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Abstract. A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted
at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and
Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the
dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths
were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge
dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and
the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-
width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm
(ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled
free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with
the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with
similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The
methodology was further verified by the comparison between the measured and predicted free-decay
responses. A comparison of results for different gap-widths revealed that variations of the gap-width
mainly affect the torsional damping property, and that the configurations with greater gap-widths show a
higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.
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1. Introduction

Long-span flexible bridges are quite sensitive to wind loads. Therefore, their potential wind-

induced vibrations must be carefully predicted before construction. Due to the complex

characteristics of the wind and the bridge structures, it is not surprising that bridges will experience

a variety of wind-induced vibrations in the natural wind field. However, it is first necessary to

ensure that the bridge is aerodynamically stable and to avoid the potentially destructive vibrations,

such as flutter.

According to Sato, et al. (1995 and 2000) and Matsumoto, et al. (2004), a slotted bridge deck has

good flutter characteristics and provides a possible method of improving flutter stability and thus

increasing the flutter speed of a bridge. Efforts were also made by the aforementioned researchers to

explain the reason for the good performance of slotted bridges. Sato, et al. (2000) employed wind

tunnel dynamic tests to investigate the behaviour of the slotted bridges in the coupled physical space

by estimating the unsteady aerodynamic forces of such structures. Xiang and Ge (2002) also

investigated the behaviour using a Computational Fluid Dynamics (CFD) approach. Matsumoto, et

al. (2004), however, turned to the static wind tunnel pressure tests to study the pressure distribution

on the surface of slotted bridges. In this paper, the behaviour was viewed from a different point, and

the characteristics of slotted bridges were investigated in both the uncoupled modal space and the

coupled physical space, to gain further understanding of the problems, i.e., why do slotted decks

possess better flutter characteristics?

In this paper, the effects of gap-width on the modal parameters (in the uncoupled modal space),

and subsequently the flutter derivatives (in the coupled physical space) of a real twin-deck cable-

stayed bridge, were investigated in a series of wind tunnel dynamic tests. Five 2.9 m long sectional

models of the bridge were fabricated with different gap-widths, but with identical cross-sectional

shape and chord length. The test models were supported by a custom designed rig-spring

mechanism. The models were excited by applying an initial displacement and allowed to vibrate in

the vertical and torsional directions.

A popular time-domain deterministic identification method, the Eigensystem Realization Algorithm

(ERA, Juang and Pappa 1985), an identification algorithm with clear physical meanings and good

noise-resistance capability, was employed to extract the dynamic and aerodynamic parameters from

the coupled free-decay responses of the models. The results of the zero gap-width configuration

were compared with the theoretical values for an ideal thin flat plate in smooth flow and other

published results for models with similar cross-sectional shape to validate the experimental and

analysis methodologies. The measured free-decay responses for Gap 1 were compared with the

responses predicted by the identified parameters to further validate the effectiveness of the

methodologies. The results of all the five gap-width configurations were also compared to determine

the effects of gap-width on the dynamic modal parameters and the aerodynamic stability of the

model.

2. Basic formulations

At a specific wind speed, the motion of a bridge deck with two-degrees-of-freedom (2DOF), i.e.,

vertical bending (h) and torsion (α), in smooth flow can be modelled as:

(1)M[ ] y·· t( ){ } C
0[ ] y· t( ){ } K

0[ ] y t( ){ }+ + Fse t( ){ }=
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in which: [M ], [C0], and [K0] are the structural mass, damping and stiffness matrices of the 2DOF

bridge dynamic system per unit span; {y} = [h,α]T is the displacement response vector; and

{Fse]=[Lse, Mse]
T is the self-excited force vector, where Lse and Mse are the self-excited lift force (N/m)

and pitching moment (N · m / m) respectively per unit span of bridge, as given by Scanlan (1971)

and Sarkar, et al. (1994):

(2)

in which ρ is air density (kg/m3); U is the approach mean wind speed (m/s); B is the bridge deck

width (m); K is the dimensionless reduced frequency, and is defined as K =ωB/U; where ω is the

circular vibration frequency (rad/s) at wind speed U;  and , (i=1, 2, 3, 4), are the dimensionless

flutter derivatives.

