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Abstract. This study suggests a simple two-step method for structural vibration-based health monitoring for
beam-like structures which only utilizes mode shape curvature and few natural frequencies of the structures in
order to detect and localize cracks. The method is firstly based on the application of wavelet transform to
detect crack locations from mode shape curvature. Then particle swarm optimization is applied to evaluate
crack depth. As the Rayleigh quotient is introduced to estimate natural frequencies of cracked beams, the
relationship of natural frequencies and crack depths can be easily obtained with only a simple formula. The
method is demonstrated and validated numerically, using the numerical examples (cantilever beam and simply
supported shaft) in the literature, and experimentally for a cantilever beam. Our results show that mode shape
curvature and few estimated natural frequencies can be used to detect crack locations and depths precisely
even under a certain level of noise. The method can be extended for health monitoring of other more
complicated structures. 

Keywords: beam-like structures; rayleigh quotient; wavelet transform; natural frequency estimation; crack
detection; particle swarm optimization

1. Introduction

Vibration-based crack detection methods are global non-destructive testing methods, which are

based on the fact that any changes introduced in a structure (including cracks) change its physical

properties, which in turn change the structural mode parameters (natural frequency, mode shape,

damping). These methods use the changes in the structural mode parameters extracted from

vibration response of cracked structure for the purposes of crack detection (Fan and Qiao 2011).

There are different strategies suggested for vibration-based crack detection purposes depending on

the type of the mode parameters used: natural frequency, mode shape or damping. All of these have

their advantages and disadvantages (Fan and Qiao 2011). Because modal damping cannot be measured

easily, natural frequencies and mode shape are commonly used to detect cracks in structures.

Crack detection methods that are based on the first few natural frequencies of a structure present a

very attractive possibility since these are quite easy to obtain from experiment (Chen et al. 2005).

Therefore, the model-based crack detection methods associated with frequency measurement have
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drawn special attention in the open accessible literature (Chaudhari and Maiti 2000, Dong et al. 2009,

Lele and Maiti 2002, Li et al. 2005, Li and He 2011, Liang et al. 1991, 1992a,b, Hu and Liang 1993,

Maiti and Patil 2004, Nandwana and Maiti 1997, Ostachowicz and Krawczuk 1991, Papadopoulos.

and Dimarogonas 1987, Patil and Maiti 2003, 2005, Shih et al. 2009, 2011, Sinou 2007). Generally,

there are two procedures to accomplish the crack detection in structures. The first procedure is

forward problem analysis, which considers the construction of a cracked stiffness matrix exclusively

for the crack section and the computation of crack detection database for dynamic parameters. The

cracks require a large number of refined elements in the local areas and thus complicate the

computational process. Therefore, wavelet finite element method with reduced number of elements

was proposed to detect cracks in beams (Chen et al. 2006, Li et al. 2005, Li and He 2011, Xiang et

al. 2007a, 2008, 2009, Xiang and Liang 2011) with complex procedure. The second procedure is

the inverse problem analysis, which measures first few natural frequencies and search for crack

location and depth from the damage detection database, i.e., the relationship of natural frequencies

and crack parameters (locations and depths). However, so far only the single-crack detection

methods are well established and crack detection software is also reported (Xiang et al. 2011). The

reason is that the natural frequency alone cannot provide enough information for multiple crack

detection (Fan and Qiao 2011). A confounding factor which limits the application of the lower

natural frequencies is that crack is typically a local phenomenon while the first few natural

frequencies capture the global structural response. Local response is captured by higher frequencies

which are more difficult to excite and measure. Thus many researchers intended to increase the

sensitivity of the lower frequency structural response to crack (Gokdag, 2011, Kim et al. 2008, Koo

et al. 2008, Lakshmanan et al. 2008, Mendrok and Uhl 2010, Montejo, 2011). Moreover, to solve

the ill-posed inverse problem of crack detection, some intelligent computational techniques, such as

genetic algorithms (GAs), Particle swarm optimization (PSO) and neural networks (NNs), etc., are

proposed to detect cracks in structures (Amiri et al. 2011, Begambre and Laier 2009, Kim et al.

2007, Yun et al. 2009).

Singularity detection from mode shape is attractive mainly because it is possible to identify the

existence and locations of cracks based on the priori knowledge of the cracked zones (Gokdag

2010, Rajasekaran and Varghese 2005). Certain mode shape associated with cracked beam structures

contains local singularity information. However, the singular locations from arbitrary mode shape

(epically the easily measured first mode shape) can not be easily observed even if the wavelet

transform is employed to extract local singularity characteristics. Therefore, for a well selected

mode shape (act as original signal), the wavelet coefficients are calculated and plotted in the full

region for each level of the wavelets. Then the distribution of the wavelet coefficients at each level

is examined and the peaks or sudden changes in the wavelet coefficients will pinpoint the crack

locations. To detect crack depths, mode shape may not yield reliable results when there existence of

measurement errors. Therefore, in order to improve the effectiveness for crack location detection

using only the arbitrary mode shape, mode shape curvature (Pandey 1991) might be a good

candidate. 

