Wind and Structures, Vol. 1, No. 3 (1998) 203-223 203

DOI: http://dx.doi.org/10.12989/was.1998.1.3.203

Spectral density functions of wind pressures
on various low building roof geometries

K. Suresh Kumar'

Faculty of Building, Architecture and Planning, FAGO, Technical University of Eindhoven,
Postbus 513, 5600 MB Eindhoven, The Netherlands

T. Stathopoulos?

Centre for Building Studies, Concordia University, 1455 de Maisonneuve Bivd. W.,
Montreal, Quebec, H3G 1M8, Canada

Abstract. This paper describes in detail the features of an extensive study on Spectral Density
Functions (SDF's) of wind pressures acting on several low building roof geometries carried out in a
boundary layer wind tunnel. Various spectral characteristics of wind pressures on roofs with emphasis
on derivation of suitable analytical representation of spectra and determination of characteristic spectral
shapes are shown. Standard spectral shapes associated with various zones of each roof and their
parameters are provided. The established spectral parameters can be used to generate synthetic spectra
adequate for the simulation of wind pressure fluctuations on building surfaces in a generic fashion.
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1. Introduction

Spectral density functions (SDF's) are utilized to describe how the energy associated with a
time series is distributed in the frequency domain. The various characteristics of the time
series such as level crossing rates and peak rates can also be determined using spectra. Most
importantly, careful generation of SDF is necessary for the computer simulation of time series
based on target SDF. For instance, wind pressure spectra are required for the digital
simulation of pressure fluctuations on building surfaces based on the spectral representation
method (Brockwell and Davis 1991, Suresh Kumar 1997). As compared to wind tunnel
simulation, computer simulation is a feasible alternative to generate pressure time histories
especially when several of them are required for extreme value analysis and fatigue design.

In the past, there have been several studies on quantifying wind velocity spectra, essential
for the theoretical analysis of wind loads on buildings (Panofsky and McCormick 1954,
Davenport 1961). Most recently, Tieleman (1995) presented unified spectral methods for the
three-component velocity fluctuations in wind-tunnel generated shear flows and in the
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atmospheric boundary layer. On the other hand, wind pressure spectra have received only
limited attention and isolated measurements have been carried out for specific cases in many
studies. However, the classification of spectra of space-averaged pressures over flat roof
panels (Stathopoulos et al. 1981) and the more recent attempt to describe basic shapes of
spectra (Kasperski et al. 1996) are notable exceptions. In light of the unavailability of any
systematic information on spectra of wind pressures acting on low building roofs, the present
study was undertaken to establish overall spectral characteristics under various conditions with
the help of wind tunnel measurements.

The paper discusses various characteristics of pressure spectra on low building roofs and
suggests an empirical model for their description. Appropriate normalization has led to the
classification of complex spectral patterns. Finally, the various zones of the roof and their
corresponding spectral shapes in terms of their parameters are provided for various geometries.
A few preliminary results of this study dealing primarily with flat roofs were reported in
Suresh Kumar and Stathopoulos (1998a).

2. Theory

Some of the important properties of the SDF used in this investigation are briefly provided
in this section. A fairly detailed analysis is provided by Vanmarcke (1983). For any zero-
mean stationary random process, the spectral density function (S(f)) is defined as the Fourier
transform of the autocorrelation function (R(7)) of the process, i.e.,

S(f)=%j:R(r) cos (2 nf ) dt )

where S(f) is considered to be non-negative one-sided physical spectrum. The spectral moments,
m; , are defined by

m=[ fS(f)af, i=0,1,2, @

in which m, represents the variance (6°) which is the area under S(f). The spectral moments
can be used to establish level crossing rates as well as peak rates of a narrowband stationary
Gaussian random process. The zero up-crossing or down-crossing rate (N,) of the process can
be estimated by

No=[my/m,]" 3
whilst, the positive or negative peak rate (NV,) can be estimated by
N, =[my/m,]" 4)

