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Rain-wind induced vibrations of cables

in laminar and turbulent flow
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Abstract. In the last decades there have been frequent reports of oscillations of slender tension members
under simultaneous action of rain and wind - characterized by large amplitudes and low frequencies. The
members, e.g. cables of cable-stayed bridges, slightly inclined hangers of arch bridges or cables of guyed-
masts, show a circular cross section and low damping. These rain-wind induced vibrations negatively affect
the serviceability and the lifespan of the structures. The present article gives a short literature review,
describes a mathematical approach for the simulation of rain-wind induced vibrations, sums up some
examples to verify the calculated results and discusses measures to suppress the vibrations.
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1. Introduction

Hikami (1986) measured large cable vibrations during the erection phase of the Meikonishi

Bridge near Nagoya in Japan. He was the first person to have noticed and reported on a relationship

between cable oscillations, wind and water rivulets on polyethylene-coated cables. On the basis of

observations, he assumed the excitation mechanism to be comparable to the aeroelastic galloping

instability. He examined the main parameters and properties of rain-wind induced vibrations, like

wind speed, wind direction, rain intensity, vibration amplitudes and vibration frequencies, by means

of additional wind tunnel tests. With the same method, Matsumoto (Matsumoto, et al. 1990,

Matsumoto, et al. 1995, Matsumoto, et al. 1999) confirmed that the upper rivulet on the cross

section is the main cause for vibrations with large amplitudes. Saito, et al. (1994) described the

reduced likelihood of rain-wind induced cable vibrations in turbulent wind flow.

The Erasmus Bridge in Rotterdam (Geurts and van Staalduinen 1999) and the Fred Hartman

Bridge in Houston, Texas (Main and Jones 1999) have been affected by rain-wind induced

vibrations as well. One year after the opening of the Elbe Bridge near Doemitz (Fig. 1a) fatigue

cracks appeared at some hanger nodes (Fig. 1b). These were caused by strong vibrations of the

damaged hangers during moderately rainy and windy conditions (Luesse, et al. 1996). 

The main aspects of rain-wind induced vibrations described in the fore-mentioned publications

can be summarized as follows:
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The oscillations mainly occur in moderately rainy weather, in a limited range of wind angle of

attack, in a limited range of wind speed, and they only affect cables with low structural damping.

The affected cables vibrate in one or several of the lower modes with low amplitudes in the wind

direction, and values several times the cable diameter perpendicular to that direction

Rain-wind induced vibrations can occur when rain drops form axial water rivulets on the round

surface of cables or hangers. The rivulets represent separation points for the surrounding wind flow.

Thus the fluid pressure distribution is modified, compared with the pressure around a normal

circular cross section. The resulting forces cause severe vibrations of the structures. Due to these

oscillations and the wind forces, the rivulets move circumferentially on the surface of the structures,

and the fluid pressure distribution around the cross section changes. The forces on the structure

change and the excitation continues.

The existing simulation approaches of Peil and Nahrath (2003) and Yamaguchi (1990) are based

on this excitation mechanism for rain-wind induced vibration. Like other authors, they use a two-

dimensional two(three)-mass-oscillator with two(four) degrees of freedom (Fig. 2). The cable can

move translationally in (horizontal and) vertical direction. The cable mass is viscously damped and

supported by springs. The (two) rivulet(s) move(s) circumferentially on the cable surface. The

masses of the rivulets are coupled with the cable mass. Like a driven pendulum, they swing around

the moving centre of the cable’s cross-section. Damper elements simulate the frictional resistance

between the rivulets and the cable’s surface. The wind forces and moments act in the direction of

the degrees of freedom.

Fig. 1 (a) Elbe Bridge near Doemitz, (b) Fatigue crack at hanger node

Fig. 2 Two-dimensional three-mass-oscillator with four degrees of freedom (Nahrath 2003)
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In this paper, Nahrath’s model is enhanced by investigations on a cable in 3D space. In

addition, the behaviour of the rivulets is examined in more detail by numerical simulations using

simplified Navier-Stokes equations, and the turbulent wind flow is considered. The approach is

able to simulate the oscillation amplitudes, frequencies and other main properties (Peil and

Nahrath 2003b, Dreyer 2005). The calculation in the time domain allows for all nonlinear

aspects. The model consists of three components: the equations of dynamic motion of a sagged

cable, the equations of motion of the rivulets and the computation of the aerodynamic forces in

laminar and turbulent flow, depending on the rivulet positions on the cable surface. The

calculated results are verified on the basis of test data. Possible measures to suppress rain-wind

induced vibrations are discussed.