To calculate the natural frequency of a structure with cracks there could be an existing estimation

formula. It is not necessary to use the finite element method or other complex numerical methods

(such as the wavelet finite element method). This research is motivated by the need for a simple

method to estimate the natural frequency of structures with cracks. Therefore, the purpose of the

present work is to establish a simple method to detect and localize cracks in beam-like structures

using mode shape curvature and few natural frequencies. With this method, we use wavelet
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transform to decompose mode shape curvature to localize cracks. Then the Rayleigh quotient is

employed to estimate the approximate natural frequencies and the relationship of natural frequencies

and crack depths can be easily constructed by a simple formula. Different boundary conditions of

rectangle cross-section beam and shaft are considered in the present investigation. The resulting

crack depth detection inverse problems are then solved by PSO using the first few natural

frequencies as the inputs. The simulation results are compared with literature and the precision of

the present method is examined. The performance of this method has also been examined using

experimental data of a cantilever beam. The detection result shows that the proposed method can be

applied to real structures. The rest of the paper is organized as follows. The next section introduces

the approximate formulas to calculate natural frequencies. Section 3 introduces the background of

the suggested methodology. Then a simple method for defect detection and localizations is

suggested. Numerical simulations and experimental investigation are presented in sections 4 and 5,

respectively.

2. Natural frequencies estimation formulas

Fig. 1 shows a beam or shaft with some damages on its surface. The cracked cross-section in

beam with rectangle and circular cross-sections are shown in Figs. 2(a) and (b), respectively. βi = xi / L,

(i=1,2,..., n) denotes the normalized location of crack i in beam, and L is the beam length. 

For a beam with rectangular cross-section, each crack can be represented by a rotational spring

with stiffness ki is defined by (Ostachowicz and Krawczuk 1991).

(1)

in which the experimental formula  is (Tada et al. 2000)

(2)

where  (i = 1,2,..., n) denotes normalized crack depth as shown in Fig. 2(a). E is Young’s

modulus, b is the beam width, and h is the beam height.

For a beam with circular cross-section, each crack can be represented by a rotational spring with

stiffness ki is calculated by considering a combination of a series of thin strip as (Papadopoulos and
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Fig. 1 A beam or shaft with n cracks on its surface
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Dimarogonas 1987).

(3)

where δi is crack depth, µ is the Poisson’s ratio, the normalized crack depth for circular cross-section

beam is αi = δi / 2r1, the crack depth of a thin strip is a(ξ) = 2r1αi − (r1− ), the height of thin

strip is H = 2 , and the function F(η/H) is given by the following experimental formula (Tada et

al. 2000).

(4)

According to linear elastic fracture mechanics theory, the decrease in the strain energy of n cracks

under mth modal vibration is equal to the energy stored in the fictitious rotational spring, which can

be expressed in the form (Ostachowicz and Krawczuk 1991).

(5)

where  is the strain energy of cracked beam containing n cracks, Um is the strain energy of intact

beam, which can be calculated based on Euler beam theory as

(6)

and Mmi (i = 1,2,..., n) is the bending moment at the crack location, i.e.

(7)

in which ym represent the mth mode shape of intact beam, I is the moment of inertia.
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Fig. 2 Cracked rectangular and circular beam cross-sections
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According to the assumption that the volume is a tiny loss of materials between intact and

cracked beams, hence there is negligible difference between the kinetic energy of the beam with and

without cracks. That is

(8)

where Tm and  represent the kinetic energy of intact and cracked beam, respectively, A is the area of

cross-section, and ρ is the mass density.

The natural angular frequency ωm (for intact beam and the corresponding natural frequency

) and  (for beam with n cracks and the corresponding natural frequency 

= ) can be approximate evaluated with Rayleigh quotient as

(9)

and

(10)

Therefore, consideration of Eq. (5) to Eq. (10) and , we have

(11)

(12)

(13)

where the constant term φm is defined as

(14)

and vm is the mth curvature at the cross-section and defined as

(15)
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solutions of both fm and ym are given in handbooks (Harris and Piersol 2002, Timoshenko 1974).

Therefore, the mth natural frequency  can be approximating estimated easily. It is note that fm
can be calculated by

(16)

where λmL is the roots of the frequency equation for bending vibration of beams (Harris and Piersol

2002, Timoshenko 1974). 

Take the simply supported beam at two ends (Pinned-pinned) for example, the roots of the frequency

equation is 

(17)

and the mth mode shape ym is

(18)

where Cm is a constant.

Submit Eq. (17) into Eq. (16), we have

(19)

Submit Eqs. (17)-(19) into Eq. (13), we finally have

(20)

For other boundary conditions, such as Fixed-free (Cantilever), Fixed-fixed, Free-free, Fixed-pinned,

Fixed-sliding, Pinned-free, etc., the expression of  is much more complex. Therefore, according to

Eq. (13), we use MATLAB Symbolic Math Toolbox (Higham and Higham 2005) to calculate .

3. Crack detection method

The method has been developed takes advantage of both wavelet transform and Particle Swarm

Optimization (PSO) algorithm to detect crack locations and depths, respectively. Wavelet transform

are particularly well suited to the singularity detection of signal masked by noise. Consider the

mode shape curvature as signal, it is possible to detect how many cracks are available in beams and

further determine the crack locations. 

