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Abstract. Human state in human-machine systems highly affects the overall system performance, and
should be detected and monitored. Physiological cues are essential indicators of human state and useful for the
purpose of monitoring. The study presented in this paper was focused on developing a bio-inspired sensing
system, i.e., Nano-Skin, to non-intrusively measure physiological cues on human-machine contact surfaces to
detect human state. The paper is presented in three parts. The first part is to analyze the relationship between
human state and physiological cues, and to introduce the conceptual design of Nano-Skin. Generally, heart
rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and
electromyography are closely related with human state. They can be measured through human-machine contact
surfaces using Nano-Skin. The second part is to discuss the technologies for skin temperature measurement.
The third part is to introduce the design and manufacture of the Nano-Skin for skin temperature measurement.
Experiments were performed to verify the performance of the Nano-Skin in temperature measurement.
Overall, the study concludes that Nano-Skin is a promising product for measuring physiological cues on
human-machine contact surfaces to detect human state.
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1. Introduction

Human state is one of the main factors that affect the performance of human-machine systems
(Peter and Herbon, 2006). Recognizing human state in a human-machine system is a highly useful
way to improve system performance. Human physiological cues and machine dynamic cues are two
main categories of cues for human state detection (Fukuda et al. 1995, Reynolds 2001). Change of
human state induces changes in human physiological cues and results in specific human behavior
which will modify machine dynamic cues. Human physiological cues are more direct indexes of
human state. Moreover, machine dynamic cues depend on not only human behavior but also the
dynamic characteristics and working environment of machines. Human physiological cues are more
suitable for human state detection.
Human state can be detected using physiological cues such as heart rate, skin conductance, skin

temperature, operating force, blood alcohol concentration, sweat rate, and electromyography. Heart
rate (HR) is the number of heart beats per minute. Heart rate variability (HRV) is the variation in
beat-to-beat intervals. Generally, anger, fear, and sadness induce a larger increase in HR than disgust
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and neutrality (Gross and Levenson 1997, Levenson et al. 1992). HR during the states of anger or
fear is higher than that during happiness (Ekman et al. 1983, Vrana 1993). HR reflects a close
relationship between anticipated effort and arousal (Smith 1989). HRV is influenced by the sympathetic
and parasympathetic vagus nerves (Haag et al. 2004). Skin conductance describes the ability of
human skin to conduct electricity. It is a promising and non-invasive physiological measure of
autonomic nervous system activity (Cacioppo and Tassinary 1990). Usually, fear and disgust produce
larger skin conductance than happiness (Lanzetta and Orr 1986). Sadness does not change skin
conductance (Gross and Levenson 1997). Amusement increases skin conductance (Gross and Levenson
1997). Skin conductance also changes with individual levels of overall arousal (Nakasone et al.
2005). Skin temperature is affected by human state. For example, fear produces a smaller increase
in finger temperature than anger (Ekman et al. 1983). The finger temperature increases for anger
but decreases for fear (Levenson et al. 1992). The finger temperature has been involved to detect
human state (Sinha and Parsons 1996). In order to operate machines, humans apply an appropriate
operating force on control devices. The operating force may be increased when humans are
nervous and tense, and be decreased when humans are drowsy or fatigued. Human operating force
is a useful cue for human state detection (Chieh et al. 2003, Bekiaris and Nikolaou 2004). Blood
alcohol concentration (BAC) represents the amount of alcohol in a person’s bloodstream (NIAAA,
2010). Alcohol intake significantly impairs human abilities and degrades human performance (Cherry et
al. 1983, Kim et al. 2007). For example, major driving-related skills were impaired when a driver’s
BAC was larger than 0.02% (Moskowitz et al. 2000). Monitoring BAC is highly relevant to detect
human state (Leng and Lin 2010b). Sweat rate is the amount of sweat produced per unit time.
Human sweat rate increases with higher exercise intensity (Buono and Connolly 1992). Sweat rate is
also a useful cue to evaluate human mental stress (Shamsuddin and Togawa 1996). The electro-
myography (EMG) is a sensing method that detects the bioelectric potentials associated with
muscle activity. It is suitable for assessing human stress levels and drivers’ fatigue (Picard and
Healey 1997, Katsis et al. 2004). So far, most methods of human state detection employ multiple
physiological cues, and are multimodal because multimodal methods can achieve higher recognition
accuracy (Anolli et al. 2005). It is feasible to detect human state using human physiological cues.
One critical step is continuously measuring human physiological cues without disturbing human
behavior and state.
In human-machine systems, the physiological measurement may use contact technologies or non-