Since Egs. (3) and (4) have been developed based on narrowband assumption, they must be
used with caution in case of a broadband process. The broadband nature of a stationary random
process can be quantified by using irregularity factor (£) or bandwidth parameter (8). The
irregularity factor (&), a measure of distance to narrowband, can be evaluated by

£=Ny/N, ®)

The bandwidth parameter (f), a measure of the dispersion of the SDF around its central
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frequency, can be estimated by
B=N1-¢ ©)

The irregularity factor as well as bandwidth parameter range between 0 and 1. While £=1
and B=0 represent a pure narrowband process, £=0 and S=1 represent a pure broadband
process. For more precise definition of terms and more details, see Vanmarcke (1983).

The form of the spectrum adopted in this study is the normalized SDF (S(f)/o?). The
integral of the spectrum is

»S8f) gf -
[, = df=1 ()
Spectra are usually shown as a function of the reduced frequency, F=fh/V, where h is a
typical building dimension, say mean roof height of the building, and V is the mean velocity

at mean roof height. Spectra are conveniently drawn in logarithmic scales to show the energy
that is spread over a wide range of frequencies.

3. Experimental procedure

The experiments were carried out in the boundary-layer wind tunnel of the Centre for Building
Studies (CBS) of Concordia University, Montreal, Canada. The working section of the tunnel is
122 m long, 1.8 m wide and about 1.8 m high. Open-country as well as suburban terrain
exposures were simulated in the tests. Mean velocity and turbulence intensity profiles are shown
in Fig. 1. The boundary layer geometric scale is approximately 1:400. The wind speed at gradient
height was approximately 11 my/s.

Plexiglass models of flat-roof, monoslope roof, and gable-roof buildings were tested for
several wind angles. The dimensions of the models used in this study are reported in Table 1.
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Fig. 1 Mean speed and turbulence intensity profiles for both terrains considered
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Table 1 Models used in this study

Dimensions
1 b h,
Monoslope Roof (a=15°)
Full-Scale (m) 60.8 19.2 12.0
Model (mm) 152.0 48.0 30.0
Flat Roof
Full-Scale (m) 432 432 15.0
Model (mm) 108.0 108.0 375
Gable Roofs (@=19° and a~45°)
Full-Scale (m) 60.8 39.2 120
Model (mm) 152.0 98.0 30.0

Note : I =length, b =width, s, = lower eave height, &= roof angle

In the first phase of this study, a number of roof tappings (Fig. 2a) were used not to
determine detailed aerodynamic behaviour but to examine variability in pressure spectra and
possible elimination of taps from future tests. In the second phase, tests were conducted only
for the selected taps (Fig. 2b) from the first phase.

Pressure fluctuations were measured with SETRA 237 pressure transducers using a
Scanivalve. The Scanivalve was connected to pressure tappings with plastic tubes 610 mm
long with inside diameter of 1.6 mm. Restrictors were placed in the tubes to provide a flat
frequency response up to 100 Hz. Frequencies of pressure fluctuations at most tappings are
expected to be well below this value.

Pressure data were acquired in blocks of 8192 samples each at a sampling rate of 500 Hz
using a waveform analyzer (DATA-6000) after each signal passed through a low-pass filter
with a cut-off at a Nyquist frequency of 250 Hz. At a length ratio of 1:400 and mean velocity
ratio of about 1:3.5, the resulting time history of approximately 16 seconds providing
statistically stable mean and variance is equivalent to 30 minutes in full-scale. At the end of
each sampling period, the measured pressure signals were converted to pressure coefficient
signals by dividing them by the reference dynamic pressure at building height. Simultaneously,
the pressure coefficient spectrum (S(f)) was also evaluated with the help of the DATA 6000
analyzer. Smoothing of the spectra has been done by ensemble averaging for 16 records.

