. The origin of the horizontal (x) and the vertical (y) coordinates is taken at the

bottom corner of the step in order to describe the reattachment point and other characteristics of the

computational results. The number of nodes is 4,719 and the number of elements is 4,502. The

Reynolds number ReH which is based on the velocity  at the center of the inflow boundary and

the step height H is 5,500. The wall function is applied to the upper and lower boundaries Γ3. The

thickness of the modeled region by the wall function δw is set to 0.03H. For the normal form, we

adopted clipping to prevent the negative values and set the clipping values as kc = 1.01cm2/s2 and

εc = 1.01cm2/s3. On the inlet boundary, the turbulent kinetic energy k and the turbulent dissipation

rate ε are specified by the following equations: , where Iu is the turbulent intensity;

/ℓ,  where ℓ is the turbulent length scale. In this computation the turbulent intensity Iu and

the turbulent length scale ℓ are set to 2% and 37.88cm, respectively.

6.2. Comparison of the reattachment length

Figs. 5 and 6 show the streamlines at the steady state. Fig. 5 is the result of the normal form and Fig. 6

is that of the logarithmic form. Table 1 shows the comparison of the reattachment lengths between the

Uc

kin Iu Uin⋅( )
2

=

εin kin

3 2⁄
 =

Fig. 3 Computational domain and boundary conditions

Fig. 4 Computational mesh around the step
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normal form, the logarithmic form and the experimental result by Kasagi, et al. (1994). The

computational results are both shorter than the experimental one. Figs. 7 and 8 show the distributions of

the streamwise mean velocity and the turbulent kinetic energy at 10 sections behind the step. Fig. 7

shows that the distributions of the velocity of the present results are in good agreement with the

experimental result. Fig. 8 shows that, except the recirculation region, the turbulent energy distributions

are also in good agreement with the experimental result. According to Ferziger (Ferziger, et al. 1990), the

use of the standard k-ε model estimates the reattachment length 15% shorter than the experimental one.

Therefore, these computational results are reasonable. If we still want to improve the reattachment length,

we may employ the low Reynolds-number k-ε model such as the computational work by Abe, et al.

(1992) instead of the wall function. However, the objective of the present study is to investigate the effect

of the logarithmic form. For this purpose, the present computational results seem to be sufficient.

Although there was no significant difference in the steady results between the normal form and

the logarithmic form, the effect of the logarithmic form appeared clearly during the transient

process. This difference during transient process will be described and discussed in next section.

6.3. Effects of the logarithmic form

At the steady state, there is no significant difference between the logarithmic form and the normal

form. However, there is considerable difference in the transient processes, especially in the

Fig. 5 Streamlines by the normal form

Fig. 6 Streamlines by the logarithmic form

Table 1 Comparison of reattachment lengths

Normal form Logarithmic form Kasagi, et al. (Exp.)

x/H 5.7 6.1 6.5
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Fig. 7 Distribution of the streamwise mean velocity

Fig. 8 Distribution of the turbulent kinetic energy
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beginning of the computation before the steady state is reached at approximately t = 4.0s.

Figs. 9 and 10 show the distributions of the eddy viscosity νt by the normal form and the

logarithmic form at the time instants t = 1.0s, 2.0s and 3.0s. The interval of contour lines is 5cm2/s.

The maximum value of the logarithmic form, indicated in Fig. 10 is about 20cm2/s, while, as indicated

in Fig. 9, those of the normal form are more than ten times larger than those of the logarithmic form.

Figs. 11 and 12 show the distributions of the turbulent kinetic energy k, the turbulent dissipation rate ε
and the eddy viscosity νt along the broken lines indicated in Figs. 9 (b) and 10 (b). We plotted k and ε in

the logarithmic scale. As shown in Fig. 11, for the normal form, the eddy viscosity νt is extraordinary

large around x/H = 12. In accordance to this, the turbulent dissipation rate ε is quite small in this region.

The turbulent kinetic energy k and the turbulent dissipation rate ε must maintain a balance such that if k

is large then ε is also large. However, this balance between k and ε is not preserved in the normal form.

On the contrary as shown in Fig. 12, the balance between k and ε is maintained in the logarithmic form.

As the consequence of the definition of Eq. (6), there is no locally excessive eddy viscosity.

Figs. 13 and 14 show the nodal points where clipping occurs to k and ε during the periods from

0.0s to 1.0s, 1.0s to 2.0s and 2.0s to 3.0s. According to Fig. 13(a), clipping to k mainly occurred

Fig. 9 Distributions of the eddy viscosity by the normal form



Finite element analysis of 2D turbulent flows using the logarithmic form of the k-ε model 33

Fig. 10 Distributions of the eddy viscosity by the logarithmic form

Fig. 11 Distribution of turbulent variables along the broken line in Fig. 9 (b) (the result by the normal form)



34 Hiroshi Hasebe and Takashi Nomura

behind the step. In this area, the maximum number of clipping to k was seventeen times per node.

