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Abstract. Few mathematical methods attracted theoretical and applied researches, both in the scientific
and humanist fields, as the Proper Orthogonal Decomposition (POD) made throughout the last century.
However, most of these fields often developed POD in autonomous ways and with different names,
discovering more and more times what other scholars already knew in different sectors. This situation
originated a broad band of methods and applications, whose collation requires working out a
comprehensive viewpoint on the representation problem for random quantities. Based on these premises,
this paper provides and discusses the theoretical foundations of POD in a homogeneous framework,
emphasising the link between its general position and formulation and its prevalent use in wind
engineering. Referring to this framework, some applications recently developed at the University of Genoa
are shown and revised. General remarks and some prospects are finally drawn.

Keywords: aerodynamics; digital simulation; proper orthogonal decomposition; random processes; turbu-
lence; wind engineering.

1. Introduction

This paper is the logical prosecution of a companion paper (Solari, et al. 2007) that provides a

state-of-the-art on the birth, the evolution and the most recent developments of the Proper

Orthogonal Decomposition (POD), with special regard to its applications in wind engineering. That

paper points out the plurality of the contexts where POD is applied, and the peculiarity that different

fields often developed this technique in autonomous forms, discovering several times what other

fields already knew, coining a long series of names and acronyms which certainly did not facilitate

the homogeneity of this matter. This situation originated a broad band of fragmentary and

variegated methods and applications, whose collation requires working out a comprehensive

viewpoint on the representation problem for random quantities.

Right in this spirit, this paper illustrates some theoretical aspects of POD in a homogeneous and

comprehensive framework (Section 2), stressing the different properties that characterise finite

† Assistant Professor
‡ Professor, Corresponding Author, E-mail: solari@diseg.unige.it
‡† Post Doc Researcher

DOI: http://dx.doi.org/10.12989/was.2007.10.2.177



178 Luigi Carassale, Giovanni Solari and Federica Tubino

energy and infinite energy processes, and the link between the general position and the formulation

of POD and its prevalent use in wind engineering. Some applications recently developed at the

University of Genoa are also revised and embedded within this framework (Section 3). General

remarks and some conclusions are drawn in Section 4.

2. Theoretical aspects

A zero-mean random process is fully represented, at the second order, by its covariance function.

Unfortunately, the interpretation of physical phenomena via the study of such a quantity is often a

difficult task since is seldom supported by intuition. Under this viewpoint, it seems more

appropriate representing a random process using quantities related to the shape of its typical

realisations.

POD tries to achieve this purpose searching for deterministic shapes, the POD modes, which are

representative, in some statistical sense, of the realisations of the process and can be used as

functional-bases well suited for the construction of representation formulae. This method assumes

different expressions whether or not the process can be idealised as stationary or homogeneous.

Stationarity hypothesis is usually accepted for the representation of physical phenomena

characterised by a time scale much faster than the observation period; the term homogeneous

identifies the same property, but is usually referred to space. In the following treatment, a random

process fulfilling the above property is generically referred to as stationary, except for the cases

explicitly dealing with spatial coordinates for which the term homogeneous is adopted.

The representation problem is formalised in rather wide terms in Section 2.1, referring to random

processes whose realisations are members of a generic inner-product vector space. The treatment is

particularised first to random vectors with values in Cn, attaining the formulation of the Principal

Component Analysis (PCA) (Section 2.2). Section 2.3 extends the formulation to the case of finite-

energy random processes leading to the Karhunen-Loeve Expansion (KLE). Section 2.4 provides a

generalisation of these concepts to develop the representation of infinite-energy random processes, in

particular stationary ones. An m-dimensional (m-D) process considered as stationary with respect to

some dimensions and non-stationary with respect to the other ones is referred to as an incompletely

stationary process and is treated in Section 2.5. In practical applications, the spatial coordinates are

often discretised, leading to approximate an m-D process function of time and space with an n-variate

(n-V) process function of time only; for such a process (whose realisations are trajectories in Cn) POD

can be interpreted as a linear transformation whose properties are described in Section 2.6. Section 2.7

illustrates the use of POD-based representations for developing digital simulation procedures aimed at

the generation of stationary and non-stationary Gaussian time series; the non-Gaussian case is briefly

discussed for the sake of completeness.

2.1. Position of the problem

Let v be a zero-mean random vector whose realisations are in the vector space . Let us consider

the problem of finding a deterministic vector φ ∈  that represents the most typical realization of v,

i.e., that maximises the likelihood measure:

(1)

under the constrain:

J E v φ,( ) 2[ ]=



Proper orthogonal decomposition in wind engineering. Part 2: Theoretical aspects and some applications 179

(2)

where E[•] is the statistic average operator and (•,•) represents the inner product in , ||•|| being the

corresponding norm. The problem represented by Eqs. (1) and (2) can be solved by maximising the

functional:

(3)

where λ is a Lagrange multiplier, Cv = E[v ⊗ v] is the correlation (and also the covariance since v is

zero-mean) of v, and ⊗ represents the outer product in .

2.2. Representation of random vectors in Cn

Let us consider the case in which ≡Cn, thus v is an n-V random vector whose realisations are in

C
n. In such a case, inner and outer products are particularised as:

(4)

where v and φ list the components of v and φ along some base in Cn, and the superscript *

represents the conjugate transpose. Substituting Eq. (4) into Eq. (3), the functional J1 results:

(5)

where Cv= E[vv*] is the covariance matrix of v. The stationarity condition on J1 produces the

equation:

(6)

whose solutions λ and φ are, respectively, the eigenvalues and the eigenvectors of the matrix Cv. Cv

is (Hermitian) symmetric and non-negative definite, thus the eigensolutions of Eq. (6) are in number

of n, the eigenvalues are real and non-negative, the eigenvectors are orthogonal (or can be chosen as

orthogonal in case of multi-dimensional eigenspaces) and are considered here as orthonormal, i.e.,

||φk|| = 1, k = 1,...n. From a geometrical point of view, the eigenvectors φk (k = 1,...n) are the principal

axes of the tensor Cv.

Any realisation of the vector v can be represented as a linear combination of the eigenvectors

through the formula:

(7)

where xk (k = 1,...n) are random variables referred to as the Principal Components (PC) of v. Thanks

to the orthonormality of the eigenvectors, such random variables result:

            (k = 1,...n) (8)

Moreover, again for the orthonormality of the eigenvectors and for Eq. (6), it is easy to

demonstrate that the PC are uncorrelated with each other and their variance is given by the

corresponding eigenvalue:

(9)

φ 2
1=

J1 E v φ,( ) 2[ ] λ φ 2
– Cv φ φ⊗,( ) λ φ 2

–= =

v φ,( ) v
*
φ= ;       v φ⊗ vφ

*
=

J1 φ
*
Cvφ λφ*

φ–=

Cvφ λφ=

v φkxk

k 1=

n

∑=

xk φk
*v=

E xhxk
*[ ]

λh           if  h k=

0             otherwise⎩
⎨
⎧

=
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If the eigenvalues are sorted in decreasing order, the first eigenvector φ1 represents the typical (the

most recurrent) direction of the random vector v, while the first term of the sum in Eq. (7),

v(1) =φ1x1, represents its best mono-variate approximation. The other terms, v(k) =φkxk (k = 2,...,n)

contain components of v that cannot be accommodated in v(1) and can be idealised as corrections of

progressively decreasing amplitude.

The vector v has been assumed as zero-mean; however, a non-zero mean value can be easily

included in Eq. (7) as a deterministic addendum. In this way, the terms v(k) characterise the random

fluctuation of v around its mean value. Some authors, on the contrary, defined Eq. (6) using the

correlation matrix, instead of the covariance matrix, obtaining eigenvalues and eigenvectors

depending on the mean value of v. In this case it happens that, if the mean value of v is large with

respect to its random fluctuation, the first eigenvector φ1 tends to assume its direction, while the

subsequent eigenvectors tend to characterise the random fluctuation orthogonal to the mean value.

Combining Eqs. (7) and (9) the covariance matrix Cv can be expressed by the spectral

decomposition (Mercer 1909):

(10)

Eqs. (6)-(10) define a conceptual scheme for the representation of random vectors referred to as

Principal Component Analysis (PCA). 