Apart from the above-mentioned theory, which represents a self-induced excitation mechanism,

other authors present different explanations and mathematical models for rain-wind induced

vibrations. Van der Burgh and Abramian (2002) analyse a two-dimensional oscillator with a coupled

rivulet mass that changes harmonically in the course of vibration. Geurts and van Staalduinen

(1999) use an adjusted galloping model to calculate the cable vibrations and the damping measures

of the Erasmus Bridge in Rotterdam. Seidel and Dinkler (2004) assume that the rivulet movement

on the cable surface causes a change between the sub-critical and the super-critical separation of the

wind flow around the circular cable section. This theory can explain the cable vibration in the

direction of the wind flow, but seems to be unsuitable for lateral vibrations. An empirical approach

to calculating lateral cable vibrations induced by rain and wind is presented by Schwarzkopf and

Sedlacek (2005). Their model uses aerodynamic coefficients determined in wind tunnel tests in

order to calibrate a so-called critical velocity at which the measured cable vibrations are reproduced.

This model seems to be valid only within the scope of the investigated parameter range. The critical

velocity is not identical with the onset wind speed of rain-wind induced vibrations. It can deviate

from the real wind speed by a factor of three or more. Thus the critical wind speed cannot be used

for the determination of fatigue assessment.

2. Equations of motion for the cable

Horizontal and inclined cables sag due to their dead weight. The excited structure oscillates

around the static position that can be approximately described by a quadratic parabola in case of a

taut cable.

In order to derive the equations of motion for the sagged cable in 3D space (Fig. 3a), the

equilibrium conditions of the external and internal forces acting on an element of the oscillating

cable (Fig. 3b) are formulated (Eq. 1: direction 1). They include the inertia forces, the external

forces and the cable forces (Lazarides 1985).

 (1)
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 (3)

 (4)

 (5)

  (6)

 (7)

  and (8)

 (9)

and some simplification steps, the calculation produces the equations of motion for i = 1 and the

remaining directions (Eq. 10).

       i = 1, 2, 3  (10)

where µ – cable mass per unit length; S – cable tension; EA – axial stiffness of the cable cross section;

ε – strain; g – gravity; δ – cable inclination; f, q – external static and dynamic loads; t – time; s –

curvilinear coordinate along the cable; xi– displacement of the cable and i – directions. While the

indices stand for the initial (0), static (s) and dynamic (d) state of the oscillating cable, the
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Fig. 3 (a) Sagged cable in 3D space, (b) Cable element
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difference of the variables in the static and dynamic state is denoted by letters without index. The

wind forces qi on the cable in direction i are calculated with the help of the components  and 

(Eq. 20).

In order to determine the four unknown variables xi and S in every step of the time domain

analysis, the equation of continuity (Eq. 11) is added to the set of equations.

 (11)

3. Equation of motion for the rivulets

The water rivulets have an important influence on the excitation of rain-wind induced vibrations.

Due to the complex interaction between air and water on the solid surface most authors use a

swinging pendulum that is coupled with the cable as an approximation (e.g. Nahrath 2003 and

Yamaguchi 1990). 

In this paper, the rivulet flow is described with simplified two-dimensional equations of fluid

motion in the circumferential direction of the cable section. 

The flow of a fluid can be simulated with the Navier-Stokes equations and the corresponding equation

of continuity. With the assumption that the height of the rivulet is small compared with its lateral extent

(Fig. 4: h<<2a), the velocity parallel to the solid surface is clearly bigger than the component in the

perpendicular direction. Neglect of the small terms in the Navier-Stokes equations and the associated

equation of continuity can simplify the equations considerably (Eq. 12), (Hocking 1980). 

