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Abstract. Second-order moments of considerable magnitude arise in tall and slender RC chimneys
and towers subject to along-wind loading, on account of eccentricities in the distributed self-weight of
the tower in the deflected profile. An accurate solution to this problem of geometric nonlinearity is
rendered difficult by the uncertainties in estimating the flexural rigidity of the tower, due to variable
cracking of concrete and the ‘tension stiffening effect. This paper presents a rigorous procedure for
estimating deflections and second-order moments in wind-loaded RC tubular towers. The procedure is
essentially based on a generalised formulation of moment-curvature relationships for RC tubular towers,
derived from the experimental and theoretical studies reported by Schlaich et al. 1979 and Menon 1994
respectively. The paper also demonstrates the application of the proposed procedure, and highlights
those conditions wherein second-order moments become too significant to be overlooked in design.
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1. Introduction

Tall reinforced concrete (RC) towers are widely used, in increasing numbers and increasing
heights, for various applications, such as industrial chimneys and towers for TV transmission
and microwave communication. Such towers are typically hollow circular in cross-section, from
aerodynamic considerations, and tapered along their heights, from considerations of structural
economy and aesthetics. Wind loads generally predominate the structural proportioning of the
tower, which behaves essentially as a vertical cantilever, and is usually analysed in practice
without significant error using conventional beam elements (Menon and Reddy 1998). The
tubular section of the vertical shaft is typically subjected to a bending moment due to lateral
wind load, combined with an axial compression due to the dead load of the tower above the
section under consideration. Simplified methods of estimating the design bending moments
due to dynamic wind action, in the along-wind as well as across-wind directions, have been
recommended in various international codes of practice on RC chimney design. A
comparative study of these methods for estimating along-wind moments is described in
Menon and Rao 1997a; methods for estimating across-wind moments are reviewed in Menon
and Rao 1997b. Also, an assessment of the reliabilities, in terms of lifetime probabilities of
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failure, associated with the various codal methods of design, is given in Menon and Rao
1998.

Wind moments in towers are usually computed in design practice, on the basis of a
dynamic or quasi-static analysis, which assumes linear elastic behaviour. However, in reality,
the behaviour is nonlinear; i.c., the deflections increase nonlinearly with increase in wind
loading, especially in the along-wind direction. There is a problem of geometric nonlinearity,
whereby ‘second-order moments are induced, on account of eccentricities in the distributed self-
weight of the tower in the deflected profile. There is also a problem of material nonlinearity,
triggered by the cracking of concrete, causing variations in flexural stiffness and damping ratios.
These effects introduce uncertainties that make the prediction of deflections and second-order
moments a difficult task. Consequently, many code-based methods (ACI 307, 1988, DIN 1056
1984, Pinfold 1984) do not require second-order moments to be computed by the designer; these
are accounted for by means of a conservative selection of safety factors. The ACI code, for
example, accommodates these additional moments by lowering the resistance factor, as stated in
the Commentary to the code (ACI 307 1988). However, a few chimney codes (IS 4998, 1992,
CICIND 1984) do require these moments to be computed explicitly, although no rigorous
procedure is specified. The CICIND Model Chimney Code, however, does give a simplified
formula to facilitate a rough estimate.

Some experimental studies on RC hollow circular sections have been reported in literature
(Schlaich et al. 1979, Mokrin and Rumman 1985). Simplified theoretical procedures (Naokowski
1981, Naokowski and Gerstle 1990) have also been formulated to enable the prediction of second-
order moments in RC chimneys (of cylindrical shape), although it is not clear whether these
proposals have the support of experimental evidence.

The work reported here is a contribution in this area. A rigorous procedure for estimating
deflections and second-order moments in wind-loaded RC tubular towers (of all shapes) is
presented here. The procedure is essentially based on a generalised formulation of moment-
curvature relationships for RC tubular towers, derived from the experimental and theoretical
studies reported by Schlaich et al. 1979 and Menon 1994 respectively. The paper also
demonstrates the application of the proposed procedure, and highlights those conditions
wherein second-order moments become too significant to be overlooked in design.