PSO is a heuristic method proposed by Kennedy, Eberhart and Shi (Kennedy and Eberhart 1995,

Shi and Eberhart 1998). PSO searches for the optimal solutions without relying on the prior

knowledge or properties of the problem being optimized. The applications for structural engineering

problems (Fourie and Groenwold 2002, Zhong and Ye 2009, Begambre and Laier 2009) have

demonstrated the reliability of the PSO method in locating optimal or near optimal solutions. It is

also demonstrated that PSO can obtain better results in a faster, cheaper way compared with other

methods. It is noteworthy that the relationship of natural frequencies and crack depths (crack depth
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detection database) can be easily constructed using Eq. (13) if the crack locations are known

(detected by wavelet transform form mode shape curvature). Therefore, the PSO algorithm can

apply to detect crack depths from crack depth detection database if the few natural frequencies of

cracked beam are measured. 

The simple method is introduced in section 3.1 to section 3.3.

3.1 Detect crack locations

Measure the mth mode shape Ym of the cracked beam-like structures by experimental modal

analysis (EMA) and calculate the mth mode shape curvature Vm.

If the mth mode shape Ym is measured, each point Vm, j of mode shape curvature Vm are obtained

numerically from the mth mode shape using a central difference approximation as (Pandey et al.

1991).

(21)

where hc is the length of the two neighbor nodes, j is the node at different spatial locations, Ym, j-1, Ym, j

and Ym, j+1 are the three continuous nodes of Ym.

Observed the peaks from arbitrary mode shape curvature. 

Crack locations can be observed from arbitrary mode shape curvature. Obviously, if the peaks or

sudden changes are not available, it means that no cracks are available in beams.

3.2 Evaluate crack depths

(1) Construct crack depth detection database using Eq. (13)

This procedure is called forward problem analysis in the literature. Because the crack singularity

property, many numerical simulation methods, such as finite element method (FEM), wavelet FEM,

adaptive FEM and the boundary element method (BEM) are employed to calculate the database

(Chaudhari and Maiti 2000, Dong et al. 2009, Lele and Maiti 2002, Li et al. 2005, Li and He 2011,

Maiti and Patil 2004, Nandwana and Maiti 1997, Patil and Maiti 2003, 2005, Xiang et al. 2007a,

2008). In the present, due to the Rayleigh quotient is employed to estimate natural frequencies, the

relationship of natural frequencies and crack depths (crack depth detection database) can be easily

constructed by a simple formula, i.e., Eq.(13). Hence, we continuously computing the first few

natural frequencies versus different depths αi (i = 1,2,...,n) for the known normalized crack location

βi (i = 1,2,...n), as follows

(22)

where Fm denote the relationship of crack depths  and the corresponding natural

frequencies  (m = 1,2,..., q). In order to evaluate n crack depths in beam-like structure, the least q

should be equals to n. Eq. (22) is also called the crack depth detection database.

To make a clearly description on how to construct crack depth detection database, we summarised

as fellows:

(a) Calculate ki for different crack depths using Eq. (1) (for rectangle cross-section) or Eq.(3) (for

circular cross-section).
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(b) Use natural frequencies estimation equation Eq. (13) (for a simply supported beam/shaft, Eq.

(13) is becoming Eq. (20)) to calculate natural frequencies of cracked structure with different depths. 

(c) Obtain first few natural frequencies versus different depths, as shown in Eq. (22).

(d) The above is the forward analysis of crack depths detection (crack detection database). To decrease

the errors between the calculated and measurement, we introduce the model updating technique, as

proposed in Section 3.3.

It worth to point out that the existence of crack also influences axial and lateral stiffness of

beams. However, if we only measure the vertical response of the beam, the coupling effect is very

small and can be omitted because the three directions are perpendicular to each other.

Therefore, we seek the crack depths from the crack detection database using the measured few

natural frequencies, as show in the next step.

(2) Evaluate crack depths using PSO

Based on Eq.(22), we have

= (23)

From Eq. (23), we can see clearly that the inverse problem (Chaudhari and Maiti 2000, Dong et

al. 2009, Lele and Maiti 2002, Li et al. 2005, Li and He 2011, Maiti and Patil 2004, Nandwana and

Maiti 1997, Patil and Maiti 2003, 2005, Xiang et al 2007a, 2008) to determine the depths of n

cracks is essentially a discrete optimization problem. To estimate the depths of the n cracks from the

crack depth detection database, PSO algorithm is employed to the crack depth and the first q natural

frequencies are used as the inputs. Thus the following objective or fitness function to search for the

“best fit” severities from the crack depth detection database as

min (24)

subject to , i = 1, 2,...,n (25)

where ||·||2 is the Euclidean norm (or the so-called 2-norm),  is the discrete

function of the n damage depths  (it is reflected by the crack depth detection database,

as shown in Eq. (22)), constraint  limits the severity search space from 0.1 to 0.9,  is the

measured natural frequencies, where m = 1,2,...,q. It notes that Eq. (25) is the constraint conditions.