2.3. Representation of finite-energy random processes

Let us consider the space  of the complex-valued functions defined on the interval [a, b] ⊂R.

Eqs. (1)-(3) can be particularised to the present case defining inner and outer products as:

(11)

which imply the necessity of restricting the space  to square-integrable functions on [a, b]. This

corresponds, from a physical point of view, to the assumption that the process v(t) has finite energy.

It is possible to demonstrate through variational methods (Lumley 1970) that the functional J1 is

stationary if φ(t) and λ fulfil the condition represented by the integral Fredholm-type equation:

(12)

where Cv(t1, t2) = E[v(t1)v
*(t2)] is the covariance function of the process v(t); the solutions λ and φ(t)

of Eq. (12) form a infinite denumerable set (i.e., its elements can be put in one-to-one correspon-

dence with the set of the natural numbers N) and are, respectively, the eigenvalues and the eigen-

functions of Cv(t1, t2). Cv(t1, t2) is (Hermitian) symmetric and non-negative definite, thus the eigen-

values are real and non-negative; the eigenfunctions are orthogonal with respect to the inner product

defined by Eq. (11), and are considered here as orthonormal, i.e., ||φk(t)|| = 1, k ∈N.

The analogy between Eq. (12) and Eq. (6) is quite evident; the substantial consequence of the

passage to an infinite-dimensional space is the presence of an infinite number of eigensolutions.

Likewise in the finite-dimensional case, however, such eigenfunctions constitute a base for the space

C
v

φkφk
*λk

k 1=

n

∑=

v φ,( ) v
*

t( )φ t( )dt;                 v φ⊗ v t1( )φ*
t2( )=

a

b

∫=

Cv t1 t2,( )φ t2( )dt2
a

b

∫ λφ t1( )=
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, thus any realisation of the process v(t) can be expressed by the series expansion:

(13)

where xk are random coefficients given by the projection of v(t) on the eigenfunctions:

            (k = 1,2,...) (14)

and are uncorrelated according to Eq. (9). Eqs. (13) and (14) are the obvious transposition of Eqs.

(7) and (8) to the continuous case and, combined with the definition of the covariance function,

provide a spectral representation formula analogous to Eq. (10):

(15)

Eq. (13) is referred to as the Karhunen-Loeve Expansion (KLE) or the Proper Orthogonal Decom-

position (POD) of the process v(t), the eigenfunctions φk(t) are referred to as POD modes, and the

random coefficients xk are defined as PC.

Eqs. (12)-(15) can be easily generalised to consider the case of n-V, m-D processes whose

realisations have values in Cn and are square-integrable functions over the domain D⊂Rm updating

the definitions of the products given in Eq. (11).

2.4. Representation of infinite-energy processes - Stationary random processes

As it has already been observed, the problem of the representation of infinite-energy processes

cannot be studied following the above treatment. The realisations of such processes, indeed, are not

likely to be square-integrable, thus the inner product in Eq. (11) cannot be defined. A technical

consequence of this situation is that the convergence of the integral in Eq. (12), defining the POD

modes, is not assured.

A relevant class of infinite-energy processes comprehends the stationary ones, whose realisations

are not square-integrable since (almost surely) they do not vanish for t tending to infinite. Such kind

of processes have the property that the covariance function Cv(t1, t2) does not depend on the

parameters t1 and t2 separately, but only on their difference, τ= t1 − t2, i.e.;

                      (16)

The symbol ∼, used to distinguish Cv (function of two variables) and  (function of one variable),

is dropped in the following, whenever the choice between the two functions is clear from the

context.

In the class of stationary processes, a relevant case in which the mentioned mathematical

difficulties can be easily circumvented does exist and regards the so called mean-square-periodic

processes. For such processes the following relationship holds (Papoulis 1965):

(17)

for some T representing the period. In this case, the maximisation of the functional J1 can be

v t( ) φk t( )xk

k 1=

∞

∑=

xk φk
* t( )v t( )dt

a

b

∫=

Cv t1 t2,( ) φk t1( )φk
* t2( )λk

k 1=

∞

∑=

Cv t τ t,+( ) E v t τ+( )v
*

t( )[ ] C̃v τ( )= = t∀ R∈

C̃v

E v t( ) v t T+( )–( )2[ ] 0=
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performed on the finite interval [−T/2, T/2], being assured to meet the likelihood requirement

everywhere. If the realisations of v(t) are square-integrable over such an interval, Eqs. (11)-(15)

perfectly hold just letting a = −T/2 and b = T/2.

Eq. (17) implies that the covariance function  is periodic with period T (Papoulis 1965) and, as

such, can be represented by the Fourier series expansion:

(18)

where ωk = 2πk/T and sk are the Fourier coefficients defined as:

(19)

Substituting Eq. (18) into Eq. (12), it can be demonstrated that the eigensolutions λ and φ(t) must

have the form:

(20)

where the eigenfunctions have been normalised with respect to the inner product defined in Eq.

(11), i.e., ||φk|| = 1, k ∈N.

The POD modes of a mean-square-periodic process are denumerable infinite and correspond to

the Fourier modes. Accordingly, any realisation of the process v(t) can be represented by

particularising Eqs. (13) and (14) as:

(21)

(22)

Again, the PC of the process, xk, are uncorrelated with each other according to Eq. (9). The

spectral representation formula for the covariance function remains expressed by Eq. (18) that

combined with Eq. (20) can assume the form given in Eq. (15).

In the general case of non-periodic stationary processes, the search for the POD modes φ(t) should

be performed letting t ∈(−∞, ∞) and leads to mathematical difficulties of formal and technical

nature. Formal difficulties are related to the definition of the functionals J and J1 (Eqs. (1)-(3)) and

may be circumvented through the concept of generalised functions (Kanwal 1983); technical

difficulties arise in the calculation of the integral of Eq. (12) (over the interval (−∞,∞)) that may not

converge.

An elegant way-out (Lumley 1970) consists in writing Eq. (12) in a weak form multiplying both

sides by a test function u(t1) and integrating over t1:

(23)

C̃v

Cv t1 t2,( ) C̃v t1 t2–( ) e
iωk t

1
t
2

–( )
sk

k ∞–=

∞

∑= =

sk
1

T
--- e

iωk– τ
Cv τ( )dτ

T– 2⁄

T 2⁄

∫=

λk Tsk= ;            φk t( ) 1

T
-------e

iωkt
=            k 1± 2± ..., ,=( )

v t( ) 1

T
------- e

iωkt
xk

k ∞–=

∞

∑=

xk
1

T
------- e

iωk– t
v t( )dt

T– 2⁄

T 2⁄

∫=            k 1± 2± ..., ,=( )

u
*

t1( )Cv t1 t2,( )φ t2( )dt2dt1
∞–

∞

∫
∞–

∞

∫ λ u
*

t1( )φ t1( )dt1
∞–

∞

∫=
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Eq. (23) has the same meaning of Eq. (12) provided that it can be fulfilled for any choice of the

test function u within a suitable space of functions that are exponentially decreasing at infinity

(Lumley 1970).

Introducing the condition of stationarity through Eq. (16), Eq. (23) can be rewritten as:

(24)

Eq. (24) can be transformed into the frequency (or wave-number) domain through the Parseval

theorem (e.g. Priestley 1981), making use of the properties of the convolution product. It yields:

(25)

where  and  are the Fourier transform of u and φ, respectively; Sv is the power spectral density

function (psdf) of v(t) and ω is the circular frequency. Here, the term frequency is adopted in a

general sense without a specific physical meaning; in fact, ω represents the actual circular frequency

when the variable t stands for a time coordinate, while it indicates the wave number when t

corresponds to a space coordinate. Moreover, the existence of the Fourier transform of φ(t) as an

ordinary function is not assured, thus  should be interpreted as a generalised function. 

Since Eq. (25) must be fulfilled for any choice of the function , which surely exists as an

ordinary function since u has been chosen among rapidly (enough) decreasing functions, any

solution of Eq. (25) must be given in the form:

(26)

for any real parameter ω′; δ is the Dirac function. The POD modes can be obtained by an inverse

Fourier transform of Eq. (26) and depend, as well as the eigenvalues, on the real parameter ω′.