contact technologies (Lin 2011, Schuller et al. 2004). Contact technologies require physical human-
machine contact; whereas non-contact technologies do not. Contact technologies can achieve a larger
signal-to-noise ratio, higher robustness to disturbances, and lower energy consumption, and are preferred
in non-intrusive physiological measurement. Human-machine systems involve usually dynamic human-
machine contact, e.g., the contact between a driver’s palms and the steering wheel. The location and
area of human-machine contact may frequently change. It is a challenge to ensure the consistency
and continuity of physiological measurement through dynamic human-machine contact, and requires
new methods in the area of sensing (Lin et al. 2007). 
Researchers have found that nature has evolved to offer diverse, impressive, sensitive, and reliable

sensing systems for creatures. The mechanism of natural sensing systems is useful to improve the
contact technologies for the physiological measurement in dynamic human-machine contact. Human
skin consists of two layers, the epidermis and dermis (Tobin 2006). The epidermis is the external
layer of keratinizing stratified epithelium. The dermis is a layer of connective tissue beneath the
epidermis, and contains a dense network of sensory receptors. The receptor network involves
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several types of receptors for different sensations such as touch and pain. The receptor network
supports the distributed sensing function of human skin. Researchers recently paid more attention on
developing “sensing skin” to enhance the sensing capability of machines (Lumelsky et al. 2001,
Leng and Lin 2010a), e.g., a sensing skin for monitoring structural health (Lynch and Loh 2009), an
infrared-based sensitive skin for planning motion in uncertain environment (Um et al. 1998), and a
capacitance-based sensitive skin for measuring the distributed pressure on lower limb prosthetic
devices and healthcare robots (Rowe and Mamishev 2004, Connolly 2009). These sensing skins expand
the sensing capability of machines from a few points to a surface.
Human skin presents an appropriate approach to ensure the consistency and continuity of physiological

measurement in dynamic human-machine contact. The receptor network of human skin involves
many receptors that are connected with the central nervous system via nerves. The receptor network
can be modeled using a star network (Fig. 1). Mimicking the receptor network of human skin, an
intelligent sensor array is proposed to address the challenges of physiological measurement in dynamic
human-machine contact. An intelligent sensor array involves a microcontroller and many sensors
(Fig. 1). All sensors connect with the microcontroller that acquires and processes the signals of
sensors. When any one of the sensors is touched by humans, human physiological cue will be
measured. This kind of intelligent sensor array can be built into a sensing skin (Fig. 2). The sensing
skin has three layers, the substrate, the functional layer, and the protective layer. The functional layer
involves sensors, a special integrated circuit (IC), and interconnections between the sensors and
special IC (Fig. 2). The sensors are divided into many sensor groups which are evenly distributed
on the substrate. Each sensor group includes a heart rate sensor (HR), a sweat rate sensor (SR), a
skin temperature sensor (TE), a gripping force sensor (GF), an alcohol sensor (Al), a skin conductance