4. Experimental results

A typical sample of normalized spectra of pressure fluctuations and the corresponding
longitudinal spectrum of incident wind at building height without the presence of the building
are shown in Fig. 3. Note that pressure spectral energy is distributed over a wide frequency
range. At low frequencies, amplitudes of the pressure spectrum, mainly related to the
turbulence in incident flow, are somewhat lower than those of the velocity spectrum. At high
frequencies, pressure spectral amplitudes are significantly higher than wind spectral amplitudes.
This additional energy in pressure spectra is contributed by small-scale turbulence caused by
the interaction of incident wind turbulence with the building. This is common among all taps
on the roof. A typical comparison between the model and full-scale wind pressure spectra is
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Fig. 2 Models and their corresponding tap locations used in the (a) first phase, and (b) second phase of
the measurements

shown in Fig. 4. The full-scale spectra corresponds to tap 50101 of TTU building (Texas Tech
------ 1992). The full-scale time history was sampled at 40 Hz with a cut-off frequency at 10
Hz. At a length scale of 1:400 and a mean velocity ratio of about 1:3.5, the model sampling
frequency and cut-off frequency were equivalent to about 4.3 Hz and 2.15 Hz in full scale.
Note that the model and full-scale cases used for this comparison are slightly different in terms
of building geometry and tap location. In particular, the model height was equivalent to about
15 m in full scale, while the full-scale building height was only 4 m. The comparison shows
that the model spectrum is in reasonably good agreement with the full-scale. Some extraneous
spikes caused by electrical noise do appear in the measured wind-tunnel spectra at harmonics
of the electrical frequency. The significance of the spikes is estimated by measuring the area
under the spikes, which is found to be within 5% of the corresponding variances in majority of
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Fig. 4 Comparison of wind pressure spectra

the cases.

Figs. 5 and 6 show typical samples of measured pressure spectra. A common feature found
in all measurements is that, in general, the amplitude of the pressure spectrum decreases as
the frequency increases. However, a small growth in spectral amplitudes at dimensionless
frequencies (F) between 0.1 and 0.2 (f=~20 to 40 Hz) has been observed at taps located in
the farwind (i.e., the windward edge region away from the windward corner in case of
oblique wind angle) as well as leeward regions of the roof. These humps on the spectra are
possibly associated with shedding of dominant eddies in those regions and can be observed for
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209

both flat (sample S56) and sloped roofs (samples S69 and S1). Similar forms of spectra were also
observed by Holmes (1994) and Kasperski et al.(1996). Further, Fig. 7 demonstrates the evolution
of spectral shapes and the transition from one to the other in the case of a flat roof building
in open terrain exposure.

As expected, spectra vary from location to location due to the nature of the physical
processes that occur near the roof surface in boundary layer flow. At high frequencies, the
amplitudes of spectra seem to be similar; however, they are indeed different at the lower
frequency ranges where most of the energy lies. Though some properties of time series such
as variance, the number of zero down or up-crossings (N,T), the number of negative or
positive peaks (N,T), the irregularity factor (¢) and the bandwidth parameter (8) can be
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Table 2 Statistics of the samples

Sample
Description S50 S56 S65
Mean -0.80 -1.22 -0.87
Variance 0.28 0.13 0.10
Skewness -2.28 -0.93 -0.35
Kurtosis 9.82 4.69 3.48
NyI(from signal) 796 1104 1066
NyI(from spectra) 888 1286 1149
N,T(from signal) 2001 2039 1900
N, I(from spectra) 2462 2546 2358
£ 0.36 0.50 0.49
B 0.93 0.86 0.87

deduced from spectra, other properties such as mean, Gaussian or non-Gaussian nature,
information about spikes etc. of the corresponding time series cannot be deduced from them.
Table 2 shows the statistics of the fluctuations of the sample shown in Fig. 5. By definition,
all the three samples are non-Gaussian since they have a non-zero skewness and a kurtosis
value higher than three. Sample S50 is highly non-Gaussian (skewness much less than zero
and kurtosis much higher than three), while sample S65 is nearly Gaussian (skewness close to
zero and kurtosis close to three) but this information cannot be drawn from spectra. Sample
properties (N,T, N,T, & f) estimated from the corresponding spectra as well as from the time
series are also shown in Table 2. As expected, the spectra are characterized as broad-banded
from the values of £ and B. This observation is common among all roof taps for all
geometries tested. Further, it is noted that the number of zero down-crossings (N,T) as well
as negative peaks (NV,T') estimated using spectra are mostly higher than those of the estimated
using time series. This is possibly due to the narrowband assumption used in deriving those
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Fig. 8 Comparison of wind pressure spectra at different terrain conditions

estimates. .