(12)

where p−pressure; ρw−density of the fluid; µ−viscosity; fi and bi−external forces and accelerations of

the cable; − displacements and velocities (Fig. 4); g − gravity; β − inclination of the tangent

plane to the cable surface and fi, bi– external forces and cable accelerations. The wind forces on the

rivulet are calculated by  (Eq. 20); r = cable radius), the acceleration terms are taken

qD qL
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Fig. 4 Rivulet on an inclined surface
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from Eq. (10) ( ), while the adhesion is considered with the help of the slip coefficient

λ (Eq. 13). The boundary conditions on the cable and the rivulet surface are

   (13)

  

  (14)

where h – rivulet height; t – time; λ – slip coefficient; σ − surface tension (Fig. 4). The tangential

stress vanishes at the interface between rivulet and the surrounding air (Eq. 8). In addition, the

normal stress must be continuous across = h. Due to the surface tension at the contact line

between gas, liquid and solid (Fig. 4: points 1 and 2), a static contact angle θ0 can be observed. If

the interface moves, the contact angle θ2 at the advancing edge grows, while the angle θ1 at the

retreating edge becomes smaller. This fact is formulated as follows:

boundary 1: boundary 2: 

     (15)

With the given boundary conditions, the calculation of the pressure and velocity components results in the

equation of motion (Eq. 16) for the rivulet on the cable surface (e.g. Dreyer 2005, and Hocking 1980).

 (16)

The no-slip condition on the cable surface is replaced by the Maxwell slip condition (Hocking

1980). The slip coefficient λ depends on the material of the cable and its surface conditions

(roughness). To determine the slip coefficient, experiments have been carried out. A rotating

cylinder is sprinkled by water, the rivulet at the bottom is shifted by the rotation, the displacement

of the water rivulet is measured (Fig. 5). Main parameters are the cylinder inclination, the cylinder

diameter, the cylinder surface condition, the amount of water and the rotational velocity.

Fig. 6(a) shows some resulting rivulet displacements depending on the cylinder’s rotational

velocity and angle of inclination δ. The diameter of the polyethylene tube was 100 mm and the

water rate was qr=1,0 mm per minute.

In order to determine the slip coefficient, the following procedure was used: The calculation on the

tangential plane starts with a conversion of the angular velocity to the dimension (m/s). With an estimated

bi = ∂2
xdi/∂t

2

z = 0: w = 0

v = λ
∂v

∂z
-----

z = h y, t( ):
∂v

∂z
----- = 0

∂h

∂t
------ + v

∂h

∂y
------ = w

p + σ
∂2

h

∂y
2

-------- = const.

y

∂h

∂y
------⎝ ⎠

⎛ ⎞
1

= 
θ1, if v1 0>

θ2, if v1 0<⎩
⎨
⎧ ∂h

∂y
------⎝ ⎠

⎛ ⎞–
2

= 
θ2, if v2 0>

θ1, if v2 0<⎩
⎨
⎧

θ1

∂h

∂y
------⎝ ⎠

⎛ ⎞
1

θ2< < , if v1 = 0 θ1

∂h

∂y
------⎝ ⎠

⎛ ⎞–
2

θ2< < , if v2 = 0

∂h

∂t
------ + 

σ

3µ
------

∂
∂y
----- h

2
h 3λ+( ) ∂

∂y
-----

∂2
h

∂y
2

-------- + 
ρw fz bz g cosβ–+( )

σ
------------------------------------------------h⎝ ⎠

⎛ ⎞  + 
ρw fy by+g sinβ+( )

σ
---------------------------------------------⎝ ⎠

⎛ ⎞  = 0



Rain-wind induced vibrations of cables in laminar and turbulent flow 89

value for λ, the solution of the equation of motion results in a rivulet velocity for every test. This

procedure is repeated until a defined maximum offset between measured and calculated values is reached.

A sample calculation with the parameters ρw= 1,000 kg/m3, µ = 1.8·10−5 Ns/m2, σ = 0.073 N/m,

λ = 1.7·10−6 m, 2a = 0.01 m, θ0 = 0.1, θ1 = 0.09 and θ2 = 0.12 illustrates the changing rivulet shapes

and positions with time as described in the given rivulet equation. A quadratic parabola is assumed

to be the initial shape of the rivulet (Fig. 6b).