Fig. 1 The receptor network of human skin and an intelligent sensor array

Fig. 2 “Nano-Skin” conceptual design
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electrode (SC), and an EMG electrode, etc. The heart rate sensor involves a light emitter and
detector. The light emitter emits infrared light to illuminate the skin. The reflected infrared light is
modified by the perfusion of blood in the skin, which changes the conductivity of the light detector.
The skin temperature sensor is a resistance temperature detector. The pressure sensor is a piezo-
resistive sensor, and is used to measure human operating force. The sweat rate sensor is a humidity
sensor. The alcohol sensor changes resistance with the alcohol concentration of human sweat. The skin
conductance and EMG electrodes are good conductors, and are used to measure skin conductance
and EMG, respectively. The outputs of these sensors are all resistive changes, and can share one
signal conditioning module. The special IC is employed to (1) supply appropriate power to the
sensing skin, (2) perform the signal acquisition and signal conditioning, and (3) transmit the signals
to upper-level computers. The conceptual design of the sensing skin in Fig. 2 involves 56 sensor
groups in 7 rows and 8 columns. Each sensor group occupies a 5 mm×5mm square. A human finger can
simultaneously touch at least two sensor groups as human fingers has a diameter of 11.95 mm~
22.33 mm, according to the US ring size chart.
Manufacturing the sensing skin in Fig. 2 includes mainly preparing the substrate, building the

interconnections between sensors and special IC, depositing sensing materials, and applying the
protective coating layer. When the interconnections are prepared, the sensing skin is covered by the
deposition mask #1 for depositing sensing material #1 (Fig. 3). After deposition, mask #1 is
removed. The sensing material #1 is left at the desired locations on the substrate to build sensor #1.
Similarly, the sensing material for sensor #2 is deposited using deposition mask #2. This process
can be repeated to deposit more sensing materials. The sensor shape depends on the deposition
mask. The sensor thickness increases with longer deposition time. The special IC is a customized
IC. Its manufacturing will not be discussed in this study.
The sensing skin in Fig. 2 involves six kinds of sensors. The skin temperature sensors do not

suffer from cross interferences, whereas the other sensors respond to cross interferences such as the
change of temperature. The skin temperature sensors produce signals not only for measuring skin
temperature but also for calibrating the outputs of the other sensors of the sensing skin. The skin
temperature sensors should be firstly built on the sensing skin and then be evaluated. This paper is
focused on developing a bio-inspired sensing skin to measure human skin temperature from human-
machine contact surfaces for human state detection. The sensing skin should achieve the safety to
humans and the high precision in skin temperature measurement, and involve a dense sensor
network to consistently and continuously detect physiological cues in dynamic human-machine
contact. It is flexible, and can be attached to curved machines surfaces for diverse applications. The
new sensing system is called “Nano-Skin” in this research as it uses nanotechnologies and borrows
the sensing mechanism of human skin. 

Fig. 3 Deposit sensing materials using deposition masks
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2. Sensing technologies for skin temperature

People have developed many technologies for temperature measurement. Common temperature
sensors are widespread in the industry field. Their working principles include the thermo-resistive
effect, thermoelectric effect, piezoelectric effect, P-N junction, and optical transducer. Thermo-
resistive effect means that the resistivity of materials, ρresistivity, changes with ambient temperature,
T, as 

ρresistivity = ρresistivity-ref [1 + αtemp (T−Tref)](Fraden 2004) (1)

where ρresistivity-ref is the resistivity of thermo-resistive materials at a reference temperature Tref. αtemp is
the temperature coefficient of resistance (TCR). Thermo-resistive sensors usually involve three
categories: (1) resistance temperature detectors (RTD) are usually produced using metals or alloys. The
popular materials for RTD are platinum and its alloys because they have expectable output and good
stability. Most RTDs have a positive temperature coefficient of resistance; (2) silicon resistive sensors
are built employing bulk silicon. Pure silicon has initially negative temperature coefficient of
resistance. After being doped with an impurity, the silicon shows positive temperature coefficient of
resistance in a specific temperature range. Silicon resistive sensors usually have good linearity and
good stability; (3) thermistors are made from metal oxides. Thermistors with a negative temperature
coefficient are called NTC thermistors, whereas those with positive temperature coefficients are called
PTC thermistors. Most thermistors have a nonlinear output and good stability. Thermoelectric effect
refers to the conversion between temperature change and electric voltage. Two different metal wires (A
and B) which are coupled generate an open-circuit voltage when both their junctions are in different
temperatures. The temperature difference of both junctions determines the voltage. Thermoelectric
sensors have a linear output and require a “cold” junction in a precisely determined temperature. The
piezoelectric effect of some materials is temperature dependent. For example, change in the oscillating
frequency of quartz crystal ∆ fquartz has