Fig. 8 compares two spectra measured at the same location on a flat roof in open country
and suburban terrain conditions. Even though the variances are different due to the variation
in incident turbulence, the normalized spectra appear to be similar. The same characteristics
are also found at other locations. Following the inspection of various spectra on the roof, a
number of qualitative conclusions can be drawn and summarized as follows :

(a) Though the spectra change in shape and magnitude depending on the geometry of the
roof, terrain conditions, wind attack angle and tap location, they can be classified into
two categories : (1) spectra whose amplitude decreases as the frequency increases and
(2) spectra whose amplitude decreases up to a certain frequency and then grow to have
another hump. The growth in the second type of spectra is attributed to the additional
contribution from pressure fluctuations in the separation layer.

(b) The variance of fluctuations (area under S(f)) is different for different conditions. For
comparison purposes, all spectra have been normalized with respect to their variance
and many characteristic spectra normalized in this way seem to be similar in shape and
magnitude. This is a favourable characteristic for the analytical description of spectral
curves.

(c) The normalized pressure spectra corresponding to the same tap in open and suburban
terrain conditions are similar, though the variance is greater in case of suburban
conditions, as expected.

Since normalized spectra measured at various locations of the roof under different conditions
show similarities, there is a possibility to construct an empirical expression to represent spectral
curves, as discussed in more detail in the following section. Standard spectral shapes may be
proposed for different zones of the roof. The actual pressure spectra at the corresponding
location can be obtained by simply multiplying the standard shape by the corresponding
variance

5. Representation of spectra
As previously discussed, spectral curves can be represented by empirical equations and

thereby Fourier amplitudes can be generated in a synthetic manner. Though spectra of pressure
fluctuations at various taps appear generally similar in shape, the spectral amplitudes vary
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depending on the variances of the corresponding fluctuations. In order to simplify the empirical
modelling as well as to get standard spectral shapes, all spectra have been normalized by their
variance. Thereafter, several traditional curve fitting techniques have been employed to extract
a suitable empirical equation for spectra. Because of the initial lack of success, a different
approach by using trial and error was attempted. A least-square optimization approach has been
adopted to fit a spectrum with a given function. The Levenberg-Marquardt algorithm known
for its robustness along with cubic polynomial interpolation line search method has been used
to carry out least-square optimization(MATLAB 1994).

Several functions representing approximately the same shape as the target spectra have been
tried. A SDF's monotonic decay in amplitude with increasing frequency (a straight line decay in
logarithmic scale) indicates that a power function of the form f™ where « is the power index
and f is the frequency might be suitable but not for low frequencies where most of the energy
lies. The hump that is noticed in several spectra cannot be represented by this function. After an
extensive investigation, an exponential function has been found to be more appropriate. Moreover,
under general conditions, the periodogram ordinates (linearly proportional to the spectrum
ordinates) at any set of frequencies are asymptotically independent exponential random variables
(Brockwell and Davis 1991) which reinforces the suitability of this function. The proposed
function is

S(f)Yo’=a,e<if +a,e—<2f 8)

where, S(f) is the spectral ordinate, o corresponds to variance, f corresponds to frequency, a,
& a, are the position constants and ¢, & c, are the shape constants. The position constants
control the location of the spectra, whilst the shape constants control their shape. The
proposed function consists of two exponential functions; a,eV represents the amplitudes in the
high frequency range, while a,e? represents the amplitudes in the low frequency range. The
four parameters (a,, a,, ¢; and ¢,) corresponding to a particular data set can be estimated:
initial guesses are made only for ¢, and c, since the other two parameters (@, and a,) can be
easily found using Eq. (8) written in the matrix form,