By moving the self-excited force to left-hand side and incorporating the “coefficients” of each

variable, Eq. (1) can be rewritten as Eq. (3), in which {n} is a null column vector, i.e., {n}=[0, 0]T;

[Ce] and [Ke] are the damping and stiffness matrices aerodynamically modified by the self-excited

lift force and pitching moment. It is noteworthy that [Ce] and [Ke] are asymmetrical.

(3)

 For a 2DOF bridge dynamic system modelled by Eq. (3), it is possible to decompose both its

free vibration displacements and the self-excited forces into two parts, associated with the vertical

and torsional complex modes, respectively:

(4)

Eq. (3) therefore can be decomposed into the following two matrix equations (Chen and Kareem

2004):

  (5)

  (6)

in which {yh(t)}, [C e(Kh)] and [Ke(Kh) are the displacement vector, damping matrix and stiffness

matrix associated with the vertical complex mode, and {yα(t), [C e(Kα)] and [Ke(Kα)] are those

associated with the torsional complex mode. It can be concluded from Eq. (2) to Eq. (6) that the free

vibrations of the 2DOF bridge dynamic system correspond to two sets of eight flutter derivatives

(sixteen in total) associated with the vertical and torsional complex modes respectively. Since, from

the point of structural dynamics, the free vibrations of a 2DOF dynamic system cannot provide

sufficient information to uniquely determine sixteen independent variables, approximations have to

be made to solve the problem (Sarkar, et al. 1994, Iwamoto and Fujino 1995, Gu, et al. 2000):
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(7)

(8)

Therefore, the governing equations of motion of the 2DOF bridge dynamic system can be

approximated by Eq. (9), which is deduced by substituting the effective damping matrix [C ef] and

the effective stiffness matrix [Kef] for [Ce(Kh)] and [Ke(Kh)] in Eq. (5) and for [Ce(Kα)] and

[K e(Kα)] in Eq. (6), and summing the results to arrive at:

(9)

Eq. (9) and the approximations made in Eq. (7) and Eq. (8) actually imply that at a specific wind

speed, the self-excited lift force and pitching moment of the 2DOF bridge dynamic system can be

approximated by Eq. (10), leaving only eight independent flutter derivatives.

(10)

It is also possible for Eq. (9) to be expressed by the following state equations:

(11)

in which  is the state vector; [A] and [C] are the state and output matrices,

respectively. In discrete-time space, Eq. (11) would be converted into the following form:

(12)

where {x(k=1)} and {x(k)} are the states at time instant (k+1)∆t and k∆t; {y(k)} is the response at

time k∆t, where ∆t is the sampling time interval (s). [AD] is the state matrix in discrete-time space.

Therefore, the response of the bridge to an initial state {x(0)}, the free-decay response, can be

written as:

          (k > 0) (13)
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(14)

the state matrix [AD] can be determined by the Eigensystem Realization Algorithm (ERA) presented

by Juang and Pappa (1985):

(15)

in which the subscripts r and s are the number of row and column shifts of the Hankel matrix,

respectively, and [P], [S] and [Q] are matrices used to construct the pseudo-inverse of [Hrs(0)] and

are determined by the following singular value decomposition (SVD):

(16)

By solving the eigenvalue problem of the state matrix [AD] and converting the eigen-pairs into

continuous-time space, the modal parameters of the bridge deck can be determined. Subsequently,

the state matrix [A] in Eq. (11), and then the effective damping and stiffness matrices [C ef] and

[K ef], can be estimated by the pseudo-inverse technique. The flutter derivatives can then be obtained

by comparing [C ef] and [K ef] with [C 0] and [K 0], the damping and stiffness matrices at zero wind

speed:

(17)

in which:

(18)

and m and I are the mass (kg/m) and mass moment of inertia ( ) of the 2DOF bridge

dynamic system per unit span of the bridge.

Therefore, the eight flutter derivatives, as defined in Eq. (10), at a specific wind speed can be

determined by: 
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( i ). Extracting the natural modal parameters from the free-decay responses at zero wind speed by

ERA and determining the structural stiffness and damping matrices by the resultant modal

parameters; 

(ii). Extracting the modal parameters from the free-decay responses at the specific wind speed by

ERA and determining the effective stiffness and damping matrices [K ef ] and [C ef ] by the

resultant modal parameters; 

(iii). Determining flutter derivatives by Eq. (17).