According to Fig. 14(a), clipping to ε occurred intensively around the step. In this area, the

Fig. 12 Distribution of turbulent variables along the broken line in Fig. 10 (b) (the result by the logarithmic
form)

Fig. 13 Points occurred clipping to the turbulent kinetic energy during the computation by the normal form
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maximum number of clipping to ε was four times per node. As indicated in Figs. 14(b) and 14(c),

clipping to ε rarely occurred from 1.0s to 2.0s and 2.0s to 3.0s. As shown in Figs. 13(b) and 13(c),

the area of clipping to k moves to the downstream. The comparison of the eddy viscosity

distributions in Figs. 9(a)~(c) and the motion of the clipping areas in Figs. 13 and 14 show that the

clipping does not occur in the downstream of the excessive eddy viscosity. Since the eddy viscosity

is a combination of k and ε as defined in Eq. (6), these results suggest strong relation between the

clipping and the excessive eddy viscosity which associates with the imbalance of k and ε shown in

Fig. 11.

In order to investigate the effect of the clipping further, we have changed the clipping value as

listed in Table 2. Figs. 16 and 17 show the time histories of the eddy viscosity at point P1 and P2

as indicated in Fig. 15, respectively. As indicated in Fig. 17, the excessive eddy viscosities are about

Fig. 14 Points occurred clipping to the turbulent dissipation rate during the computation by the normal form

Table 2 Specified clipping values for comparison 

k
c
 [cm2/s2] ε

c
 [cm2/s3]

Case1 1.01 1.01

Case2 0.101 0.101

Case3 0.0101 0.0101
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one hundred larger than the value of the eddy viscosity at the steady state. On the other hands, for

the logarithmic form, the excessive eddy viscosity does not occur, the maximum eddy viscosity in

the transient process, as indicated in Fig. 16, is only twice as large as that of the steady state.

Although the eddy viscosities at the steady state by the normal form and by the logarithmic form

become nearly same value, the excessive eddy viscosity should be avoided in the normal form.

Because it may make the computation be unstable. As shown in Figs. 16 and 17, smaller clipping

value reduces excessive eddy viscosity. Therefore, it may be possible to avoid the excessive eddy

viscosity by using the clipping value which is very close to zero. However, it is difficult to determine

Fig. 15 Sampling points for the comparison of the clipping values

Fig. 16 Time history of the eddy viscosity at sampling point P1 in Fig.15 in three different clipping values
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an appropriate clipping value a priori. Therefore, it is reasonable to employ the logarithmic form in

order to achieve stable computation.

7. Flow around a 2D square cylinder

7.1. Computational conditions

In the previous example, we noticed that the logarithmic form was effective to the transient

process. Therefore, we applied it to a flow around a 2D square cylinder to investigate the effect of

the logarithmic form in unsteady flows. Fig. 18 shows the computational domain and the boundary

conditions. On the inlet boundary, we specified that both the velocity  and the turbulent kinetic

energy k are uniform, and the eddy viscosity νt is as 100 times large of the molecule viscosity ν.

The flow Reynolds number ReD is 22,000 based on the length of the square cylinder edge D and

the velocity on the inlet boundary. On the body boundary, the wall function is applied. The

thickness of the modeled region by the wall function is set to 0.03D. Figs. 19 and 20 show the

computational meshes which has 6,378 nodes and 6,169 elements. The origin of the horizontal (x)

and the vertical (y) coordinates is taken at the center of the square cylinder.

U

Fig. 17 Time history of the eddy viscosity at sampling point P2 in Fig.15 in three different clipping values
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Fig. 18 Computational domain and boundary conditions

Fig. 19 Computational mesh (whole domain)

Fig. 20 Computational mesh (around the body)
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We used the modified k-ε model (the Kato-Launder model) because the flow is impinging at the

front face of a 2D square cylinder. The modified k-ε model differs from the standard one only in the

definition of the production term as given in Eqs. (10) and (11). Therefore, applying the logarithmic

form to the modified k-ε model, there is no difference in the computational procedures from the

standard one except the production term.