2. Difficulties in accurate prediction of deflections

Deflections in RC members are, in general, difficult to predict with accuracy. The
calculations are usually considered in two parts: (i) immediate or short-term deflection and (ii)
additional long-term deflection due to creep and shrinkage. In the present context of
deflections of RC towers under wind load, we may conveniently ignore the second (and more
difficult) component of long-term deflection. However, even short-term deflections in normal
RC members are not easy to predict, mainly due to uncertainties in the estimation of flexural
rigidity, which is influenced by :

» varying degrees of tensile cracking in concrete;

» varying amounts of reinforcement;

» presence of axial forces, in addition to flexure;

» variations in the tensile strength of concrete;

» variations in the modulus of elasticity of concrete;

» nonlinear stress-strain curve of concrete in compression.
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In addition, there is an inherent high variability in measured deflections, even under
carefully controlled laboratory conditions.

Despite the above uncertainties, a number of simplified procedures have been developed
over the years, and incorporated in codes, to estimate short-term deflections in RC beams.
These procedures adopt empirical expressions for estimating the so-called ‘effective flexural
rigidity’ (Branson 1977, Yu and Winter 1960, Beeby and Miles 1969, Rao and Subrahmanyam
1973, Prakhya and Morely, 1990). The influence of axial force, in combination with flexure,
has also been accounted for by Sakai and Kakuta, 1980.

However, these well-known procedures to predict short-term deflections in RC members in
general (for the purpose of ensuring satisfactory serviceability performance) cannot be readily
applied to the case of determining deflections and second-order moments in wind-loaded RC
towers, for the following reasons :

« The assumption of linear elastic behaviour, underlying the conventional procedures, is
justifiable under service load conditions, but surely not under extreme wind conditions.
The effect of nonlinearities must be properly accounted for in the estimation of second-
order moments for a realistic assessment of ultimate moments in limit state (strength)
design (Menon 1994).

» The behaviour of concrete in RC flexural members with very large hollow circular cross-
sections is different from conventional RC beams with relatively small and solid cross-
sections. In the case of the former (unlike the latter), the distribution of compressive
stresses is more-or-less uniform across the local thickness of the concrete shell (Rao and
Menon 1995).

3. Moment-curvature relationships in tubular RC sections

Expenmental studies (Schlaich et al. 1979) on tubular RC beam specimens, sub]ected to
uniform increasing bending moment (M), combined with constant axial compressmn (N),
indicate that the overall shape of the moment-curvature (M-¢) plot is similar to that
obtainable for conventional RC beam specimens. The shape of the typical M-¢ curve is
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Fig. 2 Effect of cracking in a tubular RC beam subject to uniform moment (M) and axial compression (V)

depicted in Fig. 1 and the cracked behaviour of the tubular specimen is indicated in Fig. 2.
3.1. Uncracked phase

During a first-time loading, the behaviour is linear elastic in the initial phase, when the
applied moment is less than the so-called ‘cracking moment, M, (Fig.1). The ‘cracking
moment may be defined as that value of the applied moment which results in the maximum
tensile stress (at point B in Fig. 2c) reaching the tensile strength' (f,) of concrete. During this
initial phase (path ‘Oa’" in Fig. 1), the tubular section is assumed to be uncracked and the slope
of the M-¢ line in this region is constant, and equal to the uncracked flexural rigidity (EIL,) of
the tubular section. This is easily obtainable as the product of the short-term elastic modulus of
concrete (E') and the second moment of area (I,.) corresponding to the gross transformed
(annular ring) section, given by :

Le = m3t (14pm/100) Q)

'Note that it is more appropriate to consider the direct tensile strength (f.)) rather than the modulus of
rupture (f,), as the shape of the large hollow circular section is such that the distribution of tensile
stress across the thickness of the concrete shell is practically uniform (Menon 1994).
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where r and ¢ denote the mean radius of the tower section and thickness of the concrete shell,
respectively (Fig. 2); p denotes the percentage steel (in terms of area of steel with respect to
gross area of the section); and m denotes the ‘modular ratio” (i.e., ratio of elastic modulus of
steel to that of concrete).