3. Wind tunnel dynamic tests

3.1. Model, tests and data acquisition procedures

To investigate the effects of gap-width on the dynamic and aerodynamic characteristics of a real

twin-deck cable-stayed bridge, five 2.9 m long, nominally rigid sectional models of the bridge were

fabricated to produce gap-width (b) to total width (B) ratios of 0% (Gap 1, i.e. zero gap), 2.4%

(Gap 2), 16% (Gap 3), 27% (Gap 4) and 35% (Gap 5), with the individual chord dimensions of the

bridge properly simulated. Fig. 1 shows the cross-sectional shape of the models, and Table 1 lists

the corresponding dimensions of different configurations at model scale.

The test models were elastically suspended by a custom-designed rig-spring mechanism, as shown

in Fig. 2, in the high-speed test section of a boundary layer wind tunnel with a cross-section of 3 m

(width) by 2 m (height) at the CLP Power Wind/Wave Tunnel Facility (WWTF) at The Hong Kong

University of Science and Technology (HKUST) to simulate a 2DOF bridge dynamic system that is

free to vibrate in the vertical bending and torsion directions. The mass, mass moment of inertia

about center of mass, vertical natural frequency and torsional-to-vertical frequency ratio of the

2DOF bridge dynamic system were kept nearly constant to emphasize the effects of gap-width. The

ratio of the torsional-to-vertical natural frequency of the bridge dynamic system was about 2.2:1,

where the vertical natural frequency was approximately 1.72 Hz.

Fig. 1 Cross-sectional shape of the tested sectional bridge model

Table 1 Dimensions of the bridge sectional models at model scale (unit: mm)

Gap 1 Gap 2 Gap 3 Gap 4 Gap 5

Deck width (B) 488 500 581 666 751

Deck depth (d) 44 44 44 44 44

Chord width (c) 244 244 244 244 244

Gap-width (b) 0 12 93 178 263
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The mass of the 2DOF bridge dynamic system comprised the mass of the bridge sectional model,

the mass of the custom-designed rig-spring mechanism, and additional mass, as shown in Fig. 2.

The total stiffness of all the springs was determined by the required mass, the mass of the twin-deck

bridge at model scale, and the vertical natural frequency of the 2DOF bridge dynamic system.

Subsequently, the required torsional-to-vertical natural frequency ratio was obtained by fine-tuning

the space between the additional mass (L1 in Fig. 2) and the space between the springs (L2 in Fig.

2). The mass moment of inertia of the bridge dynamic system was simply calculated from the

torsional natural frequency, the stiffness of the springs, and the space between the springs.

The models were tested at zero angle of wind incidence and at zero inclination only, in smooth

flow, with a turbulence intensity less than 1%, and at wind speeds ranging from 1 m/s up to the

approximate design mean wind speed of the prototype bridge (10 m/s at model scale) at 1 m/s

intervals. Four laser sensors, denoted as s1, s2, s3 and s4 in Fig. 3, were set up at both ends of the

bridge model to record its displacement responses, which were subsequently used to extract the

Fig. 2 Bridge sectional model suspended by a custom-designed rig-spring mechanism

Fig. 3 Top view of the positions of laser sensors (s1, s2, s3 and s4) to measure the vertical displacement responses
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corresponding vertical (h) and torsional (α) free-decay responses of the model:

(19)

in which z1, z2 and z3 are the displacement responses (m) of the bridge model recorded by sensor s1,

s2 and s3, respectively, and 2 l is the distance between sensor s1 and sensor s2, the two sensors at the

same end of the model.

To excite the model, a strong string was attached to the bridge model to give it an initial

displacement. The coupled free-decay responses of the model were sampled at a rate of 100 Hz for

a period of 70 seconds and were low-pass filtered at 50 Hz. ERA was subsequently employed to

extract the modal parameters and the eight flutter derivatives of the model from its coupled free-

decay responses. The sampling and identifying processes were each repeated five times to minimize

the potential effects of noise and to give the average values of the corresponding parameters.

