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Abstract. We review the current understanding of modularity in biological motor control and its forms, and
then relate this modularity to proposed modular control structures for biomimetic robots. We note the features
that are different between the robotic and the biological ‘designs’ with features which have evolved by natural
selection, and note those aspects of biology which may be counter-intuitive or unique to the biological controls
as we currently understand them. Biological modularity can be divided into kinematic modularity comprised of
strokes and cycles: primitives approximating a range of optimization criteria, and execution modularity comprised
of kinetic motor primitives: muscle synergies recruited by premotor drives which are most often pulsatile, and
which have the biomechanical effect of instantiating a visco-elastic force-field in the limb. The relations of
these identified biological elements to kinematic and force-level motor primitives employed in robot control
formulations are discussed.
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1. Introduction

Over the last 40 years or so our understanding of modularity in the motor control systems of
animals has grown enormously. The problems animals face in controlling a high degree of freedom
articulated skeleton with redundant actuation were first discussed in detail by Bernstein (1967). The
biological system manages the degrees of freedom remarkably well. The complex body mechanism
and its neural controls provide animals with exquisite mechanical abilities. The motor system’s
redundancy allows routine motor acts to be performed in various flexible ways: the motor equivalence
notion introduced by Bernstein. We can sign our name with a precision grip on a pen, a power grip
on a chisel or our toe in the sand at the beach and all will likely be recognizably our signature.
Motor equivalence can support inventive and novel behaviors in many species. Humans may also routinely
develop and perform novel manipulative acts which were perhaps never before used in human
history: for example working under a car to undo an oil nut, or a novel choreography in the arts.
Biological systems also allow flexible movement synthesis and exploration while mostly avoiding
catastrophic failures and instability, despite using controls with long delays. At the same time as
biological control supports such flexibility and novel action, much action is not likely to be learned:
many animals can also develop complex actions remarkably fast. A wildebeest calf in the Serengeti
is walking with the herd in a few hours and newly hatched turtle on a caribbean beach is rapidly
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locomoting down the beach to the water — usually in seconds to minutes. Biological systems thus
show immense flexibility, robust controls, and rapid construction of effective action ‘out of the box’. Our
purpose here is to give a brief overview of our understanding of biological motor control modularity
and how its features may be related to ideas in robotic control and bio-inspired frameworks.

2. Neurobiological modularity

Modularity is seen at seen at several levels in biological motor control. At kinematic levels of
description, clearly repeatable action units are seen. These units also have modular underpinnings at
kinetic and actuator control levels of description. In the biological perspective, modularity is observed as
a reduction in degrees of freedom. There exist compact representations of animals’ movements and
their controls, despite the potential high degrees of freedom available. It is possible to make
representative recordings of limb and body kinematics and the electrical/neural drive signals in, or
travelling to, the muscles that are generated by the central nervous system (CNS). Such data can
then be used to infer the controls and drives for the actuation of movement by the muscles pulling
on the skeleton and generating appropriate torques. In ‘reduced preparations’, (animals with large
parts of CNS removed), it is also possible to humanely perform experiments to directly record the
muscle forces, or the forces in the limb while it is held immobile. In such preparations, it can be
shown that the animal’s remaining CNS has significant capacities and ably controls the body to
move to some limited but significant purpose such as scratching or walking. It is then possible to
analyze and dissect the patterns and modes of change in the kinematics, kinetics, and muscle spatial
and temporal drive patterns and their controls, so that the biological control schemes can be
‘reverse-engineered’. These efforts have generated a body of information on the phenomenology of
movement controls, the strategies used to manage the limb and motor degrees of freedom, and the
structure of the neural controls.

2.1 Kinematic modularity

Human and animal movements show a range of interesting features and modularities. In general, limb
end-point motions show fairly straight, unimodal and bell-shaped tangential velocity profiles. These
profiles and the resultant segmentation into ‘kinematic strokes’ were noted by Viviani and Terzuolo
(1982) and Hogan (1984), Flash and Hogan (1985). The profiles are consistent with a kinematic
optimization: trajectories are well predicted and fitted by an endpoint minimization of jerk (Hogan
1984). For point to point motions, these features are preserved by neural adaptation processes under
a range of loads and in different environments (Flash and Hochner 2005, Burdet and Milner 1998,
Rohrer et al. 2002). At the same time, largely as a result of features of biological limb design, the
kinematic optimization observed is also consistent with various kinetic and task optimizations (e.g.,
minimum torque change, and minimized signal dependent noise at the muscle, see Wolpert et al. 2001).
A range of learning, correction and rehabilitation phenomena are consistent with superposition of
collections of kinematic strokes by the CNS (Rohrer et al. 2002, Sosnik et al. 2004). More mathematically
principled stroke bases suitable for understanding complex 3D kinematics are under development by
Flash and colleagues (Polyakov et al. 2009).