3.3 Natural frequencies estimate formula updating

In most practice cases, the large difference between the measured frequencies  and the computed fm
may make solutions irrelevant. For this reason, the ‘zero-setting’ procedure described by Adams

(Adams et al. 1978) is adopted for model updating and hence reducing the difference. Zero-setting

procedure is one of the output error methods and has found to be the most simple and suitable for

crack detection in structures.

Consider Eqs.(1), (3), (14) and (15), it is known that the term φm  in Eq. (13) has no

relation to Young’s modulus. From Eq. (16), the square of natural frequency for intact beam is

linearly proportional to the Young’s modulus E. Therefore, we can use the zero-setting’ procedure to

the intact beam to modified Young’s moduli 
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(26)

where  (m = 1,2,...,q) is the corrected value of Young’s modulus E, which can be obtained from Eq.

(26) for each natural frequency. This procedure can greatly reduce the error between theoretical analysis

and the experimental studies, which are caused by boundary conditions and material parameters.

After the above updating process, the resulting modified Young’s moduli  will be employed to

calculate  to construct the crack depth detection database.

4. Numerical simulation

In section 4.1, several examples in the literature are given to validate the approximate natural

frequencies formula. The suggested simple crack detection method is also introduced in section 4.2. 

4.1 The validity of approximate natural frequencies formula

4.1.1 Example 1 single crack

Taking the cracked cantilever beam for example, beam length L = 0.5 m, Young’s modulus

E = 2.1×1011 N/m2, beam height and width are h×b=0.02 m×0.012 m, Poisson’s ratio µ = 0.3 and

material density ρ = 7860 kg/m3. Table 1 gives the first three natural frequencies using Eq. (13) and

E

Êm

------
fm

f̂m
----⎝ ⎠
⎛ ⎞2=

Êm

Êm

 fm

Table 1 Comparison of Wavelet FEM and the present solution for cantilever beam

Case β α
Wavelet FEM (Xiang et al. 2008) Present

/Hz /Hz /Hz /Hz (ε1) /Hz (ε2) /Hz (ε3)

1 0 0 66.80 418.62 1172.15 66.80(0) 418.62(0) 1172.15(0)

2 0.1 0.1 66.38 417.65 1171.64 66.37(0.02) 417.64(0) 1171.63(0)

3 0.2 0.1 66.50 418.60 1170.60 66.50(0) 418.60(0) 1170.59(0)

4 0.2 0.3 64.24 418.47 1158.99 64.09(0.23) 418.46(0) 1158.06(0.08)

5 0.3 0.2 66.04 417.26 1156.12 66.03(0.02) 417.23(0.01) 1155.38(0.06)

6 0.3 0.3 65.07 415.55 1136.90 65.00(0.11) 415.38(0.04) 1133.09(0.34)

7 0.4 0.2 66.33 413.94 1163.82 66.3(0.05) 413.81(0.03) 1163.44(0.03)

8 0.4 0.4 64.77 399.47 1139.61 64.69(0.12) 396.98(0.62) 1133.00(0.58)

9 0.5 0.2 66.55 411.78 1172.14 66.54(0.02) 411.56(0.05) 1172.14(0)

10 0.5 0.4 65.68 390.84 1172.09 65.65(0.05) 386.89(1.01) 1172.08(0)

11 0.6 0.4 66.28 392.31 1132.26 66.27(0.02) 389.52(0.71) 1123.91(0.74)

12 0.6 0.6 65.37 356.18 1087.93 65.34(0.05) 337.59(5.22) 1037.81(4.61)

13 0.7 0.4 66.61 402.06 1089.16 66.61(0) 401.38(0.17) 1072.40(1.52)

14 0.7 0.6 66.29 375.87 996.40 66.28(0.02) 370.60(1.40) 894.38(10.24)

15 0.8 0.3 66.78 415.69 1139.81 66.78(0) 415.70(0) 1139.13(0.06)

16 0.8 0.8 66.57 386.44 912.33 66.57(0) 386.23(0.05) 806.46(11.6)

Note: Errors, and ε1 = / ×100%, ε2 = / ×100% and ε3 = / ×100%

 f1  f2  f3  f p1  f p2  f p3

 f p1  f1–  f1  f p2  f 2–  f 2  f p3  f 3–  f3



344 Jiawei Xiang, Toshiro Matsumoto, Jiangqi Long, Yanxue Wang and Zhansi Jiang

those by wavelet FEM (Xiang et al 2008). From Table 1, under various crack location and crack

depth, the numerical solutions are in agreement with the high precision wavelet FEM except for the

large normalized crack depths, such as Cases 12, 14 and 16 in Table 1. It is well know that in actual

structure, when crack depth attains α = 0.5, the structure has breaking down. Therefore, the approximate

natural frequency formula Eq. (13) is suitable to for crack detection use.

Changing the boundary conditions of cracked cantilever beam to simply supported at two ends.

Table 2 also gives the first three natural frequencies solution of wavelet FEM (Xiang et al. 2008)

and those of the present approximate method. The numerical performance of the present approximate

method is similar to cantilever beam, and the present approximate method is very simple. In addition,

for symmetric structures, it may obviously return to two symmetric positions. However, the search

space of normalized crack location β should be restricted at interval [0.1, 0.5] to gain a unique

solution (Nandwana and Maiti 1997, Xiang et al. 2008). In the present crack detection method, for

the crack locations are detected firstly using wavelet transform to decompose mode shape curvature,

we can obtain the unique detection results for crack locations and depths.