(2)

where ∆T is the temperature change, fcalibrate is the calibrating frequency, and a0, a1, a2, a3 are
coefficients (Fraden 2004). The frequency shift reflects the temperature though their relation is not
linear. PN-junctions of semiconductors have a remarkable thermal dependence. Being supplied
constant current, the junction outputs a voltage which is a function of its temperature. Semiconductor
PN-junction sensors have good linearity, quick response and strong robustness though it can measure
only low temperatures in a limited range (the typical range is -55oC~ + 150oC). Furthermore, optical
methods are employed to measure temperature. Optical temperature sensors consist of (1) thermal
infrared detectors. Their sensing element responds to electromagnetic radiation in the infrared range.
They involve two types, passive and active. Passive infrared detectors can convert incoming
radiation to heat. Active infrared detectors emit thermal radiation to measured objects and measure
heat loss in the form of thermal radiation. (2) Fluoroptic sensors employ a special phosphor
compound which emits fluorescent signals due to light excitation. The response pulse shape of the
fluorescent signal is then used to determine temperature; (3) Interferometric sensors employ two
light beams: a reference beam and a detecting beam. Compared to the reference beam, the detecting
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beam travels through a temperature sensitive medium and is somewhat delayed depending on the
medium temperature; and (4) Thermochromic solution sensors show different spectral absorptions
for specific temperatures. 
MEMS based temperature sensors have also been developed (Xiao et al. 2005). These sensors

employ sensing principles such as the thermo-resistive effect (Lv et al. 2007), Fabry-Perot Micro-
Opto-Mechanical Device (FPMOD) (Nieva et al. 2006). The FPMOD based MEMS sensor has
an optical cavity between a silicon substrate and a silicon nitride film in the form of a cantilever
beam. When a monochromatic light source illuminates the FPMOD, the deflection of the beam
with respect to the substrate can be measured using Fabry-Perot interferometry to detect the
measurands. MEMS sensors are measured in micrometers, and are much smaller than common
sensors. The reduction in size increases the sensitivity and decreases the energy-consumption of
the sensors.
Nano temperature sensors usually employ the thermal effect of nano materials whose resistance

changes with ambient temperature. The thermal nano materials can be metals such as tungsten. The
focused-ion-beam chemical vapor deposition (FIB-CVD) of tungsten over an atomic force microscope
(AFM) cantilever has a positive temperature coefficient of resistance (El-Shimy et al. 2006). The thermal
nano material can also be made of nonmetals such as carbon nanotubes. Carbon nanotubes that
laterally grow between two electrodes show a linear relation between resistance and ambient temperature
(Gau et al. 2005, Kuo et al. 2007). Nano sensors are in nano-sizes, and have a large surface to volume
ratio. Their nano-sizes decrease the input signal intensity required for nano sensors to respond. The
large surface to volume ratio enhances interactions between nano sensors and measurands (Traversa
et al. 2000, Cortie et al. 2006).
Measuring human skin temperature for human state detection has special considerations and

requirements. Few of current temperature sensors are suitable for this kind of temperature
measurement. In human-machine systems, the Nano-Skin operates in the space where humans
work. The Nano-Skin temperature sensors will come into close contact with human skin which
possibly bears sweat, machine oil, soy sauce, coffee, etc. The Nano-Skin temperature sensors
require stability against chemicals found on human skin. The Nano-Skin temperature sensors
experience human skin temperature and possible extreme temperatures from the working space.
For example, the temperature in a vehicle may reach +60oC or higher in the summer, and be 0oC
or lower in winter. The sensors should have good precision in human skin temperature
measurement, and work well under all these temperatures. A Nano-Skin on machine surfaces may
be applied an operating force by humans. The Nano-Skin temperature sensors should work well
under human operating force, and be strong enough to withstand the force. Moreover, the
physiological signals on human skin are very weak. Acquiring the signals needs sensors with
high sensitivity. The response of sensors will be quick to monitor human state in real time.
Building a dense sensor network needs small sensors. 
In addition, the skin temperature measurement can not be aware by measured humans, and affect