A second natural modularity observed in the kinematics of animal motion is into cyclic patterns,
for example in stepping or running or breathing or chewing etc. These cycles are usually viewed as



Biomimetic control for redundant and high degree of freedom limb systems: neurobiological modularity 171

being qualitatively different in their neural control and neural support structures from point to point
strokes. The differences between rhythmic and discrete unitary motions are an area of active
investigation (Hogan and Sternad 2007). Kinetically there may be energy storage, transfer and conservation
throughout such cyclic motions, and thus optimizations of these. In thythmic stepping motions it has
been shown that many different types of optimizations are nearly satisfied simultaneously by the patterns
of motion chosen (Collins 1995), subject to the limitations of the biomechanical models used (see
Pai 2010). This kinematic/kinetic optimization overlap and its matching is a strong feature of
biological design and control. Desirable as they are functonally, these many overlaps also confound
efforts to use simpler analyses of biological control optimizations and design principles. The
framework of kinematic division into strokes and cycles has inspired several motor control frameworks
(see Raibert 1986, Koditschek et al. 2004) and a particular framework for modular robotic control
design due to Ijspeert, Schaal and colleagues (Ijspeert et al. 2003, Schaal et al. 2003, see below).

2.2 Modular patterning systems

At the level of actuation, modular and repeatable neural controls for rhythmic motions have been
established by work of Wilson, Grillner and their successors in both vertebrate and invertebrate
animals (Wilson 1961 and see review of Marder and Bucher 2001). The central nervous system can
organize modular patterns for many different types of behaviors (usually rhythmic) independent of
feedback or patterned input. A fully paralyzed ‘reduced’ animal (achieved through muscular blocking
agents) can nonetheless generate locomotor-like patterns and so on. The nervous system, it is
inferred, thus has a feedforward drive system for rhythmic activities that anticipates the features of
driven mechanical events — at least to some extent. These drive systems, termed ‘central pattern
generators’ (CPGs), are embedded in spinal or other lower CNS neural structure. CPGs can be shown to
have some internal modularity. It has been suggested that they may comprise collections of
oscillating systems for different body parts (e.g., individual legs, and maybe individual limb joints
or assemblies of these etc). Ensemble coordinated and syncopated patterns of movement may arise
from the coupling of such collections of oscillators in the overall CPG. Coupling may be wholly
central (in paralysis) or achieved using (or even dominated by) feedback in unparalyzed motions so
as to adapt the rhythmic processes to body mechanics and kinetic conditions. The operationally
defined and dissected biological ‘CPG’ could represent several types of controller. For example,
there might be neural networks in CNS implementing dynamical system limit-cycle oscillators, or
there might be a kind of finite state machine that cycles through states in the absence of rhythmic
inputs. Recent data from paralyzed decerebrate cat research supports a possible hybrid of these: a
rhythmic or clocking system layer (building the oscillatory timing features and perhaps performing state
sequencing) is hierarchically placed above (and controls) a pattern shaping layer. The latter is
responsible for building the detailed motor pattern sequences and/or contingent states for locomotion
and choosing which muscles are activated in what order (McCrea and Rybak 2007, Quevado et al.
2005, Lafreniere-Roula and McCrea 2005).

2.3 Low-level actuation structure modularity
Statistical analysis of motor patterns has been used in animal and human systems to examine

modularity (Tresch et al. 2006, Hart and Giszter 2004). In both rhythmic and non-rhythmic biological
systems, ranging from the frog spinal cord to the intact or injured human being, applications of
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Fig. 1 Panel 1. Muscle field summation: two muscles rectus anticus (RA) and Sartorius (SA) of a spinal
bullfrog were activated by electrical stimulation of the individual muscles and then coactivated. The
effect of the coactivation (&) is a near calculated vector sum (+) of the fields elicited. separately. Panel 2 and
3 Force-field primitive superposition. In each case a group of muscles was activated by stimulating
spinal interneurons targets and fibers at sites A,B, (in 2) and at sites C and D (in 3). The costimulation effects
(&) and vector sum (+) of each field combination A and B, and C and D are displayed. Linear
superposition of fields held in 80% of combinations (A+B) in 2. In 20% of costimulations instead of
the sum, a winner take all response resulted (shown in 3). Summation is seen in spinal behaviors (see
Figs. 2 and 3). Assembled from figures in Mussa-Ivaldi ef al. PNAS (1994), with permission