The cracking moment (M, ) is obtainable from the stress relation:

_ M N
L/t 2mt (1+pm/100)

fa

whereby

M, = fu - 72t (14pm/100)+Nr/ 2 )

It is noteworthy that the cracking moment depends not only on the material and cross-
sectional properties, but also on the magnitude of normal compression (N ).

3.2. Cracked phase

When, in a beam segment subjected to a constant moment, the moment crosses M,, the
concrete in tension is (theoretically) expected to crack and fail throughout the length of the
specimen at the maximum stress location (point B in Fig. 2c), with the cracks propagating
towards the neutral axis. However, in reality, cracking occurs at discrete and randomly spaced
locations along the length of the beam segment such that significant portions, in between cracks,
remain uncracked (Fig. 2a). The concrete, in between the cracks, resists some tension, and this is
reflected by variations in the neutral axis (Fig. 2a), bond stress, and tensile strain in the
reinforcing steel (Fig. 2b). Whereas, for the purpose of designing the steel reinforcement, it is
appropriate to consider the section to be cracked, it would be unrealistic to assume all sections
along the beam length to be cracked for the purpose of deflection calculations. The tensile strain
midway between the cracks (at the section marked ) in Fig. 2) may be as low as 60 percent of
the strain at the crack location (marked (). As the applied moment increases, the cracking
becomes more widespread, and the difference between the two strains gets reduced, and
eventually gets almost eliminated as limit state conditions are approached (Pillai and Menon
1998).

The moment-curvature relationship in the cracked phase is nonlinear (Fig. 1), and the
flexural rigidity corresponding to any moment (M), is obtainable as the secant modulus, which
reduces with increasing moment on account of increased cracking. The curvature (@) in the
cracked phase, corresponding to a moment (M) on the beam segment (subjected to constant
bending moment), is obtainable from the strain profiles at various sections of the beam. As
shown in Fig. 2c, the strain profile at the crack location (section (D) is different from that at
the section midway between cracks (section (2)). From theoretical analysis, we can estimate the
extreme strains in compression (&) and tension (&) at the cracked section (D, such that the
corresponding stresses result in a bending moment equal to the applied moment (M). The
curvature calculated on the basis of these strains (Fig. 2c) may termed cracked curvature (@, )
and is easily obtainable as : '
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It is not possible, except with the help of additional simplifying assumptions, to predict
theoretically the variation of the strain profile, and hence the variation of the curvature, in the
beam segment between two cracks. Clearly, the actual curvature of the total beam, subjected
to a constant moment (coupled with a constant axial compression), is related to some mean
strain profile (Fig. 2¢). Such a curvature, called ‘effective curvature’ ( ¢,;) may be related to
the ‘cracked curvature’ ( ¢, ) as follows :

(oeff =A- Cer (4)

where A is a coefficient, having a value less than unity. The two nonlinear moment-curvature
relationships in the cracked phase, viz., M-@,; and M-@,,, are depicted schematically in Fig. 1,
the former by means of a solid line and the latter by means of a dashed line.

3.3. Tension stiffening effect

Deflection calculations in RC beams are sometimes based, for sheer convenience, on the
flexural rigidity of the gross (uncracked) section. Such an assumption has the advantage of
extreme simplicity, but will clearly result in underestimated values of deflections, especially
under relatively high moments. It is possible, with some computational effort, to estimate the
‘cracked curvature’ ( ¢, ), using Eq. (3), and hence arrive at the so-called ‘cracked flexural rigidity
(E1,=M]@,), corresponding to any given moment (M ). However, deflection calculations based
on EI, are likely to be overestimated, because such calculations implicitly assume that all sections
of the beam are fully cracked on the tension side of an invariant neutral axis location.