4.1.2 Example 2 multiple cracks

Consider a damaged steel cantilever beam with two cracks. Its dimensions are: L× h×b=0.85 m×

0.02 m×0.012 m. Material parameters are: Young’s modulus E=2.06×1011N/m2, Poisson’s ratio µ=0.3

and density ρ = 7860 kg/m3.

The results calculated using Eq. (13) and FEM are presented in Table 3, where for each of the 14

crack cases, the first four frequencies are similar, then the present approximate equation is likely to

be reliable.

In order to testify the validity of the approximate natural frequency estimation formula, a simply

supported shaft with two cracks is also given and compared with FEM (Xiang and Liang 2011).

The length L of the shaft is 0.85 m, the Young’s modulus E = 2.06×1011N/m2, the cross-section

radius r1 = 0.01m, Poisson’s ratio µ = 0.3 and the material density ρ = 7860 kg/m3. Table 4 shows

the first four natural frequencies of both the FEM and present approximate formula. As shown in

Table 4, by comparing with FEM, the calculated values are in reasonably good agreement.

Table 2 Comparison of Wavelet FEM and the present solution for simply supported beam at two ends

Case β α
Wavelet FEM (Xiang et al. 2008) Present

/Hz /Hz /Hz /Hz (ε1) /Hz (ε2) /Hz (ε3)

1 0 0 187.51 750.03 1687.56 187.51(0) 750.03(0) 1687.56(0)

2 0.1 0.1 187.43 748.92 1682.85 187.43(0) 748.92(0) 1682.84(0)

3 0.2 0.1 187.23 747.14 1681.14 187.23(0) 747.12(0) 1681.03(0.01)

4 0.2 0.3 185.05 725.40 1636.37 185.01(0.02) 723.88(0.21) 1628.72(0.47)

5 0.3 0.2 185.50 739.26 1685.02 185.48(0.01) 738.80(0.06) 1684.90(0.01)

6 0.3 0.3 182.93 726.25 1681.99 182.78(0.08) 723.88(0.33) 1681.35(0.04)

7 0.4 0.2 184.76 745.89 1678.25 184.70(0.03) 745.74(0.02) 1677.92(0.02)

8 0.4 0.4 175.99 733.39 1650.37 174.89(0.63) 730.75(0.36) 1644.18(0.38)

9 0.5 0.2 184.48 750.03 1661.01 184.40(0.04) 750.03(0) 1659.64(0.08)

10 0.5 0.4 174.92 750.03 1585.83 173.56(0.78) 750.03(0) 1562.00(1.5)

Note: Errors, and ε1 = / ×100%, ε2 = / ×100% and ε3 = / ×100%

 f1  f2  f3  f p1  f p2  f p3

 f p1  f1–  f1  f p2  f 2–  f 2  f p3  f 3–  f3
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In addition, Table 5 shows the comparison of analytical solution (Lee 2009) with those of the

present computing for a cantilever beam with three cracks. The geometry and material parameters

are similar to Example 1. Suppose the three normalized crack depths α1, α2 and α3 are fixed to 0.1,

four crack cases are compared. The results of the first six natural frequencies are matched well.

By summarizing the above natural frequency analyze and comparisons, the above results of several

single and multiple cracked beam and shaft examples indicate that reasonably good calculation

Table 3 Comparison of FEM and the present solution for cantilever beam with two cracks