statistical decomposition techniques and other manipulations reveal a remarkably similar breakdown
of the muscle activation patterns into modular muscle groups (or synergies or drive motor primitives).
These groups or synergies are activated as pulses in sequence or simultaneously, and adjusted and
adapted in response to the task conditions (Hart and Giszter 2004, Cappellini et al. 2006, Torres-
Ovideo et al. 2006, Torres-Oviedo and Ting 2007, D’Avella er al. 2008, Muceli et al. 2010).
Dimensionality reduction is thus clearly the rule in the motor pattern. The data are generally
consistent with a separate sequencing and control of a smaller set of premotor drives in each task.
The principle problem currently facing researchers in motor control in this area is the precise origin
of these modular structures that are observed in task execution: are they built-in by evolution,
learned in child development or developed de-novo on-line in task solutions?

2.3.1 Premotor drive modularity

Drive pattern modularity as described above (groups of muscles coalesced into a single unit of
common drive) has been observed in almost all systems examined, with the exception of the finger
controls in man (Kutch ef al. 2008). In general as noted above, the drives are pulsed, often with
limited temporal durations and in some instances even with fixed durations (Hart and Giszter 2004,
Kargo and Giszter 2000). Drive pattern temporal decompositions of this kind can be constructed by
both statistical and more direct physiological means (Kargo and Giszter 2000, 2008). These provide
unified accounts of spinal reflex behaviors and adjustments, motor control for balance in cats and man,
stroke and normal arm control in man, and cat locomotion, human locomotion, and human locomotion
stroke recovery (Kargo ef al. 2010, Cappellini et al. 2006, Krouchev et al. 2006, Cheung et al. 2009,
Torres-Ovideo and Ting 2007). As noted above, different researchers view the drive pattern
modularity observed in different ways with regard to its fundamental origins: some favor built-in
structure (evolutionary constraint and adaptation, Giszter et al. 2007, 2010), and others a stronger
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Fig. 2 Simulating hindlimb wiping with a detailed model of the frog pelvis-hindlimb complex. 4: the 13 hindlimb
muscles forming the model are shown as red lines. Colored arrows mark the direction of the 3 force
primitives that comprise the isometric wiping response: KF' (knee flexor primitive), light purple; HE (hip
extensor primitive), green; HF (hip flexor primitive), dark purple. B: the framework used to simulate
wiping (left to right): each primitive had a time-course generator, which output a normalized waveform
(peak = 1.0) at time t. The variable 4 scaled this waveform, which was then distributed to each of the
muscles comprising the primitive. Each muscle had a muscle-specific variable C that scaled the excitation
waveform. The muscles generate contractile forces MF that are transmitted through the limb to produce
an isometric endpoint force (at one position) or force field FF (when forces are measured across a
range of positions). Normalized force fields produced by each primitive are shown in the far right.
When the model limb is freed to move, MFs drive the motion of the model. MF values are in turn
regulated by limb motion (e.g., force—velocity and force—length properties of muscle and stress—strain
properties of in series connective tissue). In our model, sensory feedback from muscles potentially regulate
T, A, or C. Reproduced from Kargo et al. 2010 J. Neurophysiology 103:573-590 with permission

role for development and/or motor learning (Bradley ef al. 2003, 2005, 2008, Schouenborg 2004) or
for adult or on-line identification and adaptation of drives (Todorov and Gharamani 2003, Chabra and
Jacobs 2006). However, the outcome is similar: pulsed unitary drives are employed for movement
construction in a task-specific or task-generalized fashion, and whether built-in or constructed anew in
each task control (Fig. 2). The driving of a group of muscles as a unit observed in so many tasks and
species in biomechanical terms provides a specific type of kinetic module — a force-field primitive-
which can be used as a compositional basis and has been tested directly in other experiments. This
description forms a natural link to the compositional elements used in robotic frameworks with
biological inspiration or linkage.