human state. Current temperature sensors are unable to be bent and stretched because they are
inflexible, whereas the Nano-Skin is able to. Bending and stretching will not affect the function and
performance of the Nano-Skin that is inherently flexible. It is easy to attach the Nano-Skin to
curved machines surfaces. Humans may not feel the existence of the Nano-Skin. The effect of using
Nano-Skin to human state is greatly decreased. Moreover, measuring human skin temperature for
human state detection requires the safety of temperature sensors to humans because skin temperature
sensors will directly and continuously contact with human bodies. The safety of most current
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temperature sensors to humans was not evaluated, and was not determined. Using the Nano-Skin
will be safe to humans. Furthermore, human-machine interaction is usually dynamic. A dense sensor
network will be placed on machine surfaces to continuously acquire human skin temperature from
human-machine contact surfaces. Establishing this kind of network is difficult for current temperature
sensors because (1) the sensor sizes are large. The sensors can not be placed very close; and (2) the
sensors are independent from the reading circuits. The interconnections between sensors and reading
circuits require extra work, and are mass. This is easy for the Nano-Skin because the Nano-Skin is
embedded a dense temperature sensor network. It is worthy to develop a Nano-Skin to monitor skin
temperature on human-machine contact surfaces for human state detection.

3. Design and manufacture of the nano-skin for skin temperature measurement

A Nano-Skin for skin temperature measurement was designed and manufactured (Fig. 4). The
Nano-skin does not include a special IC. Its substrate is employed to support and fix the sensors
and interconnections. The substrate is the main component for withstanding external forces. The
substrate strain will apply a strain to the sensors and interconnections. If the substrate strain is large,
the sensors and interconnections may be broken. The substrate needs good stability under forces.
Moreover, the substrate requires high insulating capability because the Nano-Skin temperature
sensors and interconnections are built directly on the substrate. The substrate will be flexible to be
bent to match curved surfaces. Parylene has a Young’s modulus of 2.41~2.76 GPa, a tensile strength
of 48.26~75.83 MPa, and a dielectric constant of 3.15. It is flexible, and is proved to be safe to
humans. Parylene is an appropriate material for the substrate of the Nano-Skin. A parylene film
with a thickness of 10 um was chosen for the Nano-Skin substrate. In addition, platinum is usually
employed to produce temperature sensors. It is safe to humans, and does not impair human health.
Platinum was chosen to build the Nano-Skin temperature sensors. The Nano-Skin has 9 platinum
thermometers with diameters of 5.95 mm, 3.86 mm, 2.82 mm, 2.36 mm, 2.03 mm, 1.78 mm, 1.60 mm,
1.40 mm, and 1.32 mm, respectively. The rectangles along the periphery are the copper pads for
connecting data acquisition systems. The interconnections between the sensors and pads are made of
copper. The thickness of the sensors, pads, and interconnections is 150 nm. The Nano-Skin was
manufactured following the process in Table 1. The Nano-Skin was not covered by a protective
layer in order to test its performance in later experiments. 

Fig. 4 The Nano-Skin for skin temperature measurement (Left: the engineering drawing and Right: the prototype
on a 3” silicon wafer)
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4. Experiments of the nano-skin for skin temperature measurement