(27)

Likewise in the case of periodic processes, the POD modes correspond to the Fourier modes; in

this case, however, they are non-denumerable infinite (a mode for any value of the real parameter

ω′). The POD eigenvalues correspond to the psdf Sv(ω) and constitute a so-called continuous

spectrum. Moreover, the eigenfunctions cannot be normalised, since their norm defined according to

Eq. (11) diverges; it follows that the generalisation of Eq. (21) to represent the realisations of the

process v(t) should be obtained introducing the Stieltjes integral (Priestley 1981):

(28)

where Y(ω) is a random process whose increments dY(ω) = Y(ω + dω) − Y(ω) have order O(dω1/2) and

are uncorrelated on non-overlapping intervals:

(29)

Eq. (28) has deep analogies with Eq. (21), where the realisation of v(t) are represented by a sum

u
*

t1( ) Cv τ( )φ t1 τ+( )dτ
∞–

∞

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

dt1
∞–

∞

∫ λ u
*

t1( )φ t1( )dt1
∞–

∞

∫=

û
* ω( ) Sv ω( ) λ–( )φ̂ ω( )dω 0=

∞–

∞

∫

û φ̂

φ̂ ω( )
û

λ λ ω′( ) Sv ω′( )= = ;               φ̂ ω( ) φ̂ ω ω′,( ) δ ω ω′–( )= =

φ t ω′,( ) e
iω′t

=                    ω′ R∈( )

v t( ) e
iω t

dY ω( )
∞–

∞

∫=

E dY ω( )dY
* ω′( )[ ]

Sv ω( )dω             if ω ω′=

0                         otherwise⎩
⎨
⎧

=
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(an integral in Eq. (28)) of deterministic functions of time, the POD modes, modulated by random

coefficients (xk in Eq. (21), dY(ω) in Eq. (28)). Such coefficients are uncorrelated with each other

according to Eqs. (9) and (29), respectively. The circular frequency ω assumes the role of a

“continuous index” identifying the different modes.

The spectral representation of the covariance function (Eq. (15) for finite-energy processes) can be

obtained by combining Eqs. (28) and (29), leading to the well-known Wiener-Khintchine (Priestley

1981) equation:

(30)

Again the analogy with the case of finite-energy processes and periodic processes is quite evident.

In particular, it is worth noting that periodic processes and also more general discrete-spectrum

processes can be represented in the framework offered by Eqs. (23)-(30) letting:

(31)

where H is the unit-step function. For this reason, the definition of POD for mean-square periodic

processes will not be explicitly addressed in the following, being interpreted as a particularisation of

the treatment regarding continuous-spectrum processes.

The generalisation of the above concepts to the case of n-V processes (whose realisations have

values in Cn) requires rewriting Eqs. (23)-(25) considering the functions φ(t) and u(t) as having

values in Cn. In such a case Eq. (25) becomes:

(32)

where Sv(ω) is the power spectral density matrix (psdm) of v(t), I is the n-order identity matrix and

 is the Fourier transform of the test function u with values in Cn. Operating likewise for Eq. (25),

it can be easily proved that POD eigenvalues and eigenvectors result:

(33)

where γk(ω) and θk(ω) satisfy the eigenvalue problem:

(34)

and are referred to as spectral eigenvalues and eigenvectors, respectively (Solari and Carassale 2000).

Sv(ω) is (Hermitian) symmetric and non-negative definite, thus all the eigenvalues are real and non-

negative; the eigenvectors are orthogonal (or can be chosen as orthogonal in case of multiple

eigenvalues) and are normalised, for any ω, with respect to the inner product of Eq. (4).

Each mode, identified by the discrete index k and by the continuous parameter ω, is constituted by

a vector-valued function of t, whose components are harmonics with circular frequency ω and

amplitude determined by the components of the spectral eigenvector θk. Adopting the base of the

POD modes, the representation formula of Eq. (28) can be generalised as:

Cv t1 t2,( ) e
iω t

1

e
iω t–

2

Sv ω( )dω
∞–

∞

∫=

Y ω( ) xkH

k ∞–=

∞

∑= ω ωk–( );            S ω( ) skδ ω ωk–( )
k ∞–=

∞

∑=

û
* ω( ) Sv ω( ) λI–( )φ̂ ω( )dω

∞–

∞

∫ 0=

û

λ λk ω( ) γk ω( )= =

φ t( ) φk t ω,( ) e
iω t
θk ω( )= =

                  ω R∈   k 1 ....... n, ,=,( )

Sv ω( )θk ω( ) γk ω( )θk ω( )                    = ω R∈   k 1 ....... n, ,=,( )
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(35)

where the sum has been introduced to span the index k of the modes, while the increments of the

processes Yk(ω) fulfil the relationship:

(36)

Eq. (35) represents any realisation of the process v(t) as an integral, over ω, and a sum, over k, of

deterministic functions, the POD modes φ(t, ω) =θk(ω)eiωt, modulated by the random coefficients

dYk(ω).

The covariance matrix can be obtained combining Eqs. (35) and (36), leading to the spectral

decomposition formula:

(37)

The above treatment can be easily extended to include the case of m-D processes just letting t,

and as a consequence ω, be vectors in Rm, updating consistently the integration domain in Eqs.

(23)-(25), (28) and (30), and introducing an appropriate definition for the inner product (ω, t).

2.5. Representation of incompletely-stationary random processes

In the previous sections, the representation problem has been treated considering first the case of

finite-energy processes and then the case of infinite-energy (in particular stationary) processes. In

some practical applications, relevant random quantities depending on two parameters (say t and s)

can be modelled as random processes that are stationary with respect to one variable (e.g. t) and

non-stationary with respect to the other one (e.g. s).

Let us consider a 2-D random process v(s, t), whose realisation have values in C and are defined

on the domain s ∈ [a, b], t ∈R. Following the same procedure adopted for fully-stationary processes,

Eq. (23) can be rewritten as:

(38)

where the test-function u(s1, t1) (rapidly decreasing for |t1| tending to infinity for any s1) has been

introduced in order to assure the convergence of the integrals and Cv(s1, s2, t1, t2)=E[v(s1, t1) v
*(s2, t2)] is

the covariance function of v(s, t).

Introducing the stationarity condition and applying the Parseval theorem to both sides of Eq. (38)

calculating the Fourier transform with respect to the variable t1, it results:

(39)

where Sv(s1, s2, ω) is the cpsdf of the processes v(s1, t) and v(s2, t). Likewise for Eq. (32), the

parenthesis in Eq. (39) contains an eigenvalue problem (or rather a set of eigenvalue problems

v t( )  e
iω t
θk ω( )dYk ω( )

k 1=

n

∑
∞–

∞

∫=

E dYh ω( )dYk
* ω′( )[ ]

γk ω( )dω             if ω ω′  and  h k==

0                        otherwise⎩
⎨
⎧

=

C
v

t1 t2,( )  e
iω t

1
t
2

–( )
θk ω( )θk

* ω( )γk ω( )dω
k 1=

n

∑
∞–

∞

∫=

u
*

s1 t1,( )Cv s1 s2 t1 t2, , ,( )φ s2 t2,( )ds2ds1dt2dt1
a

b

∫
a

b

∫
∞–

∞

∫
∞–

∞

∫ λ u
*

s1 t1,( )φ s1 t1,( )ds1dt1
a

b

∫
∞–

∞

∫=

û
*

s1 ω,( ) Sv s1 s2 ω, ,( )φ̂ s2 ω,( )ds2
a

b

∫ λφ̂ s1 ω,( )–
⎝ ⎠
⎜ ⎟
⎛ ⎞

ds1dω
a

b

∫
∞–

∞

∫ 0=
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spanned by the parameter ω). In this case, however, the eigenvalue problem is a continuous one and

gives rise to a set of denumerable infinite eigenfunctions. The solution of Eq. (39) can be deduced

following the same principle already adopted for Eqs. (25), resulting:

(40)

where, for any value of the parameter ω, γk(ω) and θk(s,ω) are the solution of the continuous-type

eigenvalue problem:

(41)

where the eigenfunctions θk(s, ω) are assumed as normalised with respect to the inner product

defined in Eq. (11).