2.3.2 Force-field primitives
Muscles are intrinsically visco-elastic and these properties vary quantitatively and systematically
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Fig. 3 Stability of muscle proportionality ratios in the 6 main primitives observed across frogs, and behaviors.
The action of the spinal cord across the tested behaviors was to recruit the muscles in a fixed ratio and
couple muscles to generate specific force-field primitives and preflex responses. Reflex actions (i.e.,
feedback effects) modulated these primitives, and thus acted on their component muscles as groups.
Reproduced from Figure 10A in Kargo ef al. 2010 J. Neurophysiology vol 103: 573-590 with permission

with activation, level of contraction, and history of activation. The activation of an assembly of
muscles as a unit thus potentially generates a well-defined and time-modulated visco-elastic field in
the limb which depends in its details on the initial limb state. This visco-elastic field description has
been shown to capture the actions of muscle drive synergies (Bizzi et al. 1991, Giszter et al. 1993,
Mussa-Ivaldi et al. 1994, Kargo and Giszter 2000) and to represent the output of the spinal cord
under artificial electrical stimulation (Bizzi et al. 1991, Giszter et al. 1993, Tresch and Bizzi 1999,
Lemay and Grill 2004). The visco-elastic fields generated have well defined properties and structure
through time (Giszter et al. 1993, Kargo and Giszter 2000, 2008). They show the nice property of
near linear vector superposition when combined through electrical stimulation, or through natural
drive co-activation (Mussa-Ivaldi er al. 1994, Kargo and Giszter 2000, 2008, Giszter and Kargo
2000). See Fig. 1. Feedback systems in the spinal cord also appear to support, rather than disrupt,
these visco-elastic force-field structures (Kargo and Giszter 2008), and see Fig. 3. The limb driving
forces and actions of feedback systems thus act in concert through the complex soft tissue ligament
and tendon systems and through the resulting moment arms and linkage Jacobean to generate a
scaled and summable viscoelastic field. This force-field is a predictable pattern whether measured or
activated as a ‘preflex’, reflex or voluntary driven pattern, and can be characterized as a scaled version of
a ‘force-field motor primitive’ corresponding to the premotor drive primitive pulses occuring in the
motor pattern. The action of a group of muscles recruited en masse by a unitary premotor drive can
also be expressed as a linear sum of the individual muscles viscoelastic contributions. At the level
of the motoneurons the premotor drives sum linearly, although the nervous system has the ability to
modulate recruitment gain more broadly across the entire ensemble of motor pools from task to task
with various neuromodulators. Accordingly, the actions of multiple simultaneously pulsed drives
and their associated muscles recruitment effects can be summarized as
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F(q,4,0) = Y 4:a()Pi(q, q) )

where ¢ is a configuration vector, F is the total limb force-field, 4, is the amplitude of the activation of
the ith force-field motor primitive, a,(7) is the normalized activation time course of the ith primitive (in
practice a similarly scaled pulse), and ®@; is the normalized visoelastic field associated with the ith
premotor drive and its collection of associated muscles. See Fig. 2. This mechanism of summation was
demonstrated experimentally (Mussa-Ivaldi ez al. 1994, and Fig. 1). (Note: Because the fields @; consist
of a sum of scaled individual muscle fields it is also possible to expand this framework of constrained
low degree of freedom motor primitives easily to the fully capabilities of the motor system mechanism
if individuated muscles are driven independently from the constrained drive set, and in Fig. 1 panel 1.)

To generate a time varying drive field and torques needed for an action using the individual
premotor drive pulses these may be repeated and staggered in different combinations

F(C], qa t) = ZAia(t + Ti)q)i(qa q) (2)

Where 7; represents the time shift of the ith drive pulse. The competence of this framework to represent

COMPETENCE OF FORCE-FIELD PRIMITIVES
TO REPLICATE FORCE AND KINEMATIC BEHAVIORS

Muscle / limb isometric
C »pwm TL

== Model
==:Real frog

o
3

Force
Mag (N)

\

250°

Force
Direction

0 100 200 300
Time (ms)

Kinematics

9|buy diH

= i -80°
° 06
; 0.2

-160°
0 80 160 240

Knee Angle

" |-60°

Primitive
Activation

c z = 207 ¢ [=Model
< 8 2 P *| **'Real frog
[ =
29 2 '//,/ ¥ SE /
E=il c - 7
£s < 00l :
AU 0 100 200 300
Time (ms) Time (ms)