(mx1) (mx2) (1)
[S(f)o*]=[e~1f e~2f |[a,a,] )
Then,
[a1a,]" =[e<1f e<2f I\[S(f )/ ] (10)

is the solution in the least-squares sense to the overdetermined system of Eq. (9) computed by
Gaussian elimination where, the symbol \ represents the matrix left division operator
(MATLAB 1992). Further, the substitution of Eq. (8) in (7) would result in
a,cy+ajc, -1 a1
CiC2
By using Eq. (11), one of the spectral parameters can be determined by knowing the other
three. Therefore, the SDF can be simulated by knowing any three parameters.
An example of the measured and fitted wind pressure spectra is shown in Fig. 9. The
spectral fit appears satisfactory; for instance, the spectral fit has N,7=931, N,T=2459, £=0.38
and f=0.925 which are close to the corresponding values calculated from target spectra
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Fig. 9 Measured and fitted wind pressure spectra (flat roof)

provided in Table 2. Satisfactory performance of the proposed empirical expression has also
been observed in a variety of other cases. Though the fit is based on minimizing the squared
residuals (i.e., square of the difference between the fitted spectral amplitudes and the
measured spectral amplitudes), it was decided to quantify the level of accuracy of the fit
based on four spectral statistics (NoT, N,T, € and ) with a view to providing a physical
meaning to the error caused by the fit. During this investigation, a number of case studies
have shown that the above spectral statistics can be obtained within 10% using this fitting
procedure which is reasonable for practical applications.

Further, the evolution of the fitted curve is shown in Fig. 9 by plotting a,e® and a,e”’
separately. It is clear that the term a,e’ controls the position and shape of spectra in the
higher frequency region, while the term a,e’ controls the position and shape of spectra in the
lower frequency region. The term a,e™ shifts the ordinate of the spectra on the right side and
thereby represents the additional growth noted in some cases. It is interesting to note that the
parameters obtained in the above fitting are all positive and therefore, the derivative of Eq. (8)
at any point is a negative quantity which reveals that the fitted curve does not have an upward
slope. As a result, this fitting can represent only very mild growth in spectra and it needs
modification to fit the predominant spectral growth observed in some cases such as samples
S69 and S1 shown in Fig. 6. In such cases, spectra show a clear hump and the proposed Eq.
(8) requires an additional term a;e’ to fit the data efficiently; the modified function is

S(f)/ 6’=ae<if +a,e<2f +ase—~3f (12)

The parameters a; and ¢; can be established using the previously mentioned fitting procedure
with some minor modifications in the program; these include the addition of new term ae™’
in Eq. (8), the corresponding changes in Eqgs. (9) and (10) and the incorporation of c; in the
list of initial guesses. Fig. 10 demonstrates a typical example of a fit where the spectral
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Fig. 10 Measured and fitted wind pressure spectra (monoslope roof)

growth at certain frequencies is predominant. Note the negative value obtained in the case of
parameter a, by which the upward slope in fitting is established to represent the hump.
Finally, it is noted that Eq. (8) can efficiently represent spectra in most of the locations of
various roof geometries for different azimuths; however, Eq. (12) is required to represent the
predominant spectral growth observed in few cases, to be specified later in this paper.