The POD modes given in Eq. (40) constitute a set of non-denumerable infinite functions,

identified by the parameters ω′ and k. Each POD mode is a scalar function of s and t, and can be

idealised as a Fourier mode (with respect to the dimension t) modulated through the eigenfunctions

θk(s, ω) along the dimension s. Adopting the POD modes as a base, the process v(s, t) can be

represented as:

(42)

where the increments dYk(ω) satisfy the orthogonality condition of Eq. (36). Applying the definition

of covariance function to Eq. (42), and making use of the orthogonality of the modes, the spectral

decomposition of the covariance function results:

(43)

Eqs. (38)-(43) can be easily generalised to the case of the representation of a process v(s, t) whose

realisations have values in Cn, t ∈Rm and s belongs to a compact domain in Rp on which the

realisations of v are square-integrable for any t. In this case, the above equations remain valid just

updating the integration domains and introducing the pertinent definition for inner and outer

products.

2.6. Linear transformations of n-V processes

Sections 2.3 to 2.5 were devoted to the derivation of POD-based representation formulae for

different classes of random processes. In general, such representations assumed the form of a series

of deterministic functions modulated by uncorrelated random variables. In the case of n-V

processes, however, POD can be also interpreted as a linear transformation characterised by

particular properties. In this sense, an n-V random process can be represented as the output of a

linear filter defined according to two alternative techniques referred to as Covariance Proper

Transformation (CPT) and Spectral Proper Transformation (SPT) (Solari and Carassale 2000).

Let us consider an n-V random process v(t) (whose realisations have values in Cn) and let us
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represent it through the expression:

(44)

where Φ(t) = [φ1(t)…φn(t)] and x(t) = [x1(t)…xn(t)]
T. Eq. (44) can be reviewed as a generalisation of

PCA (Eq. (7)) in which the dependence on t has been included. The vectors φk(t) are the

eigenvectors of the zero t-lag covariance matrix, Cv(t, t) = E[v(t)v*(t)]; the corresponding eigenvalues

λk(t), in general dependent on t, provide the variance of the PC xk(t).

Having defined the representation formula (Eq. (44)) only on the base of the zero-t-lag covariance

matrix, the PC xk are uncorrelated only for the zero t-lag, and their covariance matrix results:

(45)

where Λ(t) = diag(λ1(t),…,λn(t)). The vector of the PC x(t) can be interpreted as an n-V process and

Eq. (44) as a linear algebraic transformation.

Eq. (44) becomes particularly expressive for stationary processes, where it represents a t-invariant

transformation, being Φ independent of t. In this case, it is referred to as CPT and results:

(46)

where the process v(t) is represented as a sum of deterministic vectors modulated by the covariance

PC xk(t) whose covariance matrix is given by the relationship:

(47)

SPT is a t-invariant linear transformation whose definition is strictly correlated to the POD

representation of the n-V stationary processes v(t) (whose realisations are functions with values in

C
n); they can be expressed as (Priestley 1981):

(48)

where V(ω) is an orthogonal-increment process such that:

(49)

The increment process dV(ω) can be expressed in terms of POD modes by comparing Eqs. (48)

and (35), and exploiting the orthogonality of the Fourier modes; it results:

(50)

where Θ(ω) = [θ1(ω)…θn(ω)] and Y(ω) = [Y1(ω)…Yn(ω)]T. The matrix Θ(ω) can be interpreted as the
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frequency response function of the time-invariant linear transformation:

(51)

representing the process v(t) as a linear mapping of the process y(t) whose components yk(t) are

defined as:

(52)

Such components are referred to as spectral PC of the process v(t), are uncorrelated for any t-lag

(i.e., are incoherent) and their psdf is provided by the spectral eigenvalues γk(ω) (Solari and

Carassale 2000):

(53)

being Sy(ω) the psdm of y(t) and Γ(ω) = diag(γ1(ω),…γn(ω)). Combining Eqs. (36), (49) and (50),

the psdm of v(t) can be expressed through the factorisation:

(54)

According to SPT, the random process v(t) is represented by a sum of incoherent terms constituted

by vectors having fully coherent components.

Comparing Eqs. (48), (50), (52) and (46), it can be observed that, if the process v(t) is stationary

and if the matrix Θ do not depend on ω, CPT and SPT become formally identical. Their identity,

however, is not just formal since it can be demonstrated (Carassale 2005) that, if the spectral

eigenvectors do not depend on frequency, then they coincide with the covariance eigenvectors,

Θ=Φ, and the spectral PC coincide with the covariance PC, xk= yk.

SPT is explicitly expressed in the frequency domain through Eq. (50), which uses the eigenvector

matrix Θ(ω) as a frequency response function. The time-domain version of SPT is represented by

the linear operator  (Eq. (51)), whose expression can be obtained realising continuous or discrete-

time state-space models as shown in Carassale (2005) and Chen and Kareem (2005), respectively.

2.7. Digital simulation of random processes

The above sections showed that POD provides a comprehensive framework for defining represen-

tation formulae for different classes of random processes. The basic concept is that a process is

expressed as a sum of deterministic functions modulated by uncorrelated random amplitudes. 

In the case of finite-energy processes, such a sum is composed by denumerable-infinite terms,

thus a simulation formula can be obtained truncating the sum of Eq. (13) to a certain term nc:

(55)

where the eigenvalues λk are considered as sorted in decreasing order and the coefficients ξk are

zero-mean, unit-variance uncorrelated random variables, i.e.:

(56)
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The series in Eq. (55) converges in the mean square as nc tends to infinity, thus the target

covariance function can be approximated with any arbitrary accuracy selecting a suitable value for

nc. Eq. (55) has been derived for the case of 1-V 1-D processes, however the general n-V m-D case

can be tackled in the same fashion.

In the case of stationary (or incompletely-stationary) processes, the representation formula

contains a sum of nondenumerable-infinite terms expressed through a Stieltjes integral. Considering

first, for sake of simplicity, the case of 1-D 1-V processes, a simulation formula can be obtained by

discretising the integral in Eq. (28) along a suitable sequence of frequency values ωj= j∆ω, being

∆ω a suitable frequency step:

(57)

where nω is the number of harmonics included in the simulation and ξj are random numbers

generated according to Eqs. (56). It is worth noting that Eq. (57) corresponds to the representation

formula developed for mean-square periodic processes (Eq. (21)), thus the process simulated by

such a formula results periodic with period T = 2π/∆ω.

The above treatment can be easily extended to the case of n-V random processes (Eqs. (35) and

(36)), leading to the simulation formula:

(58)

where ns ≤ n is the number of spectral eigenvectors retained in the representation and the coefficients

ξjk satisfy conditions analogous to Eqs. (56), i.e.:

(59)

Realisations of an incompletely-stationary process v(s, t) (Eq. (42)) can be simulated by an

expression analogous to Eq. (58), in which the eigenfunctions θk(s, ω) take the part of the eigen-

vectors θk(ω).

Eqs. (55)-(59) can be directly used to simulate Gaussian processes. In such a case, the simulation

procedure can be defined as follows: 1-calculate eigenvalues and eigenfunctions of the covariance

functions (eigenvectors of the psdm for stationary processes); 2-define the number of terms to be

retained in the simulation formula on the base of convergence requirements; 3-simulate ξk (or ξjk) as

a set of Gaussian independent random variables.

In the case of non-Gaussian processes, the above procedure can be generalised as described by

Phoon, et al. (2002), making use of an iterative scheme. According to such a technique,

realisations of a random process v(t) with covariance function Cv and marginal distribution Fv can

be simulated as follows: 1-calculate the eigenvalues and eigenfunctions of Cv; 2-select the

number of terms nc to be retained in the representation; 3-simulate the coefficients ξk (or ξjk) as

Fv-distributed random number satisfying Eqs. (56) (such a condition assures the matching of the

covariance function); 4-evaluate, by the statistical analysis of a set of realisations, the marginal

distribution of the simulated process and of its PC obtained by Eq. (14); 5-update the probability

distribution of the coefficients ξk; 6-repeat points 4 and 5 until the convergence to the marginal

distribution of v(t).
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3. Some applications

As drawing a general picture of the most important POD applications in wind engineering is

practically not possible, this section focuses on the research activity at the University of Genova,

illustrating some recent analyses, based on POD, of four relevant problems of the wind chain:

modelling and simulation of stationary (Section 3.1) and non-stationary (Section 3.2) turbulence

fields, the bluff-body aerodynamics of tall building models (Section 3.3), and the buffeting response

of long-span bridges (Section 3.4). All the analyses have been revised to make their development

homogeneous with the theoretical background depicted in Section 2.