In order to arrive at a more realistic prediction of deflections (for even simple cases
involving ‘pure bending), it is necessary to account properly for the discrete and variable
nature of the cracking phenomenon, by considering the M-g,; relationship in Fig. 1 (instead
of the M-¢, curve). The secant modulus obtainable from the M-@,; plot (as the slope of the
line ‘Ob’ in Fig. 1) is termed the ‘effective flexural rigidity (EL,=M/g,;). Typically, it has a
value which is less than the cracked flexural rigidity, but greater than the uncracked flexural
rigidity (Fig. 1). The increase in stiffness (over the cracked stiffness), on account of consideration
of the tension in the concrete in between cracks, is termed tension stiffening.

The coefficient A in Eq. (4) accounts for this tension stiffening effect, and hence may be
appropriately termed ‘tension stiffening factor. The value of this factor depends on the
applied moment (M), the reinforcement percentage (p), and also the magnitude of the axial
compression (N). The problem that now remains is to develop a suitable formula for A in
terms of these three basic variables, ideally on the basis of experimental test results.

4. Proposed empirical formula for tension stiffening factor

A functional description of the ‘tension stiffening factor (1= @5/ @) is proposed in this
paper, on an analysis of the experimental results reported by Schlaich et al 1979. The test
data, in terms of measurements of moment-curvature, pertain to RC tubular specimens, each
with a length of 6 m, outer diameter of 1.2 m, and shell thickness of 100 mm, subjected to
combined bending and axial compression. The tests were carried out, with the tubes placed
horizontally and simply supported at the two ends. Axial compressive forces were introduced
by means of centrally located prestressed tendons, and were maintained at a constant level
throughout the test duration. Moments of equal magnitude were applied at the two ends of the
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tubes to cause bending in single curvature, and were increased in stages till failure occurred.
The tubes differed mainly in the reinforcement percentages (0.454, 0.818 and 1.636) and the
normal compression levels® (0 kN, 1000 kN and 2000 kN). The concrete used had a grade
(characteristic cube strength) of 25 MPa. Some typical test results are depicted in the moment-
curvature plots shown in Fig. 3.

For the purpose of developing an empirical formula for the dimensionless factor A, it is
desirable, in the interest of generalisation, to resort to nondimensionalised basic variables. Thus,
instead of bending moment (M), and normal compression (N), the following normalised
parameters are used in the present formulation :
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Fig. 3 Moment-curvature relationships — experimental and theoretical

2 As the axial compression levels are very small in comparison with the critical buckling load, the second-
order effects (due to beam-column behaviour) on the moment-curvature relationship are negligible.
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U= M/M, ‘ 5)
n = N/fck rt (6)

where f, is the characteristic cube strength of concrete, and the other variables are as
described earlier. We now seek an empirical formula for A in terms of 4, p and n.

For given values of p and n, it is seen from an analysis of the test data that there is a
somewhat parabolic variation of A with respect to 4. Similar trends are seen in the variations
of A with p and with n. Through a process of multiple Lagrangian interpolation, the following
formula for A in terms of 4, p and n is generated :

For u>1.0,

A=(6=5u+ 1) (0.955-0.306p +0.442p7)(0.220-0.2217 +0.205n%)
—(9.267 +13.476— 4.20917) 0

Although the formula appears to be rather lengthy, it is found to generate moment-
curvature relationships that are in good agreement with the test results. Some typical results
are depicted graphically in Fig. 3; the graphs include the test data, and the M-@, and M-g,;
curves obtained theoretically. The M-¢,, plots are generated by an analysis of the RC tubular
section with appropriate assumptions (Menon 1994) and stress-strain curve models for
concrete and steel (Rao and Menon 1995). The location of the neutral axis and the extreme
strains &, and ¢, (in Fig. 2c) are obtained through a numerical scheme, in which the governing
equations (involving M and N) are formed from force and moment equilibrium considerations.
After generating the ‘cracked curvature’ (¢, ) for given values of M and N, and determining the
appropriate value of the ‘tension stiffening factor (A) using Eq. (7), the ‘effective curvature’ ( ¢;)
is determined by applying Eq. (4); thus, the M-, plots are generated. It may be noted that in the
graphs shown in Fig. 3, a dimensionless measure of curvature, ¢ - 2r, is used for the abscissas.
This ‘curvature measure’ is, incidentally, equal to the sum of the extreme strains ( ‘total strain') at
points A and B in Fig. 2c. In the case of the ‘cracked curvature’ plot, it is equal to (£+g),
whereas in the case of the ‘effective curvature’ plot, it is equal to the ‘total strain’ corresponding to
some mean strain profile.