4. Aerodynamic forces

It is assumed that the rain-wind induced forces are self-induced and-in the relevant wind velocity

range-independent of the Reynolds-Number. The quasi-steady strip assumption (Nahrath 2003 and

Yamaguchi 1990) is used. 

The three-dimensional orientation of the cable results in an angle β and an effective wind velocity

urel (≈u, see Fig. 7), which depend on the yaw angle ψ  and the cable inclination δ. 

 (17)

 (18)
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u0sinψ( )sinδ

u0 cosψ–
--------------------------------⎝ ⎠

⎛ ⎞  = arctan tanψ sinδ–( )
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2
ψ sin

2
ψ sin

2
δ+

Fig. 5 (a) Rotating cylinder, (b) Displaced rivulet on the cylinder bottom

Fig. 6 (a) Test results, (b) Rivulet shape and position
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 (19)

The wind forces plotted in Figs. 7 and 8 are the product of the pressure and the aerodynamic

coefficients C, where q – aerodynamic forces and moments; ρl– density of air; d – cable diameter and

α – angle of attack (Eq. 19, 20). The aerodynamic coefficients depend on the cable movements xi,

the position  and velocity of the rivulets and on the angle β as shown in Fig. 7.

 (20)
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Fig. 7 Wind forces acting on cable section

Fig. 8 Angles of attack
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Fig. 7 and Eqs. (17) to (20) are valid in laminar wind flow (i.e. constant wind velocity) only. In

turbulent conditions, correlated fluctuating components in all directions (Eq. 21) are added to the

mean wind velocity profile that is a function of the height above ground (Davenport 1961). The

lengthy description of the generation of these values is given by Wang (1994) based on the work of

Shinozuka (1971).

(21)

For evaluation of the aerodynamic coefficients (CD, CL, CM), wind tunnel tests have been carried out

with a full-scale model. The quasi-steady wind forces were measured on a 1 m cylinder with a

diameter of 10 cm. Axial strips were attached to a cylinder in order to simulate the rivulets. The

strips had circular arched cross sections with a height of 3 mm and a width of 10 mm. Cylinders

with one (upper) and two rivulets were tested at a wind velocity of u = 10 m/s. The Reynolds-

Number Re = 70000 is sub-critical for an undisturbed circular section. It shows only a slight

interdependence of wind velocity and aerodynamic coefficients. Apart from the afore-mentioned

conditions concerning the dimensions and the Reynolds-Number, the tests in turbulent flow require

a certain scale between the dimensions of the turbulent gust balls and the diameter of the cylinder.

This scale could not be simulated in the wind tunnel, because the axial strips representing the

rivulets would have been too small. 

Fig. 9 shows, for instance, the influence of the angle of attack on the lift coefficient at different

turbulence intensities. The higher the turbulence intensity, the lower the peaks in the turbulent

coefficient curves in comparison with laminar conditions.

u01 t( ) = u01 + u01
′ t( )

u02 t( ) = u02
′ t( )

u03 t( ) = u03
′ t( )

Fig. 9 (a) Aerodynamic lift coefficient, 1 rivulet, various turbulence intensities, (b) Aerodynamic lift
coefficient, 2 rivulets (αI – upper rivulet, αII – lower rivulet), laminar
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5. Excitation mechanism and some results

5.1. Complete procedure

In order to simulate the described excitation mechanism, the components explained in Sections 2

to 4 are joined to form a complete model. The analysis of the structure’s equations of motion results

in displacements, velocities and accelerations of the cable nodes. The latter cause inertia forces that

act on the rivulet-in addition to the wind and adhesion forces. Shape, position and velocity of the

rivulets are calculated by means of the equation of motion for the rivulets on the cable surface.

These positions represent the separation points for the wind flow around the cable section. With this

input information, the aerodynamic coefficients and the wind forces for the next time step are

determined. Each calculation starts with the calculation of the stationary rivulet positions and a

small perturbation in the time domain analysis with the help of the Newmark’s procedure. The

cables are divided into approx. 10 elements and the rivulet surfaces are divided into approx. 30

segments. Due to the high number of degrees of freedom, the simulation is very time-consuming in

comparison to the (Nahrath 2003) model.