3.1. Double POD of turbulent velocity fields

Let s1, s2, s3 be a Cartesian reference system with origin in O on the ground; s3 is vertical and

directed upwards. The wind velocity is a 3-component random vector depending on the space s = [s1

s2 s3]
T and on the time t; thus, it is a 3-V 4-D process, in general non-stationary and non-homo-

geneous. Considering averaging time intervals within the spectral gap and aeolic phenomena at

synoptic scale, the wind velocity can be decomposed into the sum of a mean part 

 (time averaged over a convenient interval) depending on space only and a

zero-mean turbulent fluctuation ; this latter quantity is usually

modelled as a 3-V 4-D Gaussian process, stationary with respect to t, non-homogenous with respect

to s. Thus, it is characterized by the two-point psdm:

(60)

where Sij(s,s′,ω) (i, j = 1, 2, 3) is the cpsdf of vi(s, t) and vj(s′, t):

               (61)

Si(s, ω) = Sii(s, s, ω) is the psdf of vi(s, t), Cohij(s, s′, ω) is the coherence function (cohf) of vi(s, t) and

vj(s′, t).

Let us consider a flat homogeneous terrain and s, s′ within the internal boundary layer. The mean

wind velocity is aligned with s1 and has intensity , i.e., ; v1, v2, v3 are the

longitudinal (along s1), lateral (along s2) and vertical (along s3) turbulence components; v(s, t) is a 3-

V 4-D zero-mean Gaussian process, stationary with respect to t, homogeneous with respect to s1 and

s2, non-homogenous with respect to s3. In this case the psdf of vi(s, t) does not depend on s1 and s2,

while the coherence function of turbulence in two points s, s′ with the same height s3 depends on

their distance ||s − s′|| and on s3.

The discretised turbulence field at N points in the space is a 3N-V 1-D stationary process whose

CPT and SPT are expressed by Eqs. (46) and (50), respectively. Carassale and Solari (2005)

discussed the POD-based simulation of a turbulence field on a complex domain from a numeric

viewpoint. Tubino and Solari (2005) showed the advantages of carrying out a two-step POD

representation of the turbulence field, defined as Double POD; this method enables a conceptually

rich interpretation of the physical phenomenon and involves relevant operative advantages whenever

each POD step can be solved in closed form.
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With this aim, let us start with the analysis of the single-point turbulence vector v(s, t); it is a 3-V

1-D process, stationary with respect to t, where s plays only the role of a parameter; its psdm is

Sv(s, ω) = Sv(s, s, ω) (Eq. (60)).

Applying Eq. (50), the SPT of v(s, t) is given by:

(62)

where Θ(s, ω) = [θ1(s, ω) θ2(s, ω) θ3(s, ω)] is the matrix of the spectral eigenvectors; V(s, ω) and

Y(s, ω) are 3-V complex-valued processes related to v(s, t) and to the spectral PC y(s, t) through

Eqs. (48) and (52), respectively; the psdm of y(s, t) is the diagonal matrix of the spectral eigen-

values. Thus, for each position s and for each frequency value ω, the spectral eigenvectors identify a

basis in R3 or three orthogonal directions referred to as spectral principal directions. Each harmonic of

yk(s, t) represents the Cartesian component along θk(s, ω) of the corresponding harmonic of v(s, t).

It is worth noting that, under the classic assumption that v2 is uncorrelated with v1 and v3, v2 is a

PC, i.e., v2 = y2; in such a case the SPT defines two PC, y1 and y3, whose harmonics are rotated

ψ(ω) with respect to s1 and s3, respectively (Fig. 1). In this relevant case, the spectral eigenvalues

and eigenvectors can be determined in closed form (Solari and Tubino 2002). As an example (Solari

and Tubino 2002), Fig. 2(a) shows typical diagrams of the angle ψ(ω); Fig. 2(b) depicts the psdf of

v1, v2, v3 (dashed lines), and of y1, y2, y3 (solid lines). 

It can be proved that if v1, v2, v3 are assumed as uncorrelated with each other, then Φ(s) =Θ(s, ω)

= I and the original turbulence components identify with the spectral PC, i.e., v(s, t) = y(s, t).

The definition of turbulence PC enables a conceptually rich representation of the single-point

turbulence vector; moreover, if a statistical model for the two-point characterization of different

turbulence components is not available (Solari and Piccardo 2001), this can be derived imposing

that different PC, being uncorrelated at a single point, are uncorrelated also at different points; in

such a way, explicit expressions of the two-point cohf of distinct original turbulence components

and of the same spectral PC can be obtained (Solari and Tubino 2002, Tubino and Solari 2005).

These results complete both the turbulence models based on the original turbulence components and

on the spectral PC.

As an example, Fig. 3(a) depicts the cohf of v1 and v3 along a horizontal line orthogonal to the

dV s ω,( ) Θ s ω,( )dY s ω,( ) θk s ω,( )dYk s ω,( )
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Fig. 1 Spectral principal components
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wind direction, for various distances d = |s2 − s'2|; Fig. 3(b) compares the cohf of y1 (solid lines) and

of v1 (dashed lines).

Let us consider now the turbulence component α(r, t) along a finite 1-D domainD of lengthl   and

abscissa r, being α = vi or α = yi (i = 1, 2, 3); α(r, t) is an 1-V 2-D zero-mean Gaussian process,

stationary with respect to t, non-homogeneous with respect to r. Using Eq. (50), the SPT of α(r, t) is

given by (Solari and Carassale 2000):

(63)

where (r, ω) is the h-th eigenfunction of the cpsdf of α(r, t), Α(r, ω) and Zh(ω) are complex-

valued random processes with orthogonal increments, related to the turbulence component α(r, t)

and to the spectral PC zh(t), respectively; the psdf of zh(t) is the h-th eigenvalue γh(ω) of the cpsdf

of α(r, t) (h = 1, 2,…).

dA r ω,( ) ϑh r ω,( )dZh ω( )
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Fig. 2 Rotation angle (a) and psdf (b) of v1, v2, v3 and y1, y2, y3

Fig. 3 Cohf of v1 and v3 (a) and of v1 and of y1 (b)
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The transformation defined by Eq. (63) is particularly convenient when the cohf of α(r, t) has

exponential form; in this case, the spectral eigenvalues γh(ω) and eigenfunctions (r, ω) can be

obtained in closed form (Van Trees 1968, Carassale and Solari 2002, Tubino and Solari 2005). 

If the original turbulence components are considered as uncorrelated, Eq. (63) can be adopted to

represent each turbulence component α = v1, v2, v3. If otherwise the correlation among v1, v2, v3 is

considered (as this is correct at least for v1 and v3), Eq. (63) can be applied to each PC α = y1, y2, y3.

In this second case, the joint application of Eqs. (62) and Eq. (63) gives rise to the Double POD

(Tubino and Solari 2005):

(64)

where θk(r, ω) =θk(s, ω), s being a point in D at abscissa r;  is the h-th eigenfunction of

the cpsdf of yk(r, t), Zkh(ω) is a complex-valued process with orthogonal increments related to the h-

th spectral PC zkh(t) of yk(r, t); the psdf of zkh(t) is the h-th eigenvalue γkh(ω) of the cpsdf of yk(r, t).

Embedding Eq. (64) into a Monte Carlo framework:

(65)

where Re[•] indicates the real part and ξjkh are complex-valued Gaussian random variables that

satisfy conditions analogous to Eq. (59), i.e., .

It is worth noting that, if v2 is considered as uncorrelated with v1 and with v3, and if the cohf of

the turbulence PC has an exponentially decreasing trend, then the Double POD in Eqs. (64) and

(65) is defined analytically. In such a case, the digital simulation of the turbulence field only

requires the Monte Carlo generation of ξjkh.