4.1. Influences of reinforcement percentage and axial compression

The influences of the reinforcement percentage (p) and the axial (normal) compression
parameter (n) on the moment-curvature relationship, using the proposed formulation, are typically
as depicted in Fig. 4a and Fig. 4b respectively. For convenience, the ordinate (moment) is
nondimensionalised in terms of a ‘moment parameter (m), which is similar to the normal
compression parameter (n), and is commonly used in m-n interaction diagrams (Rao and
Menon 1995) :

m= M/(fsr2t) 3]

The following inferences may be drawn from the graphs shown in Fig. 4 :

* The flexural rigidity in the uncracked phase does not increase appreciably with increase
in reinforcement; hence, considering the gross concrete section, rather than the uncracked
transformed section, in the uncracked (linear elastic) phase, is a simplification (often
adopted in practice) which is reasonable.

* The linear elastic phase gets extended with increase in normal compression, on account
of increase in the magnitude of cracking moment; however, flexural rigidity remains
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Fig. 4 Influences of (a) reinforcement percentage and (b) axial compression on Moment-curvature relationship

completely unaffected.

+ In the post-cracking phase, flexural rigidity increases with increase in reinforcement, as
well as increase in normal compression.

» Ductility in the post-cracking phase decreases with increase in normal compression, on
account of reduction in the extreme steel strain at the limit state; in the case of a
‘compression failure” (rather than the more common ‘tension failure ), it is likely that the
extreme tension steel may not have yielded at all.

5. Determination of deflections and second-order moments

In the preceding sections, the problem of estimating flexural rigidity (EI') of an RC tubular
tower segment, subjected to uniform bending moment (M) and normal compression (N), has
been addressed. When the moment is less than the ‘cracking moment (M, ), given by Eq. (2), the
flexural rigidity of the gross uncracked section (EI, ) is applicable. Otherwise (when M > M,), the
effective flexural rigidity (EIL;), which accounts for the variable and discrete nature of cracking,
has to be determined; a detailed procedure for this has been presented in this paper.

In the practical case of the wind-loaded tower, the distribution of bending moments, as well
as that of normal compression along the height of the tower, is nonuniform, with the
maximum values of M and N located at the base. Every section along the height of the tower
is subjected to a unique combination of M and N, with the consequence that the distribution
of flexural rigidity is nonuniform along the height of the tower. The upper region of the
tower may remain uncracked, on account of low bending moments in this region.

In conventional RC beams, with nonuniform bending moment diagrams, simplified formulae
have been devised to enable the designer to make use of a single value of (EL;) for the entire
beam, in association with the maximum moment, to estimate the maximum short-term deflection
in the beam (ACI 318, 1989, BS 8110, 1985). However, it is assumed in such cases that the
beam is prismatic (i.e., has the same gross cross-section throughout the span). Simplified formulae,
with a similar basis, have been proposed by Naokowski 1981 and CICIND 1984 to facilitate the
determination of second-order moments in wind-loaded RC chimneys; the underlying assumption
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is that the chimneys are cylindrical in cross-section. It is doubtful whether such simplified
formulae can be reasonably applied to the more general and practical case of tapered chimneys
and towers. It may be noted that the procedure described in this paper, although somewhat
rigorous (because it involves determination of flexural rigidity at frequent intervals along the
height of the tower), is applicable to all tower profiles.