3.2. Methodology verification

The Eigensystem Realization Algorithm (ERA), which was utilized by Qin and Gu (2004) and

h
z1 z3+

2
---------------= α

z2 z1–

2l
--------------=

Fig. 4 Flutter derivatives of zero gap-width configuration in comparison with previously published results

—— : thin flat plate (Scanlan) ------ : Gap 1 (curve fitted) ∇: Gap 1

□ : thin flat plate (Scanlan 1971)      + : thin flat plate (Gu, et al. 2000)

○ : streamline bridge deck (Sarkar, et al. 1994)
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proven to be an effective means of determining the natural properties of a 2DOF bridge model, was

employed in the current study to determine the natural properties and the aerodynamic parameters

of the 2DOF bridge dynamic system tested. Before any application to further investigations, the

wind tunnel test techniques and data analysis programs were verified and benchmarked.

According to Scanlan’s theory (1971), flutter derivatives of an ideal thin flat plate in smooth flow

can be defined by Theodorson’s functions. As shown in Fig. 1 and Table 1, the cross-sectional

shape of the tested sectional model with zero gap-width (Gap 1) had a width (B) to depth (d) ratio

Fig. 5 Segments of measured free-decay responses for Gap 1 in comparison with those predicted
by the identified stiffness and damping matrices

——: measured responses   ○ : predicted responses
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of about 11:1, and is of similar geometrical proportions to a thin flat plate and should thus have

similar aerodynamic properties. Fig. 4 shows the identified four important flutter derivatives , ,

 and  of the tested zero gap-width configuration compared with the corresponding theoretical

values (Scanlan, 1971) and the published results of models with similar cross-sectional shapes

(Sarkar 1994 and Gu 2000). All the results in Fig. 4 were normalized by the actual vertical

vibration frequencies of the models at specific test wind speeds. The reasonable agreement between

the current study and the previously published results highlights the effectiveness of the

experimental and data analysis techniques utilized.

The analytical procedures used in this study were also verified further by comparing measured

and predicted free-decay responses of the Gap 1 configuration at different wind speeds. The responses

of a given time-invariant dynamic system, modelled by its state matrix [AD] and the input matrix

[C], to an initial state {x(t0)} can be readily calculated according to Eq. (12). For the current study,

the stiffness and damping matrices of the 2DOF bridge dynamic system at a specific wind speed

can be extracted from the measured free-decay responses by the methodology described in Section

2, and the initial state can be determined from the responses of the system measured at a time

instant t0. The responses of the system after t0 therefore can be predicted according to Eq. (12).

Fig. 5 presents the comparison of the measured and predicted free-decay responses for Gap 1, at 0

m/s and 5 m/s. To highlight the differences between the measured and predicted responses, only a

short segment of the responses was shown in Fig. 5. The predicted responses matched very closely

with the responses measured at each corresponding time instant, which further verifies the

effectiveness of the experimental and data analysis techniques employed.

3.3. Identified modal frequencies and damping ratios

Fig. 6 and Fig. 7 present the identified modal frequencies and modal damping ratios, respectively,

of the vertical and torsional complex modes of models with different gap-widths. Although the

modal frequencies of the vertical and torsional modes showed slight increases and decreases with

wind speed, respectively, in comparison with the damping ratios, overall the modal frequencies were

relatively insensitive to the variations of gap-width. In contrast, the modal damping ratio of the

H1

*
A1

*

A2

*
A3

*

Fig. 6 Modal frequencies of models with different gap-widths

∇: Gap 1 +: Gap 2 ∆: Gap 3 □ : Gap 4 ○ : Gap 5
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vertical mode for each gap-width increased quickly with an increase of wind speed, although the

differences between different gap-width configurations were comparatively small. The modal

damping ratio of the torsional mode, however, was much more sensitive to gap-width and was

enhanced significantly by increasing the gap-width above 16% of the bridge’s total width, i.e.

configurations denoted as Gap 3, Gap 4 and Gap 5, especially at the higher wind speeds. At 10 m/s,

the maximum test wind speed, the modal damping ratio of the torsional mode for the configuration

with the biggest gap-width (Gap 5) was about 10%, approximately 60% of the corresponding modal

damping ratio of the vertical mode (around 16%). In comparison, for the zero gap-width

configuration, at the maximum test wind speed, the modal damping ratio of the torsional mode was

only approximately 1.5%, less than 10% of the corresponding damping ratio of the vertical mode

(about 18%).