Fig. 4 Simulating wiping forces and kinematics with the primitive framework and model frog. 4: model
structure. B: activation of muscles was constrained to conform to a set of synchronous synergies/primitives
of fixed endpoint forces. C: the isometric force pattern produced by the model frog (solid lines) closely
matched the force pattern recorded experimentally (dotted lines). D: after making minor adjustments to
the isometric motor pattern (see text), the model frog also reproduced the free limb kinematics of the
experimental frog. The top row shows hip and knee angles. The botfom row shows ankle velocity.
Dashed line marks the time of target limb contact in the real frog. The gray area (PM) represents the
40-ms premovement period between EMG onset and motion onset that is observed in real frogs
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spinal generated behaviors has been tested (Kargo ef al. 2009, see Fig. 4). This framework maps cleanly
onto the inferred hierarchical control behavior of the pattern shaping systems in the two layer scheme of
pattern generation suggested by McCrea, Rybak and others. Rhythmic motion could then derive from
rhythmic recruited pulsing of premotor drive/ force-field primitives, and unitary kinematic strokes
derive from systematic sequencing of pulsed premotor drive/ force-field primitives. This bipartite
biological scheme and the modularity observed at kinematic and kinetic levels has parallels in bioinspired
and biomimetic controls of robot systems.

3. Frameworks for modular control
3.1 Kinematic motor primitives

Inspired by biological pattern generation and kinematic segmentation into strokes and cycles, Ijspeert
and Schaal have developed a scheme of kinematic motor primitives. Their scheme was designed to
capture kinematic imitation learning and is based on discrete and rhythmic kinematic control policies
formulated as acceleration fields, and is essentially a planning framework (Ijspeert et al. 2003, Schaal
et al. 2003, Schaal and Schweighofer 2005). Ijspeert et al. (2003) describe their design framework
thus:

“The design parameters of the discrete system are T, the temporal scaling factor, and g, the goal
position. The design parameters of the rhythmic system are y,,, the baseline of the oscillation, 7, the
period divided by 2m, and r,, the amplitude of oscillations. The (other control policy) parameters w;
are fitted to a demonstrated trajectory using Locally Weighted Learning.” (phrases in italics added
here for clarity)

Details of execution, and stability are not directly managed. A primary difference from the biological
schemes outlined above is thus that a lower level controller in the robot that is hidden from the
planning scheme is used to implement the acceleration fields that are constructed from the
kinematic primitives in planning and imitation learning. It is this low level layer of control that is
used to guarantee their execution and avoid instability. This scheme, corresponding well to the
kinematic levels of modularity and description in the biological literature provides a powerful
basis for imitation learning and generalization using the low-dimensional design parameters for
single limbs. It does not directly manage forces or compliance as noted above, and thus despite
its applications to limbed locomotion in salamander-like robots, it may be relatively brittle in
dealing with closed kinematic chains in complex quadrupedal or bipedal locomotion in its original
form. A related but alternative strategy of composition draws on the biological premotor drive
and force-field primitives noted.

3.2 Force-field motor primitives

Mussa-Ivaldi (1992) developed a movement design and composition scheme based directly on
the biologically force-field primitives (Mussa-Ivaldi and Giszter 1992, Mussa-Ivaldi 1996, Mussa-
Ivaldi and Bizzi 1994). A driving force-field is constructed from a combination of radial basis
force-fields, which can take one of two forms. Mussa-Ivaldi (1992) showed an arbitrary smooth
static field may be approximated with a combination of equal numbers of static circulating and
conservative fields
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Where the ® are circulating fields and @ are conservative fields. Extension of this framework to
viscoelastic fields is trivial. With a combination of circulating and conservative fields both point to
point and rhythmic motion could be synthesized using a static drive field (with clear links to the
acceleration field framework above), thus driving motions without explicit time representation in
principle. Comparing this framework to the biological data, what is remarkable in the biology is the
total absence of the circulating fields in experimental data. In the biological schemes so far observed,
circulating fields are avoided. This restricts the compositional system and may force an explicit time-
representation. An answer to the conundrum as to why the biological system limits itself in this way
may derive from other work on robotics stability issues, by Colgate and Hogan (1988), and presence of
the biological delays and consequent stability difficulties inherent in circulating fields (see Hogan
1985). Their work has shown that by emulating passive and conservative systems stability can be
guaranteed in coupling to other controls emulating passive and conservative systems. The biological
system, by avoiding circulating fields even in the context of a need for cyclic motor acts, may be
constraining motor production to regimes of guaranteed stability even the face of potentially infinitely
varied compositional combinations.