A typical example illustrating the sensitivity of spectral parameters is shown in Fig. 11, in
terms of the variation of spectral statistics with respect to the variation of spectral parameters.
The spectral fit shown in Fig. 9 is used for this demonstration. Each time, one of the spectral
parameters is varied around its optimum value and the corresponding variations of spectral
statistics are plotted. It is clear from Fig. 11 that the spectral statistics are most sensitive to ¢, ,
when varied around its optimum value of 0.01601-see Fig. 9. Note that ¢, determines the
dying out rate in the high frequency range representing the energy content in small scale
turbulence generated by the building. The spectral statistics are not as sensitive to parameters
a,, a, and ¢, in comparison with c,. In the cases of parameters a, and c,, the spectral statistics
such as & N, and N, reduce with increasing parameter values, while B increases with
increasing parameter values. However, in the cases of parameters a, and c,, the spectral
statistics such as & Np, and N, increase with increasing parameter values, while S reduces
with increasing parameter values. Note that as £ increases, S decreases and vice versa which
is expected from Eq. (6). Moreover, as € decreases, N, also decreases and vice versa. This is
because as & decreases, the process tends to become broadbanded and consequently, the
number of zero up-crossings is expected to be reduced. Similar trends are observed in other
spectra.
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Fig. 11 Sensitivity of spectral parameters (case-Fig. 9)

6. Generalization

As previously discussed, it is possible to group normalized pressure spectra on roofs due to
their similarities. Further, it is of practical interest to categorize all types of spectra on roofs
into a certain limited number of groups. Since the simulation methodologies used for
Gaussian and non-Gaussian time series simulations are different, it would be better to classify
the zones of Gaussian and non-Gaussian regions prior to the grouping of spectra in the
respective regions. Within this context, the zones of Gaussian and non-Gaussian fluctuations
are identified for range of wind direction for each roof based on skewness and kurtosis of
pressure fluctuations. Fig. 12 shows the skewness and kurtosis values of the pressure
fluctuations measured for various roof configurations. The general trend is that when skewness
decreases, there is a quasi-proportionate increase in Kkurtosis value. Further, pressure
fluctuations with low skewness value (say, above —0.5) and high kurtosis value (say, above 3.5),
or with high skewness value (say, below — 0.5) and low kurtosis value (say, below 3.5) rarely
occur. In a few cases, kurtosis values exceeded 3.5 but only up to 4.0 for fluctuations with
low skewness values. On the basis of these observations, a particular region is considered non-
Gaussian if the absolute values of skewness and kurtosis of pressure fluctuations at various
taps are greater than 0.5 and 3.5 respectively. The outcome of this exercise is the approximate
Gaussian and non-Gaussian regions of flat, gable and monoslope roofs. Fig. 13 shows the
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Fig. 12 Skewness and kurtosis values of measured pressure fluctuations

approximate Gaussian and non-Gaussian zones for a 15° monoslope roof; where z is assumed
to be 10% of the least horizontal dimension or 40% of lower eave height whichever is less
(NBCC 1995).

Generally, the spectra observed in Gaussian regions appear to have more erratic spikes due
to their low variance; however, normalized spectra seem to be similar irrespective of location
and wind direction. For instance, Fig. 14 shows the normalized spectra measured at different
locations on a flat roof in different terrain conditions for zero wind direction. The spectra
appear to have more or less similar shapes. This has been noted at several locations of a flat
roof for other wind directions. Since their shapes are similar, pressure spectra are averaged to
obtain the most probable spectra for that region. Thereafter, the proposed empirical function is
fitted as previously discussed. The statistics of the fitted spectra are compared with those
corresponding to the observed in Table 3. Note that this fitting is based on twelve measured
spectra from this Gaussian region. In most of the fittings, the spectral statistics are obtained
within 20% and this discrepancy is due to the averaging of several spectra. In the case of the
non-Gaussian region, two types of spectra have been found; the first type observed in
windward regions has generally decreasing amplitudes while the second, observed on the
farwind and leeward regions has another hump. Based on this, the non-Gaussian region is
again divided into two zones. Consequently, spectra have been averaged in corresponding
zones and fitted by the empirical expression.

