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Role of coupled derivatives on
flutter instabilities

Masaru Matsumoto' and Kazuhiro Abe*

Department of Global Environment Engineering, Kyoto University, Japan

Abstract. Torsional flutter occurs at 2D rectangular cylinders with side ratios B/D smaller than about 8
or 10. On the other hand, slender cylinders indicate the occurrence of coupled flutter, which means the
coupled derivatives of slender cylinders have more significant role for flutter instability than that of bluffer
ones. In this paper, based upon so called “Step-by-step analysis’, it is clarified the coupled derivatives
stabilize torsional flutter instability of bluffer cylinders (e.x. B/D=5), while they destabilize torsional flutter or
coupled flutter instabilities of more slender cylinders. The boundary of them exists between B/D=5 and 8.
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1. Introduction

The onset of flutter causes directly for structural failure, therefore flutter stabilization should
be carefully considered for the design of super-long spanned bridges. The clarification of flutter
mechanism is, still nowadays, one of the major problems in the field of wind engineering.
Flutter instabilities are generally discussed based upon the aerodynamic derivatives. In this
paper, mainly the important role of coupled derivatives is explained by “Step-by-Step
Analysis’. The aim of this study is clarification of the contribution of coupled term on
torsional flutter instability of bluffer 2D rectangular cylinders.

2. Aerodynamic derivatives

Considering the unsteady lift force and the pitching moment per unit length, the following
equations for heaving-torsional 2DOF system proposed by Scanlan (1971) are widely adopted :
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where L, M : unsteady lift force and pitching moment per unit length, 7, ¢: heaving and tor-
sional displacement, p : air density, b : half chord length (=B/2), U : wind velocity, & : reduced
frequency (=bw/ U, @ : circular frequency at a certain velocity, U)

Here, a torsional damping term, A, , is a measure for the torsional flutter appearance, and
its positive and negative value correspond to the aerodynamic instability and stability to
torsional flutter, respectively. On the other hand, the coupled aerodynamic derivatives H,, H,,
A,’, A, have a significant role for flutter instabilities in 2DOF vibration modes.

Aerodynamic derivatives of 2D rectangular cylinders (Fig. 1) with the range of side-ratio
B/D from 5 to 20 are illustrated in Fig. 2 (Matsumoto, Niihara and Kobayashi 1994). This figure
shows torsional flutter occurs at the range of B/D=5 to 10 where the value of A, has positive
values, and A, decreases with the increase of B/D.

The aerodynamic derivatives can be, also, obtained from integrating the unsteady pressure coef-
ficient Cp and the phase lag ¥between the cylinder motion and unsteady pressure as followings :

* U 1
H = wa j C cos'{’de——meznojwl
‘J{D
—>
Wind ¢
< >

B

B/D=5, 8, 10,12.5, 15,20
Fig. 1 2D rectangular cylinders

Az
120 - —=— BD=20
r---0-- B/D=15 .
- —e- BD=12.5 &
-~ BID=10 y
80r--e - B/D=8 /O/
- B/ID=5 ,
| —— Theodorsen <>/
40 F R .-
Unstable [~ e
. v - E 4 _.O-— O
o i
Stable
40 P NS At
0 10 20 U/B

Aerodynamic derivative Az

Fig. 2 Aerodynamic derivative A; for 2D rectangular cylinders [ B/D=5, 8, 10, 12.5, 15, 20]
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where 1},, ¢, : amplitude of 1DOF heaving/torsional motion.
Unsteady pressure and phase lag distributions of rectangular cylinders with side-ratios B/D=
5 to 20 under 1DOF torsional forced vibration are shown in Fig. 3 (Matsumoto, Daito, Yosh-

izumi and Ichikawa 1997). In Fig. 3, Cp
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and ¢ is plotted against the non-dimensionalized

coordinate by the cylinder thickness, that is x/D. These figures clarify both amplitude and
phase properties of pressures are fundamentally identical from the point of chord-wise
distribution. This fact means the after body length of these cylinders have less effect on
pressure characteristics around the body surface, which are caused by the local flow separation
near the leading edge and flow reattachment.

The aerodynamic derivative A can be, also, associated with C”} H, as follows :
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Fig. 3 Unsteady pressure distributions (U/fB=18.7):

(a) unsteady pressure coefficient and (b) phase lag
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Fig. 4 Torsional flutter instability for 2D rectangular cylinders (U/fD=18.52) (a) : analogy of unsteady
pressure (b) : unsteady pressure

where

CPH; =C,-sinf, | H,
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X 1s the distance of the gravity center of C;Hz* distribution from the mid-chord point, x=X/b
(X : the distance from the mid-chord point, x=-1:leading edge, x=lI: trailing edge) and @, :
amplitude of the 1DOF torsional motion.