In this case, the problem of motion synthesis and adaptation can be described as follows. We can
write limb or body dynamics

M(q)g+G(q,9) T E(q,4,1) = F(q,4,1) “

Where M(q) represents inertial terms, G interaction terms, £ environmental forces, and F' the torque
generation by the musculo skeletal plant. The problem of movement generation and interaction is then
to deliver an appropriate set of forces F'to satisfy the task constraints. These constraints may be purely
kinematic (e.g., pointing, or gesture), the action of counteracting an environmental force / load (e.g.,
stationary support of a book) or a combination of target motions and interaction forces with the
environment (e.g., martial arts or manipulation of a paint brush, see Mussa-Ivaldi and Bizzi 2000).
Following the approach of Mussa-Ivaldi, activity of muscles and feedback pathways as a group can be
generically represented as a multidimensional time varying force-field in joint space

F(q,q,1) = C(q, 4, u(n)) = ¥ da(t+7)P(q,q) ®)

Where gq,, ¢, are joint angles and angular velocities, and 7 is time, F is the field expressed as joint
torques, in general joint coordinates, u(f) is the applied control and C is a (noninvertible) function
transforming muscle activations to F. Spinal force-field motor primitives can provide a modular basis
for constructing this potentially arbitrary field and designing u(#) as on the right through selections of 4;
and 7; for basis fields @;. Integration of this biologically plausibly scheme with the purely kinematic
acceleration-based fields used by Schaal and colleagues as a broader robot control and basis set remains
as an area of active research. It is clear the mapping between these compositional frameworks is not 1:1
in biological systems, where we have observed that multiple sequence force-field primitives organize a
single kinematic stroke, and circulating fields are avoided. Nonetheless, the framework of premotor
drive/muscle synergy/force-field primitives can support a compact description of the optimal or near
optimal control ‘affordances’ of a mechanism (e.g., see Berniker et al. 2009). Further, in biological
systems it seems clear that switching of controls occurs to regulate interaction forces occurs at or before
contact (Gorassini et al. 1994, Venkadesan and Valero-Cuevas 2008). Force-field and premotor drive /
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synergy primitives can form a spanning basis set available to both types of controls by nature of their
level of representation.

3.3 Extensions of primitives to contracting systems and temporal representation

Are biological systems really constrained in bases and controls, so as to always emulate passive
systems? Likely in some instance this may not be the case. An alternative and broader notion of
guaranteed stability is clearly possible. Lyapunov functions have been used to develop a biologically
plausible compositional basis for coupling and superposition of modular controllers by Slotine and
colleagues (Slotine and Lohmiller 2001, Wang and Slotine 2005). Drawing on dynamical system
frameworks Slotine and colleagues show that a defined class of contracting systems, including both
discrete and limit cycle modules can be combined appropriately with one another and with passive
systems to guarantee contraction and thus long term stability. In studies of the frog limb it has been
shown that muscle properties, acting as ‘preflexes’, provide trajectory stability properties which are
consistent with behavior as contracting systems (Richardson et al. 2005a,b).

A major effort of engineering is often to remove the explicit representation of time in control
system design. In the biological systems observed, the apparently explicit representation of time as
part of a hierarchical rhythmic or timing system responsible for recruiting the constrained pulse durations
primitives appear extremely prevalent and well supported. This is troubling, and raises questions of
whether this biological structural organization and difference from many current engineering designs
is an evolutionary accident, or a feature arising from exhaustive evolutionary search (e.g., see Zhao
et al. 1996, Krishnamoorty 2001, Huang and Xie 2010, Mirone 2009, Rajasekeran 2010 for application
of evolutionary and GA search to solve non-linear structural engineering problems). One possibility
is that perhaps this evolved biological hierarchy relates to stability issues, or is perhaps important to
enable the system to syntactically, hierarchically and compositionally easily re-structure movements
and sequences of movements for specific goals, or manage the inherent biological delays. It is clear
that responding and adapting to temporally structured perturbations in the laboratory is difficult
(Conditt and Mussa-Ivaldi 1996, Karniel and Mussa-Ivaldi 2004). The apparent role of rhythm
generation and time representation in the biological design is thus currently still an open issue.
Access to temporal information of CPGs may be limited, or sequence alone may be important. The
possibility remains that the rhythmic hierarchical structures found in biology are simply a result of
imperfect design constraints imposed by historical evolution, or else represent physical and computational
limits on the biological control components’ ability to support particular computations and control
algorithms.