The mode shapes of the vertical and torsional complex modes can be defined as per Eq. (20) and

Eq. (21), respectively, where the first subscript of each term corresponds to the degree-of-freedom

and the second subscript corresponds to mode number. The mode shape matrix of the 2DOF bridge

dynamic system therefore can be written as Eq. (22).

(20), (21)

(22)

Fig. 8 presents the amplitude ratios of the vertical and torsional complex modes of the 2DOF

bridge dynamic system, for models with different gap-widths. The amplitude ratios of the vertical

mode and torsional mode were defined as  and  respectively, where c is the

chord width. Fig. 8 suggests that for all the five test models, the amplitude ratios of the vertical and

torsional complex modes both were amplified with an increase of wind speed. However, comparing

the trend for one gap-width to another, no remarkable difference of the amplitude ratios was

φ{ }h

Ahh

A
αh⎩ ⎭

⎨ ⎬
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= φ{ }
α

Ahα

A
αα⎩ ⎭

⎨ ⎬
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c A
αh / Ahh Ahα /c Ahh

Fig. 7 Modal damping ratios of models with different gap-widths

∇: Gap 1 +: Gap 2 ∆: Gap 3 □ : Gap 4 ○ : Gap 5
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observed at all the test wind speeds.

Fig. 9 presents the phase differences of the vertical and torsional complex modes of the 2DOF

bridge dynamic system, for models with different gap-widths. The phase differences between the

vertical and torsional components for the vertical and torsional modes were defined as angle(Aαh) −
angle(Ahh) and angle(Ahα) − angle(Aαα), respectively. It is evident that gap-width shows much more

effects on the phase differences, as compared to the amplitude ratios, of the vertical and torsional

complex modes.

3.4. Identified dimensionless flutter derivatives

The eight dimensionless flutter derivatives related to the vertical bending and torsion motions of

the 2DOF bridge dynamic model were simultaneously extracted from the coupled free-decay

responses. Since  and , the two flutter derivatives associated with the vertical displacement

response, have proven to be very sensitive to the potential noise during wind tunnel tests (Gu, et al.

2001), and their influence on the flutter properties of bridges is very small (Iwamoto and Fujino,

1995), the relevant results were not reported in the current paper. Fig. 10 presents the six

dimensionless flutter derivatives of the five bridge models with different gap-widths, where  and

 were normalized by the actual vertical frequency of the bridge dynamic system at the specific

H4

*
A4

*

H1

*

A1

*

Fig. 8 Amplitude ratios of the vertical and torsional complex modes

——: Gap 1 (curve-fitted) +: Gap 2 ∆: Gap 3 □ : Gap 4 ○ : Gap 5
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test wind speed, while , ,  and  were normalized by the actual torsional frequency, as

shown in Eq. (17).

Each dimensionless flutter derivative of the five tested configurations was plotted with respect to

the dimensionless reduced velocity U/fB, in which f is the actual vertical or torsional frequency (Hz)

of the 2DOF bridge dynamic system at the specific test wind speed. Fig. 10 reflects that the effects

of gap-width on  and  are negligible, and that the magnitude of  was magnified when the

gap-width between the twin decks was increased from 0% (Gap 1) to 35% (Gap 5) of the total deck

width, while the magnitudes of ,  and  were diminished. However, when the gap is

increased from 16% (Gap 3) to 27% (Gap 4) and 35% (Gap 5) of the total deck width, the

differences of the corresponding dimensionless flutter derivatives are quite small, and it is almost

impossible to distinguish between  for Gap 3, Gap 4 and Gap 5.