Another issue that needs to be addressed is that the theoretical moment-curvature
relationships, such as the one depicted in Fig. 1, are strictly applicable only for first-time
loading" situations. When an RC flexural member has been subjected previously to a higher
moment level than the present one under consideration, then the degree of cracking, and
consequent effective flexural rigidity, will be governed by that previous higher moment
(whose magnitude may not be known)! In the context of ‘strength design’ of wind-loaded RC
towers, we are interested in the deflections and consequent second-order moments that are
liable to be induced by an extreme wind (with a definite acceptable risk of exceedance). In
such a situation, it is reasonable to consider this extreme wind loading as an instance of ‘first-
time loading, as no cross-section of the tower (designed as a vertical cantilever) is expected
(from a design point-of-view) to have a resistance beyond this theoretical limit state. However,
if deflections are sought under a lesser wind load (as under the ‘so-called serviceability limit
state’ ), then calculations based on flexural rigidities induced by the extreme wind will be
conservative.

5.1. Proposed procedure

A truly rigorous procedure for determining the response of wind-loaded towers calls for a
nonlinear stochastic dynamic analysis, which is computationally too intensive to find acceptance
in design practice. The proposed procedure recognises this, and merely attempts to modify the
prevailing codal design practice to include second-order effects.

In the conventional procedure for estimating along-wind moments in RC chimneys and
towers, a static analysis is first performed to determine the ‘primary” (first-order) moments that
arise due to a mean wind load profile. These moments are then multiplied by appropriate gust
factors, which account for the dynamic amplification effect (Menon and Rao 1997a) :

M. =G. -M,, ©)

In the above equation, M,, M,, and G, denote, respectively, the peak moment, the mean
moment and the gust factor at a height z above the ground level. In ‘strength design
procedures, the peak moment (M, ) is further magnified by an appropriate ‘wind load factor to
account for the enhancement in response under an extreme wind. This factor supposedly also
accounts for the nonlinear increase in gust factor, under very high wind velocities (Kaemmer
et al, 1989, Menon 1994).

In the proposed procedure, the first-order deflections (corresponding to the ‘primary’, moments)
are first determined based on a linear finite element analysis, using simple beam elements to
model] the vertical shaft (Menon and Reddy 1998). For this purpose, the gross (uncracked)
sectional properties are considered while assembling the global stiffness matrix. An initial
estimate of the second-order moments is then arrived at, by evaluating the P-A effects at the
various nodes along the shaft height, on account of the dead loads acting at the various levels.
The sum of the primary moment and the second-order moment at any node gives the total
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moment; corresponding to the total moments at various sections, the appropriate flexural rigidities
are evaluated using the moment-curvature relationships discussed earlier in this paper. The global
stiffness matrix is revised accordingly, and the deflections and second-order moments recalculated.
This process of step-wise linear analysis is iterated until satisfactory convergence of results is
attained; the tip deflection or the base moment can be used as the parameter on which
convergence is based.

5.2. Example application

The application of the proposed procedure to a linearly tapered RC chimney (Menon 1994) is
given here. The example tower has a height #=200 m; a base (outer) diameter D, =20 m; a top
diameter D, =12 m, a concrete shell thickness of 575 mm at base, tapering linearly to 250 mm at
top; a uniform reinforcement percentage p=1.0; and a concrete grade f., =25 MPa. The tower is
assumed to be located in open country terrain with a mean hourly wind speed V=375 m/s at
a height of 10 m above ground.

The results are depicted graphically in Fig. 5. It is seen that deflections (Fig. 5a) and
second-order moments (Fig. Sb) are grossly underestimated when based on uncracked section
properties (as is sometimes done in practice). Further, it is seen from Fig. Sc that, whereas
first-order (primary) moments (M, ) increase highly nonlinearly at sections further removed
from the top of the tower (due to cantilever action), the second-order moments (M, ) show
such an increase only up to about one-fourth of the height above the base (z>0.25k). In the
lower one-fourth region (z<0.25h), the increase in second-order moments is marginal,
because the deflections in this region are extremely small (nearly zero), due to the assumed
fixity at the base. Consequently, the ratio of the second-order moment to the first-order
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Fig. 5 Example tower - (a) deflection profile, (b) M,/M, profile, and (c) moment profiles
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moment (M,/M,) is found to be maximum at z=0.25k, and in this example is as high as 21
percent (Fig. 5b).