3.4 Hierachical schemes and nesting optimal controls

Motor behaviors that are flexibly constructed must usually then also be improved and adapted
across contexts. Nested optimal feedback control frameworks (Todorov 2004, Todorov et al. 2005)
have been proposed as a means to manage the degrees of freedom problem in such adaptation and
optimization. It has also been argued that this type of scheme may eventually, at higher levels in the
control hierarchy, develop many more contextual ‘primitives’ than there are muscles, for highly skilled
optimal behaviors. These large libraries of primitives would support complex contextual learned skills.
However, the need of the animal or robot system to bootstrap this hierarchy at a low level and to
provide initial basis sets that allow rapid elaboration of useful actions without severe hazard remains
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in this scheme, and is a point of discussion.

Working initially through low level bases that provide compositional support for anticipated basic
operations of the agent and that guarantee stability when used in combination may be a very useful
design feature for nested learning hierarchies to begin from.

4. Biological control design limits

Research in biological motor systems suggests that passive or contracting basis sets activated by
limited temporal duration pulses may represent an ideal low level basis. Further, in the biological
systems where visco-elastic force-field primitives derived from premotor drive pulses form this type
of support, these drive pulses are chosen so as to be matched to the mechanism and derive many of
their properties from the mechanical design of the effector limb. Evolution may have selected and
co-adapted limb designs and compositional bases a priori in the biological system (Wagner et al.
2005, 2007, Welch and Waxman 2003, Callabetta ef al. 2000, 2003, Callebaut and Raskin-Gutman
2005). This differs from most high degree of freedom robotics where there can be significant
separation in time of the control design, from the design of the mechanical platform and properties
of the limbs. In robotics there may possibly be very different design principles in each. Robot
mechanisms may be general purpose mechanical designs aimed to support control scheme explorations.
However, in the biological system the explicit matchings of the limb design and low-level neural
control structures represent both a blessing and a curse. Some action is readily constructed and stability
may be well supported in such biological matching. However, possible actions can be highly
constrained both by the limb design and by the neural basis sets, and so they are limiting. Fullest
use of the biological limb must circumvent or augment these mechanisms, and one task requirement
of motor learning in biology may be to gradually transcend these constraints with more sophisticated
layered controls (see Valero-Cuevas et al. 2007, 2009). For example in man this need may occur in
order to support bipedal stepping in the infant (Pang ef al. 2003, Yang et al. 2004, Dominici et al.
2007, Ivanenko et al. 2005) and then to learn fully individuated hand controls in limited contexts
such as piano playing or fine manipulation (Valero-Cuevas, 2009, Valero-Cuevas et al. 2007). These
processes can be lengthy and require specific nurturing environments. The level of plasticity in the
low level biological control system and the degree to which low level control is structurally
hardwired or can be plastic in such development is an open area of research in biology. The
possibility of a fairly hardwired structure is very real (Hart and Giszter 2010) and the arguments for
it from an evolutionary standpoint are fairly cogent (Giszter et al. 2010). Nonetheless, there are
arguments on both sides (see Tresch and Jarc 2009 for discussion).

5. Conclusions

In the biological motor control system a major part of the structure of control and stability is
embedded in the physical plant design and actuator dynamics. The neural controls match this
structure and are clearly modular at lower levels in the control hierarchy. In part this is a means to
deal with the slow transmission times, computation times and delay inherent in implementing
controls with biological components. However, these biological systems and controls still surpass
most robotic designs in performance, flexibility, generalization and robustness. We need a better
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integration of both the results of robotics and control engineering with the biological research. Likely,
continuing open dialogue will benefit both fields. The importance of the low level mechanical
structure and its modular control in robust function is underscored in biology. The biological
‘design’ apparently involves a meshing of materials, dynamics and design non-linearities in the limb
construction, that are matched to, and enable low dimensional robust and flexible controls. The
problem which would be faced by the highly principled roboticist, following this biomimetic perspective
to design robots from first principles, would be the exploration, utilization and management of this
complex and open material and mechanical design space. The matching need to also understand
better how this design space is explored and managed by evolutionary mechanisms in biology may
be good note on which to end our review.
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