CpH,* distribution of 2D rectangular cylinders is illustrated in Figs. 4(a), (b), which are
plotted against the the non-dimensionalized coordinate by the cylinder thickness, that is x/D,
and the half-chord length, that is x=X/B, respectively. In Fig. 4(a), the analogy of Cpmu,*
distribution is derived from the unsteady pressure distributions shown in Fig. 3. Therefore,
the position of the gravity center of Cpr,* distribution of Fig. 4(b) continuously moves
from trailing edge side to leading edge side with the increase of B/D, which means the
value of A, decreases gradually from positive to negative with increase of B/D. In other
words, the mechanism of torsional flutter can be thought to be identical with that of coupled
flutter.

3. Step-by-Step Analysis

So called “Step-by-Step Method™ is quite useful to investigate the effect of each aerodynamic
derivative on the flutter excitation. The flutter property obtained by this method is significantly
coincides well to that of the conventional eigenvalue analysis. The process of “Step-by-Step
method (for torsional branch)’ is illustrated in Fig. 5. In 1DOF torsional mode, the equation of
motion under wind load without structural damping is described as follows :

b+ 30 ( - )wa; ¢+[””4 jwﬁA: 0
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Fig. 5 Flow chart for “Step-by-Step Analysis (torsional branch)’
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where ¢ : torsional displacement, ¢ : torsional velocity, @, : torsional natural frequency, @ :
flutter frequency, p : air density, b : half-chord length, I : mass inertia per unit length.

Then,

$+2 80,0+ ;=0
where @, : torsional frequency, g, : torsional damping coefficient (=3,/27).
Hence, this system wouldn't show divergent torsional motion unless torsional damping coef-
ficient {,, that is determined by A,’, has a positive value. Since heaving motion exists in the
2DOF mode, torsional vibration arouses the heaving motion, and this heaving motion causes
torsional vibration again. In 2DOF vibration mode, such a feedback system is formulated.
Here, the difference of torsional responses of H-shaped section in 1DOF and 2DOF
vibration modes is presented by Karman and Dann (1949), considering on the onset critical
reduced wind velocity of flutter (see Fig. 6). In freely suspended system, coupled aerodynamic
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Fig. 6 Critical wind velocity of flutter in torsional mode for 2D H-shaped cylinders (Based on Karman
and Dann 1949)
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Fig. 7 The role of each aerodynamic derivatives
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forces have a significant meaning. In the bluffer H-shaped sections than B/D=9, coupled aerodynamic
forces make a large contribution toward the stabilization for torsional flutter instability.

Fig. 7 shows the results of “Step-by-Step Analysis™ of the rectangular cylinders. Torsional
damping 5(®) can be expressed as the sum of five terms (O ® O @ <), The zero-crossing
point of &, represents the onset of flutter. To see Fig. 7, A, (included in O) stabilize the coupled
flutter (B/D=12.5) and destabilize the torsional flutter (B/D=5, 8, 10). The zero-crossing points of
® of B/D=8, 10 are lower than that of O. This fact means coupled forces still destabilizes
torsional flutter instability. On the other hand, ® of B/D=5 is zero-crossed at higher reduced
wind velocity mainly because of the positive value of coupled term . This fact is consistent with
the result of Karman and Dann (see Fig. 6), that coupled derivatives stabilize torsional flutter of
the bluffer H-shaped sections. Though there is a difference of the critical side-ratios between
rectangular cylinder and H-shaped section, the difference is agreeable with the fact that H-shaped
section shows the aerodynamic property such like that of a more slender rectangular cylinder
(Matsumoto 1995).

4. Conclusions

Generally, A, stabilize coupled flutter and destabilize torsional flutter. The boundary
between the torsional flutter and coupled flutter exists at side-ratio B/D=10 to 12.5. On the
other hand, coupled derivatives stabilize torsional flutter of relatively bluffer cylinders, i.e.,
B/D=5 but destabilize that of slender ones, i.e., B/D=8, 10. The effect of coupled derivatives
on the torsional flutter instabilities changes between the side-ratio B/D=5 and 8. Thus, the
coupled aerodynamic forces have a significant part for aerodynamic instabilities. Therefore,
the control of this should be discussed well to accomplish the stabilization of flutter instabilities.
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