This procedure has been carried out for monoslope as well as gable roofs. In the case of
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Fig. 14 Measured and fitted wind pressure spectra (flat roof, Gaussian zone)
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Table 3 Comparison of spectral properties (flat roof, Gaussian zone)

Sample N N, £ Ji]
Fit 94.9 169.8 0.56 0.83
S65 70.2 143.9 0.49 0.87
S31 88.5 153.5 0.58 0.82
S$32 80.1 144.7 0.55 0.83
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Fig. 15 Measured and fitted wind pressure spectra (monoslope roof, non-Gaussian zone)

monoslope roofs, two types of spectra in Gaussian zone have been observed; the first type
lies in the interior and the other type lies on the edges of the roof. In farwind as well as
leeward non-Gaussian regions of the monoslope roof, the spectra seem to indicate a clear
hump at high frequencies. In this particular case, the proposed Eq. (12) is required to fit the
data efficiently. A typical example provided in Fig. 15 shows several normalized spectra from
the corresponding regions of the monoslope roof and the fitted curve. In the case of the gable
roof (¢=~19°), the normalized spectra in Gaussian zones are found to be identical with
those in Gaussian zones of the flat roof; therefore, the same spectral parameters have been
adopted. In the case of the gable roof with roof angle 45°, the normalized spectra from various
regions for different wind angles appear similar and therefore, a single representative spectrum is
proposed.

The grouping of spectra has been carried out for various roof geometries. The results are
summarized in Figs. 16~18, where the standard SDF shapes associated with different regions
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Fig. 17 Standard spectral shapes for gable roof

of the roofs are provided for various roof geometries. Each spectrum is assigned a subscript
where the first letter stands for the type of roof, G stands for Gaussian zone, NG stands for
non-Gaussian zone and the number stands for the type of spectra in that zone. Since the
normalized spectra found in Gaussian regions (Sggi, Sccis Smci) are somewhat similar
irrespective of the roof geometry, tap location, wind direction and terrain conditions, they
have been averaged and fitted by the empirical expression. As a result, Figs. 16~18 show
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Table 4 Proposed spectral parameters

Parameters (X 107)

a, a, a; cl [ C3
Flat Roof
Sre1 0.9756 1.9560 0.9725 16.5200
St 1.2070 11.6100 1.9770 30.1500
Sina2 0.8162 12.0500 1.0840 38.2300
Gable Roof (@=19°)
Sca 0.9756 1.9560 0.9725 16.5200
Senat 1.0620 7.1800 1.4990 22.1600
Senca 1.2920 7.4560 1.4730 44.1200
Monoslope Roof (a~15°)
Sye1 0.9756 1.9560 0.9725 16.5200
Sy 0.8203 12.4900 1.2020 32.9600
Smnt - 1.2220 10.8000 2.2230 24.0400
Smnez 3.7510 -45.5800 49.4600 3.1250 19.9200 23.9000
Gable Roof (a=45°)
2.4560 17.6900 4.1050 49.5300

identical spectra in the corresponding regions. The comparison provided in Figs. 16~18
between the first type of spectra observed in non-Gaussian regions (Sewgi, Scngi, Smnci)
among the various roof geometries shows that their shapes are somewhat similar. However,
there are large variations among SDF shapes in the case of the second type of spectra observed
in non-Gaussian regions among the various geometries tested. The data available may not be
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sufficient to group the spectra among various geometries; however, the provided SDF shapes can
be used to establish actual spectra corresponding to a particular tap for a specific geometry by
multiplying the equation of the appropriate SDF shape by the corresponding variance. Parameters
of SDF shapes are provided in Table 4. Note that the position constant, a,, corresponding to
spectra from Gaussian regions is lower than that of non-Gaussian regions which reveals that the
spectra from non-Gaussian regions are located above spectra from Gaussian regions in the low
frequency range. Similarly, the shape constants (c; and c¢,) corresponding to spectra from
Gaussian regions are lower than those of spectra from non-Gaussian regions; this shows that the
reduction rate of spectral amplitudes from Gaussian regions is generally lower than that of
spectral amplitudes from non-Gaussian regions.

Though the results provided are based on limited measurements, it is believed that a
larger database of measurements in the future could improve the proposed zoning as well
as the associated spectral parameters, and include spectral parameters for various other
geometries.