α2 α1 β2 β1

FEM (Xiang and Liang 2011) Present

/Hz /Hz /Hz /Hz /Hz /Hz /Hz /Hz

0.2 0.3 0.3 0.1 22.02 141.51 397.54 785.18 21.96 141.40 397.38 784.67

0.2 0.4 0.3 0.1 21.41 140.19 396.86 785.13 21.25 139.74 396.49 784.58

0.2 0.3 0.4 0.2 22.26 142.49 397.40 771.70 22.25 142.46 397.11 770.79

0.3 0.3 0.4 0.2 22.15 141.26 395.46 769.16 22.13 141.17 394.78 768.62

0.4 0.3 0.4 0.2 21.97 139.36 392.46 765.50 21.92 139.07 390.97 765.08

0.2 0.5 0.5 0.3 21.71 140.24 379.90 764.84 21.63 139.85 375.31 760.62

0.3 0.5 0.5 0.3 21.66 138.59 379.78 754.99 21.56 137.96 375.30 750.43

0.4 0.5 0.5 0.3 21.58 136.11 379.60 740.76 21.45 134.88 375.30 733.83

0.4 0.4 0.6 0.4 22.37 134.51 384.94 775.46 22.36 133.24 384.09 772.98

0.5 0.4 0.6 0.4 22.31 131.26 379.05 772.25 22.28 128.91 376.92 767.92

0.6 0.4 0.6 0.4 22.20 127.00 372.02 768.37 22.17 122.77 366.73 760.73

0.1 0.3 0.7 0.5 22.78 140.11 400.56 769.93 22.77 139.95 400.54 768.59

0.1 0.2 0.7 0.5 22.84 141.87 400.56 779.11 22.84 141.84 400.55 778.78

0.1 0.4 0.7 0.5 22.66 137.40 400.55 756.56 22.66 136.87 400.54 751.99

 f1  f2  f3  f4  f1  f2  f3  f4

Table 4 Comparison of FEM and the present solution for a shaft with two cracks

α2 α1 β2 β1

FEM (Xiang and Liang 2011) Present

/Hz /Hz /Hz /Hz /Hz /Hz /Hz /Hz

0.2 0.3 0.3 0.1 55.40 220.94 498.69 884.35 55.34 220.10 495.20 875.34

0.2 0.4 0.3 0.1 55.34 220.18 495.47 876.32 55.24 218.70 489.23 860.66

0.2 0.3 0.4 0.2 55.24 218.83 489.77 862.92 55.03 218.83 492.38 880.41

0.3 0.3 0.4 0.2 55.04 218.97 492.75 881.30 54.51 218.05 490.61 872.20

0.4 0.3 0.4 0.2 54.54 218.31 490.92 873.75 53.60 216.65 487.46 857.53

0.2 0.5 0.5 0.3 53.70 217.22 487.70 861.84 53.30 211.51 495.13 873.47

0.3 0.5 0.5 0.3 53.42 212.91 495.47 875.53 52.73 211.51 490.03 873.47

0.4 0.5 0.5 0.3 52.94 212.86 490.50 875.40 51.72 211.51 480.90 873.47

0.4 0.4 0.6 0.4 52.46 217.43 490.57 840.38 52.17 217.28 488.89 834.71

0.5 0.4 0.6 0.4 51.63 215.99 488.01 828.08 51.14 215.71 485.34 818.20

0.6 0.4 0.6 0.4 48.66 211.27 479.70 793.71 47.10 209.54 471.47 753.61

0.1 0.3 0.7 0.5 54.71 222.38 493.06 890.23 54.70 222.36 492.60 890.05

0.1 0.2 0.7 0.5 55.26 222.35 497.82 890.23 55.26 222.36 497.71 890.05

0.1 0.4 0.7 0.5 53.78 222.37 485.13 890.17 53.68 222.36 483.48 890.05

 f1  f2  f3  f4  f1  f2  f3  f4



346 Jiawei Xiang, Toshiro Matsumoto, Jiangqi Long, Yanxue Wang and Zhansi Jiang

accuracy can be achieved for the crack problems by the proposed approximate natural frequency

estimation formula. The main advantage of the proposed formula is that it is very simple.

4.2 Crack detection for simply supported beam at two ends (shaft) with three cracks

Suppose the beam dimensions and the material properties are: L = 1m, b×h=0.02 mm×0.04 mm,

Young’s modulus E = 2.06×1011N/m2, material density ρ = 7860 kg/m3, and Poisson’s ratio µ = 0.3.

Crack case is considered as: β1 = 0.1, β2 = 0.3, β3 = 0.4 and α1 = α2 = α3 = 0.1.

The first modal shape is calculated by 60 BSWI43 (4 and subscript 3 denote the order and the

level of B-spline wavelet on the interval, BSWI) beam elements (Xiang et al. 2007b), as shown in

Fig. 3(a). The horizontal coordinate of each subplot denotes the relative location β. Using Db6

wavelet (Daubechies wavelet with six vanishing moment) (Mallat 1999) to decompose the first mode

shape (signal) at one level, the approximation signal and the detailed signal are show in Figs. 3(b)

and (c), respectively. From Fig. 3(c), we can see clearly that the boundary distortion phenomenon is

occurred at both the edge of detailed signal. This phenomenon will significantly influence the

identification of crack locations. However, when we calculate the first mode shape curvature using

Table 5 Comparison of analytical solution and the present solution for a cantilever beam with three cracks (0.1)

Method β1 β2 β3 /Hz /Hz /Hz /Hz /Hz /Hz

Analytical 
solution 

(Lee 2009)

0.2 0.4 0.6 66.35063 415.7231 1165.632 2284.937 3754.451 5666.543

0.2 0.4 0.8 66.37799 417.0456 1164.765 2275.911 3756.103 5661.717

0.2 0.6 0.8 66.46774 416.6172 1164.288 2275.992 3756.291 5661.737

0.4 0.6 0.8 66.64503 415.4261 1163.551 2281.916 3752.092 5665.596

Present

0.2 0.4 0.6 66.34607 415.6844 1165.559 2284.765 3753.596 5666.377

0.2 0.4 0.8 66.37395 417.0335 1164.668 2275.551 3755.223 5661.459

0.2 0.6 0.8 66.46532 416.6048 1164.145 2275.689 3755.391 5661.469

0.4 0.6 0.8 66.64466 415.3773 1163.457 2281.723 3751.172 5665.393

 f1  f2  f3  f4  f5  f6

Fig. 3 Crack location detection using the first mode shape and the first mode shape curvature
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Eq. (21), we the three peaks indicate the detected crack locations, i.e., β1
*= 0.1, β2

*= 0.3, β3
*= 0.4

and the predications for the three damage locations are 100% accurate. Therefore, the locations of

the three cracks can be detected accurately by looking at peaks from the curve modal shape. It is

note that, in our investigation, any order of mode shape curvature can obtain the similar results.