4.1 Experiment apparatus

Besides a Nano-Skin for skin temperature measurement, the experiment apparatus included
interface circuits, a USB6218, a computer, a stopwatch, a power supply, a fan heater, a type K
thermocouple, a multimeter, a Pt1000Ω thermometer, and an adiabatic board (Fig. 4). The Nano-
Skin has 9 platinum temperature sensors (Table 2). Three of them did not work because their
resistances were not stable at room temperature. The other 6 sensors show stable resistances at room
temperature, and worked well. Their resistive changes in experiment temperatures were measured
and then compared to that of the Pt1000Ù. The resistances of the 6 Nano-Skin sensors and the
Pt1000Ω were monitored using Wheatstone bridges of which the signal was amplified using an
instrumentation amplifier, AD623. Seven interface circuits were prepared for the 6 Nano-Skin
sensors and the Pt1000Ω. Their signals were acquired and digitized with a sampling frequency of
500 Hz per channel using the NI-USB6218. The fan heater was used to blow hot air to apply
temperatures to the sensors. The temperatures applied on the sensors depended on the distance
between the fan heater and Nano-Skin (i.e., the D in Fig. 5). A shorter distance resulted in a higher
temperature. The experiment temperature was monitored using a type K thermocouple and a
multimeter. It was found that the fan heater requires 30 seconds after being started to produce hot
air flow with stable temperature. In order to generate the right experiment temperature, the adiabatic
board was placed between the Nano-Skin and fan heater to cut the pathway of hot air till the hot air
flow temperature became stable.

Table 1 Manufacturing process of Nano-Skin for skin temperature measurement

No. Description Illustration Details

1 Clean a 3” silicon wafer. Use piranha solution.

2 Spin and coat a PMMA layer. Thickness: 150 nm.

3 Deposit a Parylene layer. Thickness: 10 um.

4 Spin and coat a photo-resist layer. Use Microposit S1813 photo resist; 
Thickness: 150 nm.

5 Pattern the photo-resist layer. Use lithograph mask A.
Exposure time: 7 seconds.

6 Develop the photo-resist layer. Use Microposit MF-319 developer.

7 Deposit a copper layer. Use the MRC 8667 Sputtering 
machine.

8 Lift off the copper layer. Use acetone to remove S1813.

9 Deposit Pt using an e-beam 
evaporator.

Use the MDC E-beam evaporator and 
the deposition mask A.

10 Peel off the Nano-Skin from the 
wafer

Dip in acetone to dissolve the PMMA.
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4.2 Design of experiments

The experiments are to find whether there is significant difference between the resistive changes,
response times, and recovery times of the 6 Nano-Skin sensors and those of Pt1000Ω. The
experiment factor is the temperature sensor, and has 7 levels: Nano-Skin sensor #1, #3, #5, #6, #7,
and #8, and Pt1000Ω. Nine temperatures (e.g., 19oC, 23oC, 26oC, 30oC, 33oC, 34oC, 37oC, 41oC,
45oC, and 48oC) were produced for the experiments, and involved the typical range of human skin
temperature. The voltages of the 7 sensors are simultaneously measured at each experiment temperature.
The experiment procedure was (1) the room temperature was measured using the type K
thermocouple and multimeter. The voltages of the 7 temperature sensors were acquired for one
minute; (2) the fan heater was located with a specific distance from the Nano-Skin to prepare
applying the temperature, 37oC, to the 7 sensors; (3) the adiabatic board was placed between the
Nano-Skin and fan heater. The fan heater was started as soon as the stopwatch starts timing at 0
seconds; (4) acquiring the voltages of the temperature sensors began at 30 seconds. The adiabatic
board was removed at 32 seconds; (5) the fan heater was stopped at 150 seconds. Simultaneously,
the adiabatic board was placed again between the Nano-Skin and fan heater; (6) acquiring the
voltages of 7 sensors was continued till 270 seconds; (7) temperatures 48oC, 41oC, 23oC, 34oC,
30oC, 45oC, 33oC, and 26oC were successively applied to the 7 sensors by relocating the fan heater.
Then steps (3)-(6) were repeated; (8) steps (2)-(7) were repeated another 9 times. In each replication,
the order of applying 9 temperatures was randomized. 

4.3 Experiment results

The experiments produced 90 data files. In order to analysis the experimental data, a MATLAB
program, program-A, was established to read the data file, filter the noise, calculate the sensor

Table 2 Parameters of the 9 platinum temperature sensors of Nano-Skin

Sensor 
No.