3.5. Identified dimensional flutter derivatives

Since the dimensionless flutter derivatives were normalized by the total width of the bridge deck,

i.e., B in Fig. 1, which is different for various models with different gap-widths, it is not convenient

or reasonable to apply them to investigate the effects of gap-width on the self-excited force and

A2

*
A3

*
H2

*
A3

*

H1

*
H3

*
A2

*

H2

*
A1

*
A3

*

A2

*

Fig. 9 Phase differences of the vertical and torsional complex modes

—— and ∇: Gap 1 ------ and +: Gap 2

------ and ∆: Gap 3 ------ and □ : Gap 4 ------ and ○ : Gap 5
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moment of bridges. In this case, alternative parameters should be utilized.

As stated in Scanlan’s paper (1971), in some circumstances, it has been shown more convenient to

replace the dimensionless flutter derivatives  and  by the dimensional coefficients listed in

Eq. (23):

H1

*
A1

*

Fig. 10 Dimensionless flutter derivatives of models with different gap-widths

—— Gap 1 (curve fitted) ------ Gap 5 (curve fitted)

∇: Gap 1 +: Gap 2 ∆: Gap 3 □ : Gap 4 ○ : Gap 5

------ and ∆: Gap 3 ------ and □ : Gap 4 ------ and ○ : Gap 5



Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width 477

(23)

The dimensional coefficients, Hi and Ai (i = 1, 2, 3, 4), correspond to the dimensional forms of

flutter derivatives and are named “dimensional flutter derivatives” in the current study. The self-

excited lift force and pitching moment therefore can be expressed as:

(24)

Fig. 11 presents the six dimensional flutter derivatives H1 to H3 and A1 to A3 for models with

different gap-widths. Instead of adopting the reduced velocity, as was the case for the dimensionless

flutter derivatives, each of the dimensional flutter derivatives was plotted with respect to the test

mean wind speed. In general, the trend of each resultant dimensional flutter derivative is quite

consistent with that of the corresponding dimensionless flutter derivative, although the dimensional

flutter derivatives show a relatively smaller degree of scatter.

Fig. 11 indicates that the flutter derivatives A2 and A3, corresponding to the torsional damping and

stiffness respectively, are the most significantly affected by gap-width. As shown in Eq. (24), A2 and

A3 are related to the contributions of various responses to the self-excited pitching moment.

Evidently, the effects of gap-width are more prominent for the self-excited pitching moment than for

the lift force.

When the gap-width between the twin decks was increased from 0% (Gap 1) to 35% (Gap 5) of

the total deck width, the magnitude of A2 was magnified, while the magnitude of A3 was

diminished. This trend corresponds to an enhanced contribution by the torsional velocity, while the

contribution of torsional displacement was diminished.

It is evident from the definition of self-excited force, i.e., Eq. (2), that the free-vibrations of the

2DOF bridge dynamic system are aerodynamically coupled, including both damping coupling and

stiffness coupling, and are represented by the off-diagonal terms, corresponding to flutter derivatives

H2, H3 and A1, in the effective damping and stiffness matrices. Fig. 11 suggests that the effect of

gap-width on H1 and A1 are negligible, and that compared with A2 and A3, H2 and H3 are less

sensitive to gap-width, which means that the effects of gap-width on the coupling between the

vertical and torsional vibrations are less significant.

4. Concluding remarks

A series of wind tunnel dynamic model tests were conducted and system identification analyses
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were performed to investigate the effects of gap-width on the dynamic and aerodynamic charac-

teristics of a real cable-stayed twin-deck bridge. Five 2.9 m long sectional models were fabricated

and tested from 1 m/s up to the design mean wind speed of the bridge. The test results suggest that:

( i ). A central gap contributes significantly to the torsional damping properties of the bridge.

Increasing the gap-width has the potential to enhance the overall torsional damping and thus

the aerodynamic stability of the bridge.

Fig. 11 Dimensional flutter derivatives of models with different gap-widths 

—— Gap 1 (curve fitted) ------ Gap 5 (curve fitted)

∇: Gap 1 +: Gap 2 ∆: Gap 3 □ : Gap 4 ○ : Gap 5
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(ii). The relative size of a central gap affects the self-excited pitching moment more than the lift

force.

(iii). For the tested 2DOF bridge dynamic system, with a large torsional-to-vertical frequency ratio

(around 2.2), at wind speeds lower than the design mean wind speed of the prototype bridge,

the relative size of a central gap affects the torsional damping and stiffness more than the

coupling between the vertical and torsional vibrations.
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