However, the crack depths cannot be determined directly from the mode shape curvature.

As mentioned in Section 3.2, to detect three crack depths, three natural frequencies ,  and

 are the necessary condition to obtain a robust solution of unknown α1
*,α2

* and α3
* . Because the

three crack locations β1
*= 0.1, β2

*= 0.3 and β3
*= 0.4 are detected, we focus on the evaluation of

crack depths at the three crack locations. We consider eight different depth combinations as

specified by different (α1, α2, α3) groups in Table 6 and the first three noise-free natural frequencies

, ,  calculated by Eq. (13) are also given in the same table. Eq. (13) is also applied to

obtain crack depth detection database, α1, α2 and α3 are varied from 0.1 to 0.9 with step length of 0.01.

Therefore, there are 531441 (=81×81×81) data points in the search space of the discrete functions

= Fm (α1, α2, α3), where m = 1,2,3. 

To simulate noise-contaminated signals, artificial white Gaussian noise (WGN) is added (Suk and

Gillis 2005). This is done using the random number generator, randn (pseudorandom values drawn

from the standard normal distribution) in software MATLAB7.10 as

(27)

where nl is the noise level, and  is the noisy frequency.

Suppose nl=2%, the first three noise-contaminated natural frequencies are shown in Table 7. The

optimization is implemented with MATLAB using a PSO Toolbox coded by Birge (Birge 2003).

More information about the Toolbox can be found in its help documents.

In this investigation, a population of 50 individuals is used as particles. According to the

recommendations by Birge (Birge 2003), the values of the cognition learning and the social learning

factors c1 and c2 are set to 2, the maximum particle fly speed is fixed at 10% of the range of α1, α2

and α3, i.e., 0.1×(0.9-0.1) = 0.08. The value of inertia weight w decreases linearly from 0.9 in the

first iteration to 0.4 for the 100 th iteration. The convergence is reached long before 100 iterations.

Because the PSO is for continuous variable optimization problems, the α1, α2 and α3 values provided

 f1  f 2
 f 3

 f1  f 2  f 3

 fm

 fm
N

1 nl randn×+( )  fm×=

 fm
N

Table 6 The first three noise-free natural frequencies calculated by the approximate formula

Case
Crack depths Noise-free natural frequencies (Hz)

α1 α2 α3

1 0.1 0.2 0.2 32.25 203.75 567.59

2 0.2 0.3 0.3 30.83 198.26 550.08

3 0.2 0.3 0.1 31.31 203.20 559.01

4 0.3 0.3 0.1 30.23 200.70 557.67

5 0.4 0.3 0.1 28.47 196.62 555.50

6 0.3 0.4 0.1 29.40 199.21 539.68

7 0.3 0.4 0.3 28.92 194.27 530.75

8 0.3 0.4 0.4 28.42 189.10 521.41

9 0.5 0.5 0.1 23.68 186.61 506.67

10 0.5 0.5 0.2 23.50 184.84 503.47

 f1  f2  f3
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by the PSO algorithm may not be discrete. Therefore, the α1, α2 and α3 outputs in each iteration

should be rounded up and down to the nearest discrete numbers. More specifically, α1, α2 and α3

are rounded to the nearest value available in the severity evaluation database.

Fig. 4 shows the search convergence process and the global optimization particle locations for one

case, i.e., the crack depth detection results for case 6 (as shown in Table 7) using the first three

noise-contaminated frequencies ,  and . From the upper figures in Fig. 4, the PSO algorithms

achieve the best solutions in less than 15 iterations. From the bottom figures in Fig. 4, we can see

clearly that the global optimization particles are located at point A1 ( = 0.347, = 0.453 and

= 0.100). The results are summarized in Tables 7. As shown in the table, with ,  and ,

 f1
N

 f2
N

 f3
N

α1

* α2

*

α3

*  f1
N

 f2
N

 f3
N

Table 7 The first three noise-contaminated natural frequencies and crack depths evaluation results

Case
Noise-free natural frequencies(Hz) Predicted crack depths

α1
* (ε1) α2

* (ε2) α3
* (ε3)

1 32.96 203.84 579.15 0.123(2.3) 0.233(3.3) 0.228(2.8)

2 30.66 197.22 548.61 0.199(0.1) 0.369(6.9) 0.338(3.8)

3 31.75 196.09 551.02 0.227(2.7) 0.344(4.4) 0.120(2.0)

4 28.99 199.55 572.74 0.339(3.9) 0.348(4.8) 0.120(2.0)

5 28.27 193.35 553.00 0.453(5.3) 0.336(3.6) 0.120(2.0)

6 28.92 195.31 533.32 0.347(4.7) 0.453(5.3) 0.100(0.0)

7 28.01 189.78 527.63 0.323(2.3) 0.499(9.9) 0.301(0.1)

8 28.71 187.08 512.57 0.259(4.1) 0.501(10.1) 0.464(6.4)

9 23.81 179.14 495.32 0.541(4.1) 0.573(7.3) 0.110(1)

10 23.52 188.40 528.91 0.536(3.6) 0.598(9.8) 0.152(4.8)

Note: Errors, and ε1 = ×100%, ε2 = ×100% and ε3 = ×100%

 f
N

1  f
N

2  f
N

3

α1 α1

*
– α2 α2

*
– α3 α3

*
–

Fig. 4 The PSO convergence progress and the optimal particle location
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the evaluation errors for depth of ,  and  are in the range of 0.0% to 10.1%. 