Diameter 
(mm)

Resistance
in 19oC (Ω) 

Memo Sensor No.
Diameter 
(mm)

Resistance
in 19oC (Ω) 

Memo

1 5.95 33.0 Tested N/A 1.78 unstable N/A

2 3.86 unstable N/A 6 1.60 9.6 Tested

3 2.82 16.5 Tested 7 1.40 4.6 Tested

4 2.36 unstable N/A 8 1.32 2.1 Tested

5 2.03 12.5 Tested Pt1000Ω N/A 1086 Tested

Fig. 5 Experimental apparatus
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resistances, and then obtain the resistive changes, response times, and recovery times of the 7
sensors at the 9 temperatures. In each experiment, the initial resistance of a sensor, Rave_0, was the
average value of the resistances of the sensor in 30~32 seconds. The resistance of the sensor for
experiment temperature Rave_1 was the average value of the sensor resistances in the 90~150 second
time period. The relative resistive change of the sensor at a temperature is ∆Rrelative = (Rave_1 − Rave_0) /
Rave_0. The sensor response time, Tresponse, is the period from the time a temperature is applied to the
time that the sensor achieves the resistance Rave_1. The recovery time of the sensor, Trecov ery, is the
period from the time the temperature is removed to the time that the sensor recovers to the
resistance Rave_0. Another MATLAB program, program-B, used the analysis of variance (ANOVA)
to compare the ∆Rrelative, Tresponse, and Trecov ery of the 6 Nano-Skin sensors with those of Pt1000Ω at
each temperature.
Fig. 6 describes the relative resistive changes of the 6 Nano-Skin sensors and Pt1000Ω at 9

temperatures. Table 3 shows the ANOVA (significance level α = 0.05) result of comparing the ∆Rrelative s
of the 6 Nano-Skin sensors with that of Pt1000Ω at the 9 temperatures. It was verified that
∆Rrelative s of the 6 Nano-Skin sensors are significantly different from the ∆Rrelative of PT1000Ω at the
9 experiment temperatures. The 6 Nano-Skin sensors are able to produce larger relative resistive
changes for same temperature change than PT1000Ω.
The response times of the 6 Nano-Skin sensors and Pt1000Ω at 9 temperatures are recorded in

Fig. 7. The ANOVA (significance level α = 0.05) result of comparing the response times of the 7 sensors
at 9 temperatures are listed in Table 4. There is no significant difference between the response times

Fig. 6 ∆Rrelative of the Nano-Skin sensors #1,#3, #5, #6, #7, #8 and Pt1000Ω at 9 temperatures

Table 3 ANOVA (α = 0.05): compare ∆Rrelatives of 6 sensors with that of PT1000Ω at 9 temperatures

Temperature
P-Value

Sensor Sensor#1 Sensor#2 Sensor#5 Sensor#6 Sensor#7 Sensor#8

23oC

P
T
1
0
0
0
 Ω

1.34E-05 0.000809 6.84E-05 9.54E-05 2.78E-05 0.000277

26oC 1.37E-08 1.74E-06 1.05E-07 2.39E-07 5.19E-09 4.36E-07

30oC 1.46E-07 1.04E-05 1.83E-06 2.45E-06 9.95E-09 7.33E-07

33oC 1.24E-09 4.71E-07 6.25E-08 6.73E-08 2.80E-11 2.68E-08

34oC 7.50E-08 9.11E-06 5.28E-06 5.03E-06 3.62E-09 9.18E-07

37oC 1.26E-08 2.08E-06 1.44E-06 1.11E-06 6.75E-10 1.93E-07

41oC 5.55E-06 2.75E-04 4.33E-04 4.53E-04 9.93E-08 1.31E-05

45oC 1.37E-08 1.74E-06 1.05E-07 2.39E-07 5.19E-09 4.36E-07

48oC 5.99E-06 2.04E-04 9.37E-04 1.06E-03 2.19E-07 2.97E-05
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of the Nano-Skin sensors #7 and #8 and that of PT1000Ω at the 9 temperatures. The Nano-Skin sensors
#1 and #6 had the same response times as PT1000Ω at temperatures 6 and 7, respectively. However,
the Nano-Skin sensors #2 and #5 showed significantly different response times from PT1000Ω at
most experiment temperatures. Smaller Nano-Skin sensors have the potential to respond as quickly
as PT1000Ω. 
The recovery times of the 7 sensors are illustrated in Fig. 8. The ANOVA (significance level