Fig. 4 shows some simulated time histories of v1, v2, v3 in two points at r = 0 and 40 m in the

horizontal domain D .

3.2. Non-stationary simulation of wind velocity fields

Independently of the method applied (Section 3.1), the simulation of stationary turbulence fields

associated with aeolic phenomena at the synoptic scale is one of the most classical problems in wind
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Fig. 4 Simulated time histories of the turbulence components
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engineering. A less classical problem is the simulation of non-stationary turbulence fields associated

with aeolic phenomena at the mesoscale (e.g. fronts, downbursts and tornadoes), or those experienced

by a point-body moving along a spatial trajectory in a stationary turbulence field, crossing positions in

which the wind flow has different statistical properties.

To deal with the second problem, let us consider the 3-V 4-D zero-mean Gaussian turbulence

field v(s,t), in general non-homogeneous with respect to s and stationary with respect to t; let (t) =

v( (t), t) be the turbulence field v(s, t) along the trajectory s = (t) at the time t ∈[0, Τ ]. Likewise

v(s, t), also (t) is a Gaussian zero-mean random process but, in general, it is not stationary. The

complete probabilistic representation of (t) is provided by its covariance matrix:

C (t1, t2) = E[ (t1) 
T(t2)] Sv(( (t1) (t2), ω)dω (66)

Realizations of the process (t) can be expressed by Eq. (13) and simulated by Eq. (55), where λk

and φk(t) are, respectively, the eigenvalues and the eigenfunctions of C (t1, t2) in the domain [0, T ].

An application of this procedure consists in the representation and simulation of the non-stationary

turbulence time-histories experienced by an aircraft during a landing or take-off route in proximity of

an airport (Burlando, et al. 2005). This problem has special interest for the detection of critical

conditions related to wind-shear phenomena induced by complex topography and for the occurrence

of wind direction inversions, i.e., from headwind to tailwind, due to the presence of turbulent eddies.

The following results derive from a project aimed at studying and simulating the wind field in the

neighbourhood of the Albenga airport in Italy. The applied procedure involves a three-step

approach, namely the simulation of the mean wind field over a 25 × 30 km wide domain by the

mass-consistent computer program WINDS (Ratto, et al. 1994), the evaluation of the statistical

properties of the turbulence field by the generalisation of the logarithmic law of the wall (Burlando,

et al. 2005), and its simulation. Fig. 5 shows the topography of the macro-area (external rectangle)

and of the micro-area (internal rectangle) selected to study the wind field numerically.
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Fig. 5 Topographic map of the macro-area and of the micro-area
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The three turbulence components v1, v2, v3 are assumed as Gaussian and uncorrelated with each

other. Their probabilistic structure is defined by well-recognised spectral models that take into

account the atmospheric thermal stratification; the spectral parameters are calibrated, in each point

of the domain through the outcome of the mass-consistent simulation. Thanks to the aforementioned

hypotheses, the three turbulence components can be simulated, independently with each other, by

Fig. 6 Mean wind velocity in the glide-path plane

Fig. 7 Mean wind velocity: intensity V, angle with respect to the north θ, angle with respect to the horizontal
plane ϕ
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means of Eq. (57), where λk and φk are the eigenvalues and the eigenvectors of the (scalar-valued)

covariance function evaluated through Eq. (66) for each turbulence component.

Fig. 6 shows a simulated wind field in the vertical plane containing the glide path (dashed line). The

simulation has been initialised in order to obtain a suitable atmospheric stratification and a prescribed

wind velocity and direction at the anemometer of the airport. Fig. 7 shows the mean wind velocity

simulated along the glide path; V represents its intensity, θ is its horizontal angle with respect to the

north, and ϕ its vertical angle with respect to the horizontal plane. The graphs are plotted versus a

horizontal abscissa s whose value s=4000 m corresponds to the expected touch-down point.

Figs. 8 and 9 show, respectively, the eigenvalues and the eigenfunctions of the three turbulence

components encountered by an airplane moving with a constant velocity of 150 km/h along the

Fig. 8 Covariance eigenvalues of the three turbulence components

Fig. 9 Covariance eigenfunctions of  (a),  (b),  (c)v
o

1 t( ) v
o

2 t( ) v
o

3 t( )
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glide path. Fig. 10 shows a simulation of the three Cartesian components Vx (west-eat, along the

glide path), Vy (south-north, orthogonal to the glide path), Vz (vertical) of the wind velocity field

along the considered trajectory. It is apparent that the non-stationary characteristics of the

realisations are greatly strengthened by the channelling effects, and the aircraft experiences the

maximum wind intensity and turbulence in the middle of the landing descent.

3.3. Different POD representations of the wind forces on a tall building model

The POD of pressure fields and force distributions is a basic tool of bluff-body aerodynamics. It

is applied to compact measured data, to detect coherent structures, and to identify reduced models

of the aerodynamic loads. POD can be performed in a weak form, referred to as CPT, or in a strong

form, referred to as SPT (Carassale, et al. 2004). Both can be applied to the original data or to some

pre-processing of the original data, such as normalisation techniques, employed to emphasise some

features of the phenomenon under investigation.

In order to discuss this issue, different POD approaches have been applied to the alongwind and

crosswind forces on a tall building model submitted to boundary layer wind tunnel tests (Kikuchi, et

al. 1997). The oncoming flow has a length scale 1:400 and corresponds to an urban exposure. The

building model has a square section with side B = 10 cm, and height H = 50 cm. The wind velocity

and the aerodynamic forces are represented by an orthogonal reference system s1, s2, s3 with origin

in O on the wind tunnel floor; s3 is vertical, coincides with the building axis and is directed

upwards. The mean wind velocity , aligned with s1, is orthogonal to the windward face. The

pressure was measured, simultaneously, by 500 taps uniformly distributed on the surface of the

u

Fig. 10 Simulations of the nonstationary wind fluctuations Vx(t) (a), Vy(t) (b), Vz(t) (c)
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walls (Fig. 11). Alongwind (along s1) and crosswind (along s2) forces were obtained summing local

pressures multiplied by the corresponding tributary areas at 25 levels, and non-dimensionalised by

dividing all the components by 0.5ρ (H)BH/25. A 50-V stationary process v(t) has been defined

staking in a vector the zero-mean fluctuation of alongwind and crosswind non-dimensional forces.

The torsional moments around the vertical axis s3 (Kikuchi, et al. 1997) have not been considered

for the sake of simplicity.

Fig. 12 shows the covariance eigenvalues λk (a), the psdf of the first four covariance PC xk(t) as

functions of the reduced frequency f = Bω/2π (H) (b), the alongwind (c) and crosswind (d)

u
2

u

Fig. 11 Schematic representation of the experimental set-up

Fig. 12 CPT eigenvalues (a), psdf of CPT principal components (b) and CPT eigenvectors (c,d)
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components of the corresponding covariance eigenvectors φk. The covariance eigenvalues λk vanish

quite rapidly on increasing mode k. The first and third modes contribute almost entirely to the

crosswind force (Fig. 12(d)); since their harmonic content is concentrated around f ≈ 0.085, such

modes are mainly related to vortex shedding (Fig. 12(b)). The second and fourth modes are almost

entirely in the alongwind direction (Fig. 12(c)) and refer to the buffeting action of the longitudinal

turbulence (Fig. 12(b)).

Fig. 13 shows the first four spectral eigenvalues. The first one is much larger than the others and is

characterised by two dominant frequency contents: the first, in the low frequency range, depends on

turbulence buffeting; the second, around , corresponds to vortex shedding. Fig. 14 shows the

amplitudes of the first two spectral modes at f= f1,..f4; black and white circles denote, respectively,

alongwind and crosswind components. At f= f1, the first and second modes represent alongwind and

crosswind forces, respectively. At f= f2, the first and second eigenvalues get close to each other and

realise a veering; in that case, the first and second modes have similar amplitudes in both alongwind

and crosswind directions. At f= f3, due to the power supplied by vortex shedding, both modes are

associated to pure crosswind forces. This situation persists on increasing the reduced frequency ( f= f4).