This description of the complete procedure clearly shows that the cable motion (Eq. 10) is

coupled to the rivulet motion (Eq. 16). Moreover, the aerodynamic coefficients depend on the cable

and rivulet motion (Eq. 19, Fig. 7). The relevant terms are explained in Sections 2 to 4.

5.2. Excitation mechanism and unstable velocity range

An example of measured vibrations of the Fred Hartman Bridge is used for the calculation (Zuo

and Jones 2003, Main and Jones 1999), with the parameters d = 0.19 m, µ = 95 kg/m (mass per

length), δ = 28,5o, l = 172 m (cable length), Ss= 5100 kN, ξ = 0,0015 (damping coefficient) and

f1 = 0.625 Hz (eigenfrequency) for the cable, as well as ρw= 1000 kg/m3 (density), σ = 0.0735 N/m,

λ = 1.7 * 106 m, µ = 1.0 * 106 m2/s and a0 = 0.006 m for the rivulets. The wind speed is u = 11.5 m/

s = const. from direction ψ= 30o. The calculated time histories of the maximum cable deformation

(at 0.5 * l) in directions 2 and 3 are shown in Figs. 10(c) and 10(a), while the time history of the

upper rivulet’s angle of attack is plotted in Fig. 10(b). Initially, the amplitude steadily increases and

the rivulet starts oscillating around its stationary position at the same frequency. After approximately

400 s, an equilibrium state with steady amplitudes is reached. It is important to note that the

equilibrium state is reached when the upper angle of attack reaches about −55o. The aerodynamic

lift coefficients show large gradients in the angle range of about αΙ = −45o and changing signs of the

gradients at αΙ = −55o (Fig. 9). When having in mind the den Hartog-criterion (1952) for the

proneness of cross sections to galloping excitation, this effect is understandable.

The alteration of the aerodynamic forces and of the cable deformation shows the same

frequency. The product of force and velocity is positive most of the time. Due to that the work

per period, i.e., the integral of work over the time, is always positive and thus the vibration

amplitudes grow.

One of the main characteristics of rain-wind induced vibrations is the limited unstable wind

velocity range (see Fig. 10e). When a critical minimum wind velocity has been exceeded, the

amplitudes quickly grow. After reaching their maxima, the amplitudes decrease. They stop when a

critical maximum wind velocity has been reached. Fig. 10(e) shows that for a wind speed u=8.8 m/s,

the amplitude in direction 3 xd3 is 0.30 m. The other degrees of freedom are calculated, but not
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plotted in this paper. If u = 11.5 m/s, the maximum amplitude xd3 = 0.42 m is reached. With the

changing wind velocity, the initial angle of attack shifts from αΙ = −49o to αΙ = −36o. Thus the change

of the angle increases. This affects the cable deformations and the rivulet amplitudes, which both

have bigger values. An equilibrium state with steady amplitudes is reached within a longer period of

time. When the angle of attack exceeds its critical maximum value, the damping is positive most of

the time and the vibration increase becomes less distinct and finally stops. The wind velocity, which

is just high enough to prevent the upper rivulet from moving down the cable section windward,

Fig. 10 (a) Time history of cable deformation in direction 3, (b) Time history of the upper angle of attack, (c)
Time history of cable deformation in direction 2, (d/e) Comparison: simulation results and observation
data Zuo and Jones (2003) and Main and Jones (1999), calculated results given at 0.5*l.
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represents the lower limit of the unstable wind velocity range. In the case of just one lower rivulet

(Fig. 12), the cable vibrations are considerably smaller. 

The calculated amplitudes and unstable wind velocity range in Figs. 10(d) and 10(e) show a good

agreement with observation data published in Zuo and Jones (2003) and Main and Jones (1999).

While the observed vibrations occurred in several low cable modes, the presented model only shows

cable oscillations in the first mode in laminar wind flow. The given amplitudes refer to the cable

sector with maximum displacements.