α = 0.05) of recovery time produced the results in Table 5. It was verified that (1) the recovery time
of the Nano-Skin sensors #7 and #8 is statistically equal to that of PT1000Ω at the 9 temperatures;

Fig. 7 Tresponse of the Nano-Skin sensors #1,#3, #5, #6, #7, #8 and Pt1000Ω at 9 temperatures

Table 4 ANOVA (α = 0.05): comparing Tresponses of 6 sensors with that of PT1000Ω at 9 temperatures

Temperature
P-Value

Sensor Sensor#1 Sensor#2 Sensor#5 Sensor#6 Sensor#7 Sensor#8

23oC

P
T
1
0
0
0
 Ω

5.37E-02 0.005788 1.87E-01 1.92E-01 8.54E-02 0.083183

26oC 2.12E-01 1.23E-01 7.35E-02 1.45E-01 8.79E-02 7.57E-02

30oC 1.07E-01 1.88E-02 2.64E-01 1.00E-01 7.42E-02 6.26E-02

33oC 1.84E-01 1.42E-02 1.99E-02 1.70E-01 4.17E-01 6.33E-02

34oC 2.77E-02 8.99E-03 1.40E-02 2.66E-02 1.14E-01 5.11E-02

37oC 8.44E-02 3.00E-02 4.23E-02 9.07E-02 4.49E-01 7.37E-02

41oC 5.48E-02 5.44E-02 5.88E-02 6.21E-02 1.47E-01 5.94E-02

45oC 4.40E-02 4.64E-02 4.62E-02 5.34E-02 7.78E-02 7.61E-02

48oC 1.24E-02 1.29E-02 1.13E-02 1.56E-02 9.50E-02 9.65E-02

Fig. 8 of the Nano-Skin sensors #1,#3, #5, #6, #7, #8 and Pt1000Ω at 9 temperatures
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(2) In 7 out of 9 temperatures, the Nano-Skin sensor #6 has the same recovery time as PT1000Ω;
and (3) the recovery times of the Nano-Skin sensors #1, #2, and #5 are significantly different from
that of PT1000Ω at most temperatures. The Nano-Skin sensors #1, #2, and #5 may have longer
recovery times than PT1000Ω. The Nano-Skin sensors can achieve similar recovery time to PT1000Ω
when their sizes are optimized.

5. Conclusions

Monitoring human state in human-machine systems is highly useful to improve system performance.
Physiological cues have more direct and close relationships with human state than machine dynamic
cues. It is better to non-intrusively measure human physiological cues from human-machine contact
surfaces for human state detection. A Nano-Skin involves a dense sensor network, mimicking human
skin, and is a bio-inspired sensing system for human-machine contact based physiological measurement.
It is flexible, and can be attached to curved machine surfaces. A Nano-Skin has mainly a flexible
substrate, sensors, a special integrated circuit, interconnections, and a flexible protective layer. The
sensors are connected with the special integrated circuit via the interconnections. Their signals are
acquired, processed, and transmitted using the special integrated circuit. The sensors, special
integrated circuit, and interconnections are fixed and packaged between the substrate and protective
layer. This study manufactured a Nano-Skin for skin temperature measurement, and then tested its
performance. The manufacturing process is feasible and repeatable. The Nano-Skin sensors produced
larger relative resistive changes for same temperature change than a PT1000Ω sensor. Depending on
their size, the Nano-Skin sensors are able to achieve same response and recovery times as PT1000Ω.
It is feasible to use the Nano-Skin to non-intrusively measure human physiological cues on human-
machine contact surfaces for human state detection. 
In the future, the Nano-Skin will be extended to include more transducer elements to measure

more human physiological cues.
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