5.3. Influences of wind speed, tower slenderness and height

It is expected that, under extreme wind conditions, the mean wind speed (V) will
increase beyond the specified reference speed Vi (usually having a return period of 50 years),
and under ultimate load conditions, may take a value as high as 1.25 V;. For the 200 m tower
studied earlier, considering Vi =30 m/s, it is seen from the results depicted in Fig. 6a, that the
maximum M, /M, ratio (at z=0.25h) increases from 0.10 (for V,,/ V= 1.0; i.e., service load
condition) to 0.21 (for Vy,/ Vi =1.25; i.e., ‘ultimate load condition).

The height-base diameter ratio (£/D,) may vary in the range 7 to 13 in design practice, the
lower values being resorted to usually in multiflue chimneys. High 4 /D, ratios are indicative
of slender towers, and in such cases, second-order moments are likely to be significant. The
results of a parametric analysis (Fig. 6b) indicate that the maximum M,/M, ratio increases
from 3 percent (for 4 /D,=7) to as much as 35 percent (for £/D,=13), for the example tower
discussed earlier. Second-order moments appear to be significant (more than 10 percent of the
primary moments) when the slenderness ratio (h/D,) exceeds about 9.

The influence of tower height (/) on second-order effects is depicted in Fig. 7. As expected,
the deflections (Fig. 7a) and second-order moments (Fig. 7b) increase with increasing height.
However, it is interesting to observe that whereas the tip deflection-height ratio remains almost
the same for all heights (given the same V), and h/D,), the maximum M,/M, ratio increases
significantly from 7 percent (for =100 m) to 30 percent (for =300 m). Second-order moments
may be considered to be significant when the height of the tower exceeds about 150 m.
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Fig. 6 Influences of (a) wind speed and (b) tower slenderness on second-order moments
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Fig. 7 Influence of tower height on (a) deflection profile and (b) M,/M, profile

6. Conclusions

1. An empirical formula [Eq. (7)] is proposed to enable the prediction of the ‘effective
curvature’ [Eq. (4)] in RC towers of tubular cross-section, subject to bending (due to lateral
wind loading) combined with axial compression (due to dead load). The proposed formula,
based on the experimental work of Schlaich et al 1979 and theoretical formulation of Menon
1994, accounts for the effects of variable cracking and tension stiffening in concrete.

2. Moment-curvature relationships, based on the proposed formula, account for the increase in
flexural rigidity with increase in reinforcement percentage and increase in axial compression (Figs.
4a, 4b).

3. Using the proposed moment-curvature relationships, it is shown how a nonlinear quasi-
static analysis (including second-order effects) may be performed to determine the deflections
and moments along the height of the wind-loaded tower. It is demonstrated, by means of an
example, that second-order moments of significant magnitude can develop in the tower, and
that these moments can be grossly underestimated when calculations are based on the
uncracked sectional properties (as is sometimes done in practice). It is also observed that the
maximum increase in moment (due to second-order effects) over the primary moment occurs,
not at the base of the tower, but at approximately one-fourth the height of the tower.

4. By means of a parametric study, it is indicated that second-order moments become too
significant to be ignored in design when the wind speed is high (as, under ultimate load
conditions), when the tower is relatively slender (h/D,>9), and when the tower is relatively tall
(h>150 m).
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7. Closure

Most codes on RC chimney design have not yet incorporated provisions for the explicit
determination of second-order moments, essentially because of the difficulties associated with
the prediction of the moment-curvature relationships, due to variable cracking and tension
stiffening in concrete. It is hoped that the work reported here will serve as a research
contribution in this area.
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