A second example simulates the rain-wind induced cable vibration observed for the Erasmus

Bridge in Rotterdam. The parameters for the cable and the wind are d = 0.21 m, µ = 60 kg/m, δ = 30o,

l = 250 m, ξ = 0.0015, f1 = 0.45 Hz, u = 14.0 m/s and ψ = 25o, whereas the parameters for the rivulets

remain unchanged.

It is stated in Geurts and van Staalduinen (1999) that the maximum amplitude in direction 3 was

about 0.55 m for the second example. Fig. 11(a) shows that the cable deformation and the unstable

wind velocity range decrease in case of a growing turbulence intensity. The increasing wind

fluctuation disturbs the rivulet movements. Furthermore, the correlation of the aerodynamic forces

along the cable axis is reduced. For a turbulence intensity of about Iu1 = 0.053, the calculation results

show a good agreement with the measurements. Taking diagram 8a into consideration, one could

assume that the amplitude reduction would be larger than calculated. But as already mentioned, the

actual geometrical proportions could not be modelled in the wind tunnel, which is due to scaling

problems. Because of this there are differences between simulation and measurement.

Again the observed vibrations occurred in several low cable modes, while the presented model

shows cable oscillations in the first mode in laminar wind flow (at 0.5*l) and in several low modes

in turbulent flow (at 0.67*l). The mean wind profile is described by the power law with an exponent

α = 0.3. Again, the given amplitudes refer to the cable sector with maximum displacements.

Nahrath (2003) calculated a value of xd3 = 0.30 m for the cable amplitude in direction 3 with the

two-dimensional model shown in Fig. 2, while taking into account a correlation length of only 50%

for the aerodynamic forces along the cable axis.

No sag effects of the vibrating cables were detected. The values of the independent parameter λs
2

are low in both examples (cable of Fred-Hartman Bridge: λs
2 = 0.7; cable of Erasmus Bridge:

λs
2 = 3.3). The parameter λs

2 = (µ g cos(δ) l/S)2l/(S Le/EA) was introduced by Irvine (1992) in order to

characterize the behaviour of cables, where Le= l (1+1/8 (µ g cos(δ ) l/S)2).

Fig. 11 (a) Unstable wind velocity range for different turbulence intensities, (b) Unstable wind velocity range
for different damping coefficients, calculated results given at 0.5*l and 0.67* l .
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5.3. Damping measures

The example of the Erasmus Bridge in Rotterdam can, in addition, be used to examine the effect of

cable damping on rain-wind induced vibrations. The cable amplitudes in direction 3 are plotted in Fig.

11(b) for Iu1 =0.053 and different damping ratios. As a result of increasing damping, the maximum

cable amplitudes and the unstable wind velocity ranges become smaller. In order to suppress the rain-

wind induced vibrations at the Erasmus Bridge completely, additional dampers with damping constants

c=2*25 kNs/m have been installed (Geurts and van Staalduinen 1999). Fig. 12 (Pacheco, et al. 1993)

allows an overall system damping value of a cable with a given discrete damper to be determined on

the basis of a free vibration analysis. When using this diagram and the distance xc=4.2 m from the

support, the sum of structural and discrete damping ratio results in ξges=0.0015+0.4*(4.2/

250)=0.0082. Corresponding with the observations in situ (Geurts and van Staalduinen 1999), the

simulation proves that vibrations are prevented, if the damping ratio exceeds 0.008 (Fig. 11b).

6. Summary

The present paper describes an approach that allows rain-wind induced cable vibrations to be

calculated. It is shown how the interaction between the wind flow, the movements of the cable and

the rainwater rivulets lead to self-induced vibration. The calculated results show a good agreement

compared with in-situ observation data given in various publications and the simplified two-

dimensional model by Nahrath (2003).

Due to the fact that the ratio of the integral length scale of the turbulent eddies of the grid-

generated turbulence and the diameter of the cylinder, could not be simulated in the wind tunnel,

investigations are continuing to allow for precise consideration of the natural turbulence. Thus, full-

scale field tests are being carried out at the moment at the Institute of Steel Structures at the

Technical University of Braunschweig. Additional questions requiring clarification relate to the

excitation of several cable modes under different conditions, and the assumed independence of the

aerodynamic coefficients of the Reynolds number in turbulent flow.
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