7. Application

The application of the developed standard SDF shapes is briefly described here. First, from
the knowledge of variance of pressure fluctuations at a desired roof location, spectra of
pressure fluctuations at the same location can be synthetically generated using standard SDF
shapes provided in this study. Thereafter, the simulation scheme proposed by Suresh Kumar
(1997) can be utilized to generate Gaussian as well as non-Gaussian pressure fluctuations on
roofs. Fourier amplitude as well as phase are required for this simulation. The Fourier
amplitude can be easily constructed from synthetic spectra. A simple stochastic model with a
single parameter b, inducing non-normality in the time series is suggested for the simulation
of phase of non-Gaussian signals. In the case of Gaussian fluctuations, phase is represented
by independent identically distributed uniform random numbers ranging between- 7 and 7.
This model has been applied successfully in the prediction of peaks associated with specified
risk levels (Suresh Kumar and Stathopoulos 1997) and in the evaluation of fatigue life
estimates (Suresh Kumar and Stathopoulos 1998b).

The measured spectrum (sample S1) and the fit shown in Fig. 15, and the measured spectrum
(sample S65) and the fit shown in Fig. 14 were utilized to demonstrate how well the synthetic
spectra represent measured spectra in time series simulations. In both cases, the simulations have
been carried out using measured spectra (Simulation-I) and using synthetic spectra (Simulation-IT)
based on the approach described in Suresh Kumar (1997) and Suresh Kumar and Stathopoulos
(1997). The results of the simulations I and II are presented in the form of probability density
functions in Fig. 19, where the abscissa represents normalized pressure coefficients in the form of
(Cp-Cpmean)/Cprms (Cp corresponds to pressure coefficient, Cpmean corresponds to mean
pressure coefficient, Cprms corresponds to root-mean-square pressure coefficient). In both cases,
the corresponding probability density functions of simulations I & II are close. This observation is
further supported by the traditional Chi-Square goodness-of-fit test (Press et al. 1989). Similar
results prevail in other cases. In addition, Table 5 shows the peak values (maximum suction)
of the simulated records. The peak values obtained from Simulation-I and Simulation-II are
close in both cases. These results indicate the capability of the proposed empirical model to
represent the actual spectra in time series simulations. These are only two cases of the many
simulations that have been carried out during this investigation (Suresh Kumar 1997).
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Fig. 19 Probability density functions of simulated signals

Table 5 Comparison of peak values

Sample Simulation-I Simulation-II
S1 -3.48 -3.73
S65 -2.15 -2.14

8. Conclusions

An extensive investigation of power spectral density functions of wind-induced pressures
acting on low building roofs of different geometries has been carried out. Spectra of wind
pressures were found to vary with respect to location, wind direction, roof geometry and terrain
conditions. However, similarities between normalized spectra for different conditions have also
been observed. On this basis, an empirical form has been suggested for the synthetic generation
of normalized spectra. Thereafter, normalized SDF's are classified based on whether the region of
interest experience Gaussian or non-Gaussian fluctuations. Finally, the standard spectral shapes
associated with various zones of each roof and their parameters have been provided. The
application of the developed SDF shapes is also briefly described.
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Notations

a,, a,, a, = position constants

Ci, Cry G =shape constants

Cp = pressure coefficient

Cpmean =mean pressure coefficient

Cprms = root-mean-square pressure coefficient
F =reduced frequency

f = frequency

h =mean roof height of the building

m; = spectral moments

N, = zero up-crossing or down-crossing rate
N,T = number of zero up-crossing or down-crossing in time T’
N, = positive or negative peak rate

NT = number of positive or negative peaks in time T
R(1) = autocorrelation function

S(f) = spectral density function

T ‘ =time

A% =mean velocity at height Z

|4 =mean velocity at mean roof height

Vg =mean velocity at gradient height Zg

z = height

Zg = gradient height

a = roof angle

Ji] = bandwidth parameter

£ = irregularity factor

o’ = variance

T =time shift

( Communicated by Chang-Koon Choi)