7.2. Comparison of the normal form and the logarithmic form

Using the normal form, the calculation became unstable and collapsed. On the other hand, the

calculation by the logarithmic form didn’t collapse and the solution with periodical vortex shedding

was obtained. Figs. 21 and 22 show the distributions of the eddy viscosity νt computed by the normal

Fig. 21 Distribution of the eddy viscosity by the normal form at some time instants
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form and the logarithmic form, respectively, at some time instants until the periodical vortex shedding

emanating. The interval of contour line is 10cm2/s. Figs. 21(a) and 22(a) are the distributions at the

time instant when the flow still keeps its symmetry. Figs. 21(b) and 22(b) are the distributions at the

time instant when the flow is just losing its symmetry. Fig. 21(c) is the distribution just before the

occasion of the breakdown of the computation. Fig. 22(c) is the distribution at the time instant when

the maximum lift force occurs. When the flow is symmetric, there are no excessive eddy viscosities in

the normal form and the logarithmic form. However, in the normal form, as the flow becomes

asymmetric, excessive eddy viscosities occur at several regions where the flow is almost uniform.

Figs. 23 and 24 show the distributions of the turbulent kinetic energy k, the turbulent dissipation

rate ε and the eddy viscosity νt along the broken lines indicated in Figs. 21(c) and 22(c). We plotted

k and ε in the logarithmic scale. As shown in Fig. 23, the eddy viscosity νt computed by the normal

Fig. 22 Distribution of the eddy viscosity by the logarithmic form at some time instants
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form is extraordinary large between y/D = 2 and y/D = 4 while there is no such large eddy viscosity

νt in the result by the logarithmic form. In this region, the turbulent dissipation rate ε becomes small

locally. Therefore, the excessive eddy viscosity occurs. As is observed in the backward facing step

flow, the balance between k and ε is not preserved in the normal form although it is kept in the

logarithmic form. Figs. 25(a)-(d) are the distribution of the streamline, pressure, turbulent kinetic

energy, and turbulent dissipation rate, respectively, at the same time instant as Fig. 22(c). For reasons

mentioned above, we confirmed that the logarithmic form is effective to unsteady flows.

7.3. Evaluation of the coefficient of the aerodynamic forces

We evaluated the coefficient of the aerodynamic forces. Table 3 shows the mean value of the drag

Fig. 23 Distribution of turbulent variables along the broken line in Fig. 21(c) (the result by the normal form)

Fig. 24 Distribution of turbulent variables along the broken line in Fig. 22(c) (the result by the logarithmic form)
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coefficient , the R.M.S. of the lift coefficient CL rms, the maximum value of lift coefficient CL max and the

Strouhal number St. The computational and experimental results by Kato (1997) and the computational

result by Shimada, et al. (2002) are also indicated. Although the drag coefficient is evaluated a little large

in comparison with the result of Kato, there is only small difference in the lift coefficient. The lift coefficient

of the present study is smaller than that of Shimada, et al. and closer to that of the computational work of

Kato. This difference is caused by the treatment of the near wall region. Kato and we used the wall function

to model the near wall region described in the section 5 while Shimada, et al. used the two-layer model of

Rodi (1991) in which smaller eddies are resolved in the near wall region. As a result using the wall function,

appropriate results are obtained in the present computation using the logarithmic form.

8. Conclusions

In this paper, for the numerical analysis of turbulent flows based on the k-ε model, we

investigated the performance of the logarithmic form proposed by Ilinca and Pelletier (1998),

specially focusing on transient or unsteady flows. We calculated a flow over a backward facing step

CD

Fig. 25 Distributions at the time instant of maximum lift force arising

Table 3 Coefficients of the aerodynamic forces

Present 2.37 0.78 1.1 0.136

Kato (Calc.) 2.05 0.82 1.2 0.145

Shimada, et al. (Calc.) 2.05 1.43 2.2 0.141

Kato (Exp.) 2.0 - 2.1 1.1 1.4 - 1.6 0.12 - 0.13

CD CL rms CL max St
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and a flow around a 2D square cylinder. The results are summarized below.

· From the result of the backward facing step flow by the normal form, during the transient

process, the clipping occurs in the region where the balance between k and ε was collapsed and

consequently excessive eddy viscosity was produced locally. In addition the clipping values

effects the transient process considerably.

· The use of the logarithmic form circumvented the excessive eddy viscosity and the collapse of

the balance between k and ε.

· From the result of the flow around the 2D square cylinder, we find that the logarithmic form is

also effective to unsteady flows.

Although the above knowledge is based on the specific time integration method and specific spatial

discretization used in this study, in the analysis employed by the k-ε model, the use of the

logarithmic form is effective for the unsteady flow and makes the analysis stable.
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(A.1)

[Continuity equation]

(A.2)

[K equation]
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[E equation]

(A.4)

Appendix B: Algorithm of the time integration

[I. Predictor phase (i = 0)]
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* Update τw, Pk, ε, εp on the wall boundary nodes by the wall function

(B.1)

[II. Solution phase (i = 1, 2)]

(B.2)

[ III. Corrector Phase ( i = 1, 2 ) ]

* Update τw, Pk, ε, εp on the wall boundary nodes by the wall function

(B.3)
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