The above example clearly demonstrates that the proposed method can detect the locations and

depths of cracks reasonably well for measurements with lower level noise content. The two-step

hybrid method provides for a possibly more reliable crack detection strategy.

5. Experimental investigation

We shall now concentrate on the experimental validation. The experimental setup is shown in Fig.

5. The test system consists of a cantilever beam with two cracks, an accelerometer, an impact

hammer, a signal conditioner, NI data acquisition card and a computer with fast Fourier transform

(FFT) program. The geometry of the cantilever beam are L×h×b=0.5 m×0.019 m×0.012 m. The

cantilever material is structural steel with Young’s modulus E = 2.06×1011N/m2, Possion’s ratio

µ = 0.3 and density ρ = 7860 kg/m3. 

The experiments are conducted using two beams, one intact and the other with two cracks. The

locations and depths of the two cracks are respectively e1 = 80 mm, e2 = 380 mm, c1 = 8 mm and

c2 = 8 mm. Therefore, the respective normalized crack locations and depths are β1 = 0.16, β2 = 0.76,

α1 = 0.42 and α2 = 0.42. As we known, in a typical impact test, the accelerometer is attached to a

single point on the beam (in the present, the accelerometer is fixed near the left end of the beam),

α1

* α2

* α3

*

Fig. 5 Experimental setup

Fig. 6 Two crack locations detection using the second mode shape curvature
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and the hammer is used to impact it as many points to define its mode shape. In the experimental

study, the sampling frequency fs is 5,000 Hz and 10,000 data points are collected at each impact

points. The first three measured frequencies are: = 58.5 Hz, = 345 Hz and = 906 Hz for

intact beam; = 54 Hz, = 337.5 Hz and = 869.5 Hz for cracked beam. The analytical solution of

intact beam using Eq. (13) are: f1 = 62.85 Hz, f2 = 393.88 Hz and f3 = 1102.89 Hz. Therefore, the

values of corrected Young’s modulus calculated by Eq. (25) are: = 1.7847×1011, = 1.5804×1011

and = 1.3901×1011.

Fig. 6 shows the second modal shape and the mode shape curvature. The asterisk and solid line in

Fig. 6(a) denote the FE modal shape and the measured result. Compared with FE results, some

errors are inevitably introduced into measured modal shape by measurement environments. In Fig.

6(b), the horizontal coordinate represents β and the peak points at = 0.16 and = 0.76 reveal

the exact locations of the two cracks. 

Using  (m=1, 2, 3) and Eq.(13), we can obtain three function relationships between the first

three frequencies and the two crack depths (crack depth detection databases). α1 and α2 are varied

from 0.1 to 0.9 with step length of 0.01. Therefore, there are 6561 (=81×81) data points in the

search space of the discrete functions = Fm(α1, α2), where m = 1,2. Similar to the simulation

example on how to use PSO algorithm, we can search for the global optimization particles are

located at point A1 ( = 0.401, = 0.328) in Fig. 7 provides the estimated crack depths. The

relative errors between the estimated and the actual depths are ε1 =  and

ε2 = . As shown above, the crack location predictions are 100% accurate for

the given cases whereas the relative errors of crack depth estimations are within 9.2%. Hence, the

proposed simple crack detection method can be used for real applications with reasonable accuracy.

6. Conclusions

This paper suggests a simple procedure for crack detection in beam-like structures which is based

on mode shape curvature and few estimated natural frequencies of the beam and no finite element

model is needed. The procedure involves two steps. The first step is the application of mode shape

f̂1 f̂2 f̂3
f̂1
c

f̂2
c

f̂3
c

Ê1 Ê2

Ê3

β1

*
β2

*

Êm

 fm

α1

* α2

*

α1

* α1– 100%=1.9%×
α2

* α2– 100%=9.2%×

Fig. 7 The PSO convergence progress and the optimal particle location represented two crack depths
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curvature to detect the possibly existence and locations of cracks in beam-like structures. The

second step is the employment of particle swarm optimization to evaluate crack depths from the

crack depth detection database (the relationship of natural frequencies and crack depths). In the

present method, we use Rayleigh quotient to estimate the approximate natural frequencies of beam-

like structures under different boundary conditions. Therefore, the relationship of natural frequencies

and crack depths can be easily constructed by a simple formula. The numerical and the experimental

results show that the present method will not just detect crack locations and depths but will also

distinguish the intact and cracked beams. It should be noted that the complex finite element solution

is not needed in practice application. The basic idea of this method is being developed for plate

structures or more complicated plane/spatial frame structures. 
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