Fig. 15 shows the recomposition of the standard deviations of v(t), respectively at levels 17 and

f 0.085≅

Fig. 13 SPT eigenvalues

Fig. 14 Amplitudes of first (a) and second (b) SPT eigenvectors
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25. Summing the contribution of POD modes, such values converge to the target measurements.

However, convergence is faster at level 17, where few modes capture the overall loading

mechanisms. Moreover, CPT converges more slowly than SPT. In fact, while CPT modes tend to be

linked with one specific mechanism, each SPT mode refers to different phenomena in different

frequency ranges. So, changing the frequency, each SPT mode is able to capture more excitation

mechanisms and SPT may represent the target process using less modes than CPT. It is

questionable, however, that this advantage may counterbalance, in bluff-body aerodynamics, the

growing complexity involved by SPT with respect to CPT.

Let us express Cv(0) and Sv(ω) as:

(67)

where Rc= diag(σ1,..σn) and Rs= diag(S11(ω),..Snn(ω))1/2, σi and Sii(ω) being the standard deviation

and the psdf of vi(t) (i=1,..50), respectively; the i, j-th terms of  and  are the correlation

coefficient and the cohf of vi(t) and vj(t) (i, j = 1,..n), respectively. It follows that, while Cv(0) and

Sv(ω) contain a full information on the energy content of v(t),  and  retain only a

description of its correlation structure. Thus, CPT and SPT applied to  and  provide an

interpretation of the physical mechanisms which underlie the correlation. Moreover, while the POD

of v(t) based on Cv(0) and Sv(ω) allows an optimal reconstruction of the original process, the POD

of v(t) based on  and  does not imply the same property.

Fig. 16 shows the eigenvalues  of  (a) and the eigenvalues  of  (b). On

increasing mode k, the eigenvalues  of  vanish less rapidly than the eigenvalues λk of

Cv(0) (Fig. 12(a)). The first spectral eigenvalue of  does not prevail over the higher ones as

in Fig. 13. The eigenvalue related to the first alongwind mode (indicated in Fig. 16(b) by black

circles) is characterised by the typical decay of the cohf of longitudinal turbulence; the eigenvalue

related to the first crosswind mode (indicated by white circles) is characterised by the typical pattern

of the cohf of vortex shedding.

Cv 0( ) RcCv 0( )Rc= ;       Sv ω( ) Rs ω( )Sv ω( )Rs ω( )=
) )

Cv 0( )
)

Sv ω( )
)

Cv 0( )
)

Sv ω( )
)

Cv 0( )
)

Sv ω( )
)

Cv 0( )
)

Sv ω( )
)

λk

)

Cv 0( )
)

γk

)

Sv ω( )
)

λk

)

Cv 0( )
)

Sv ω( )
)

Fig. 15 CPT and SPT recomposition of the rms values of loading
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Finally, it is rather obvious that the CPT and SPT recompositions of the standard deviation based

on the normalisation procedure described above involve a slower convergence than that exhibited by

the POD application to the original process (Fig. 15).

3.4. DMT and buffeting response of long-span bridges

The equation of motion of an M-DOF linear structure is usually solved by applying the principal

transformation rule:

(68)

where q(t) is the Lagrangian displacement vector, Ψ= [ψ1..ψM] is the structural modal matrix,

ψ1,..ψM are the orthonormal eigenvectors of structure, i.e., ΨTMΨ= I; p(t) is the vector of the

structural principal coordinates, i.e., the image of q(t) in the principal space. 

If the structure has classical vibration modes Eq. (68) de-couples the equations of motion in the

principal space:

        (69)

ωj and ζj being the j-th natural circular frequency and damping ratio, respectively, f(t) = Av(t) being

the loading vector, where v(t) is an n-V zero-mean Gaussian stationary random process and A is an

M × n deterministic matrix. Sorting the natural circular frequencies in increasing order, the structural

modal truncation consists in approximating the response (Eq. (68)) considering only a limited

number Mt< M of structural modes.

Let us apply the SPT of v(t). Replacing Eq. (50) into the frequency domain counterpart of Eq.

(69) yields:

        (70)

where Pj(ω) and Yk(ω) are complex-valued processes with orthogonal increments related to pj(t) and

q t( ) Ψp t( ) ψjpj t( )
j 1=

M

∑= =

p··j t( ) 2ζjω jp
·
j t( ) ω j

2pj t( )+ + ψj
Tf t( )= j 1 .. M, ,=( )

dPj ω( ) Hj ω( ) Dk jk ω( )dYk ω( )
1

n

∑= j 1 .. M, ,=( )

Fig. 16 CPT (a) and SPT (b) eigenvalues (normalized)
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to the spectral PC yk(t), respectively; Hj(ω) = (−ω2 + 2iζjωjω + ω2)−1 is the j-th complex frequency

response function; Djk(ω) =ψj
TAθk(ω) is the j, k-th term of D(ω) =ΨTAΘ(ω), referred to as the cross-

modal participation spectral matrix. Thus, Djk(ω) is a participation factor which quantifies the

influence of the k-th loading spectral mode on the j-th structural mode.

Several terms of the matrix D are negligible. Due to the structural modal truncation, only Mt < M

structural modes contribute to response. Due to spectral modal truncation, only ns < n spectral modes

contribute to the external load. Due to cross-modal orthogonality property, several k structural

modes are quasi-orthogonal to several j loading modes with respect to A, i.e., . Thus,

combining Eqs. (50) and (69), the structural response is expressed by a double linear combination

of few structural modes and few loading modes referred to as Double Modal Transformation (DMT)

(Solari and Carassale 2000, Carassale, et al. 2001). 

The psdm of q(t) and p(t) are given by:

(71)

where H(ω) = diag(H1(ω),..HM(ω)), Γ(ω) is the diagonal matrix of the spectral eigenvalues, i.e., the

psdf of the spectral PC yk(t).

As an example of special interest, DMT was applied to the gust buffeting of long-span bridges

(Tubino and Solari 2007). The Messina Strait Bridge, currently under design, provides a unique

opportunity for pointing out the potentialities of this approach. The bridge has a total length of 3.666 m,

and a suspended main span of 3.300 m. The deck is schematised by a finite element model with 118

nodes along the axis; the position of the nodes and the vectors of the wind velocity are represented by

an orthogonal reference system s1, s2, s3 with origin in O on the ground at the Sicily side; s3 is vertical

and directed upwards; s2 lies in the symmetry plane of the bridge. Each node has 3-DOF, the lateral and

vertical displacements, q1 (along s1) and q3 (along s3), and the torsional rotation qϕ (around s2) (Fig. 17).

The mean wind velocity is aligned with s1; the deck is subjected to the longitudinal (along s1) and

vertical (along s3) turbulence components, v1(t) and v3(t), treated as uncorrelated for the sake of

simplicity. Thus, q(t) is a vector of M=118×3=354 components; v(t)=[v1(t)
T v3(t)

T]T lists n=118×2=

236 turbulence components; A=[A1 A3] is an aerodynamic matrix whose terms are evaluated by quasi-

steady theory and sectional model wind tunnel tests. It follows that Eq. (50) can be applied separately to

the vectors v1(t) and v3(t), D(ω)=[D1(ω) D3(ω)], D1(ω)=ΨTA1Θ1(ω) and D3(ω)=ΨTA3Θ3(ω); Θ1(ω)

and Θ3(ω) are the spectral eigenvectors of v1(t) and v3(t), respectively.

Fig. 18(a) shows the first 8 structural modes of vibration, ψ1,…ψ8, and the related natural frequencies

n1,..n8: solid, dashed and dash-dotted lines denote longitudinal, vertical and torsional components,

respectively. It is worth notice that, due to bridge flexibility, n30=0.177 Hz. Fig. 18(b) shows the first 4

Djk 0≅

Sq ω( ) ΨSp ω( )ΨT
= ;      Sp ω( ) H ω( )D ω( )Γ ω( )D

* ω( )H
* ω( )=

Fig. 17 Messina Straits Bridge schematization
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spectral eigenvalues and eigenvectors of v1(t). The diagrams correspond to n<0.3 Hz and show that, in

this frequency range, the turbulence modes are characterised by a limited frequency dependence;

instead, on increasing n, their shape tends to change with the frequency in a more relevant way. 

Fig. 19 shows the cross-modal participation coefficients related to v1 (a) and v3 (b), for the first 30

Fig. 18 Structural (a) and longitudinal turbulence (b) modes

Fig. 19 Cross-modal participation coefficients: (a) v1 (b) v3
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modes of vibration, at n = n1. The similarity of structural and turbulence modal shapes makes many

structural modes quasi-orthogonal to many turbulence modes; as a result, several terms of the

matrix D vanish, and few turbulence modes excite few structural modes.

Fig. 20 shows the psdf of v1 (a), of v3 (b), and of the generalised displacements (c) at the mid-

span, evaluated considering an increasing number of turbulence modes (ns = 1, 3, 10, 50, 118). Fig.

20(a, b) shows that in the low frequency range few modes are enough to represent the turbulence;

instead, in the high frequency range many modes, in principle all, are necessary to reproduce its

harmonic content. On the other hand, Fig. 20(c) shows that the psdf of the response is well

reproduced even representing the turbulence by a small number of modes.

Based on these considerations, let us define the effective turbulence as that part of the actual

turbulence which really influences the structural response, i.e., the turbulence reconstructed using

only the necessary POD modes, in this case the first three modes.

Fig. 21(a) shows the psdf of the longitudinal effective turbulence multiplied by the frequency; it is

apparent that its harmonic content is concentrated in the low frequency range (n < 0.1 Hz). Thus,

time domain simulations can be carried out adopting time steps much wider than those normally

used, e.g. ∆t = 0.1 s, without any relevant underestimation of the buffeting response. Moreover, since

turbulence eigenvectors are almost independent of n for n < 0.1 Hz (Fig. 18(b)), they can be

approximated by a constant value; thus, SPT coincides with CPT, and Monte Carlo simulations

become drastically simplified.

Fig. 21(b) shows the cohf of the longitudinal effective turbulence at n = n1; it is worth noting that

this quantity is greater than 0.9 for distances |s2 − s'2| in the order of 300 m. Thus, analyses and

simulations can be carried out with space steps much wider than those normally used, e.g.,

∆s2 = 60 −180 m, without any relevant overestimation of the buffeting response.

To verify these remarks, several analyses were carried out based on different space steps and

Fig. 20 Reconstruction of v1 (a), of v3 (b) and of the structural response (c) at the mid-span
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approximating the turbulence eigenvectors with constant values, confirming that a looser spatial

discretisation and turbulence modes evaluated at a constant frequency within the harmonic content

of the effective turbulence lead to precise solutions. Similar results were obtained by Monte Carlo

time domain simulations characterised by increasingly wider time steps and frequency independent

POD modes.

The possibility of strongly reducing the computational burden of Monte Carlo simulations and

finite elements analyses allows the collection of wide ensembles to produce accurate statistical

estimations. The extrapolation of these considerations to nonlinear dynamic analyses of the response

requires some cautions but seems very attractive especially for complex and burdensome problems

as the Messina Straits Bridge project.

4. Conclusions and prospects

POD was developed over the last century in many different fields, originating a broad band of

fragmentary and variegated methods and applications, whose collation requires working out a

comprehensive viewpoint.

This paper provides such a comprehensive viewpoint, showing that a sound and robust position of

the problem involves all the tools to deal with random vectors, finite-energy random processes,

infinite-energy random processes (above all stationary processes) and incompletely-stationary

random processes in a unique and homogeneous environment. Linear transformations of multi-

variate random processes and Monte Carlo digital simulations can be dealt with as particular cases

and applications belonging to such an environment.

The search for the covariance and spectral modes of multi-variate stationary processes, which

covered almost all the applications in wind engineering (Solari, et al. 2007), represents a special

topic in the field of linear transformations which, in their turn, can be interpreted as a basic but

limited ingredient in the broad class of POD tools.

Some of these tools are examined with reference to four applications developed at the University

of Genoa, suitably revised and embedded into the proposed homogeneous framework. Within the

Fig. 21 Spectral (a) and coherence (b) properties of the effective turbulence field
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class of stationary random processes, the problems related to the modelling and simulation of

turbulent fields, the representation of the aerodynamic forces on a tall bulding model and the

buffeting response of a long-span bridge are analysed. An application of POD for the digital

simulation of the nonstationary turbulence field experienced by an aircraft moving along a trajectory

is also proposed.

The use of those tools still little applied in wind engineering, for instance the analysis of non-

stationary and/or not homogeneous processes, typical of aeolic phenomena with small temporal and/

or spatial scales, offers particularly attractive prospects of development.
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Notation

A frequency-domain representation of α (Section 3.1);
A matrix defining aerodynamic forces (Section 3.4);

a, b extremes of the interval of definition of v;

C set of complex numbers;

Cv, Cv, C , Cx covariance function or covariance matrix of the processes v, v,  and x;

matrix of the correlation coefficients of v (Section 3.3);

single-variable covariance function of the stationary processes v and v;

Cohij coherence function of the turbulence components vi and vj (Section 3.1);

Djk, D cross-modal participation coefficients and matrix (Section 3.4);

D definition domain of random processes;

E statistical average operator;

f vector of the external forces;

H unit-step function;

Hj complex frequency response function of the j-th structural mode;

I identity matrix;

J, J1 functionals to be minimised in the representation problem;

M mass matrix;

M number of degrees of freedom;

m dimension of the argument of a random process;

m-D m-dimensional, referred to a random process;

n dimension of a vector to be represented by POD;

nj natural frequency of the j-th vibration mode;

ns number of spectral modes to retain (Section 3.4);

n-V n-variate, referred to a random variable or process;

pj, p structural principal coordinates, vector of the principal coordinates;

Pj frequency-domain representation of pj

qj, q structural Lagrangian coordinates, vector of the Lagrangian coordinates;

r absissa along the domain  in the example of Section 3.1;

Rc, Rs matrixes defining normalised forces (Section 3.3);

R set of real numbers;

s, sk space coordinate, Laplace variable, Fourier coefficients of the covariance function;

s vector of the space coordinates;

trajectory in the space;

Sv, Sv, Sp, Sq, Sy power spectral density function/matrix of the processes v, v, p, q and y;

Sij cross-power spectral density function of the turbulence components vi and vj

(Section 3.1);

coherence matrix of v (Section 3.3);

t, tk argument of a random process or time instants;

T period of a statistically periodic process;

u, u scalar-valued and vector-valued test functions;

û, û Fourier transform of u and u;

v, v random process or random vector;

v
o v

o

C
v

)

C̃v C̃v,

 

s
o

S
v

)
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V frequency-domain representation of the process v;

turbulence field along the trajectory ;

xk, x POD/covariance principal components, vector of the POD/covariance principal

components;

yk, y spectral principal components, vector of the spectral principal components;

Yk,Y frequency-domain representation of yk and y;

zh spectral principal component of α; 
Zh frequency-domain representation of zh
α generic turbulence component (Section 3.1);

δ Kronecker delta or Dirac function;

∆t, ∆ω discrete time step and circular frequency step;

ϕ vertical angle of the wind velocity (Section 3.2);

φk, φk POD eigenvectors and eigenfunctions, covariance eigenvectors;

generalised Fourier transform of φk and φk;

Φ matrix of the covariance eigenvectors;

γk, Γ spectral eigenvalues, matrix of the spectral eigenvalues;

eigenvalues of the coherence matrix (Section 3.3);

λk, Λ POD/covariance eigenvalues, matrix of the covariance eigenvalues;

eigenvalues of the correlation coefficients’ matrix (Section 3.3);

θ horizontal angle of the wind velocity (Section 3.2);

θk, Θ spectral eigenvectors, matrix of the spectral eigenvectors;

spectral eigenfunction of α (Section 3.1);

σi standard deviation of the turbulence component vi (Section 3.3);

τ t-lag for the computation of covariance;

ω circular frequency or wave number;

ωj natural circular frequency of the j-th vibration mode;

ξj, ξjk, ξjkh random numbers;

ψj, Ψ structural eigenvectors, matrix of the structural eigenvectors;

ζj modal damping ratio.
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