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Abstract. In this paper, the optimal design of vibration control system for smart structures has been investigated
semi-analytically via the optimization of geometric parameters like the placements and sizes of piezoelectric
sensors and actuators (S/As) bonded on the structures. The criterion based on the maximization of energy
dissipation was adopted for the optimization of the control system. Based on the sensing and actuating equations,
the total energy stored in the system which is used as the objective function was analytically derived with design
variables explicitly presented. Two cases of single and combined vibration modes were addressed for a simply
supported beam and a simply supported cylindrical shell. For single vibration mode, the optimal distributions of
the piezoelectric S/As could be obtained analytically. However, the Sequential Quadratic Programming (SQP)
method has to be employed to solve those which violated the prescribed constraints and to solve the case of
combined vibration modes. The results of three examples, which include a simply supported beam, a simply
supported cylindrical shell and a simply supported plate, showed good agreement with those obtained by the
Genetic Algorithm (GA) method. Moreover, in comparison with the GA method, the proposed method is more
effective in obtaining better optimization results and is much more efficient in terms of computation time.
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1. Introduction

In recent years, smart structures for vibration control of flexible space structures have attracted

considerable amount of research. Piezoelectric materials as distributed sensors and actuators (S/As)

have been applied in structural vibration control to take advantage of their fast broadband frequency

responses and their flexibility to be used as S/As in a large variety of applications. The smart structure,

which contains the main structure and the distributed piezoelectric S/As, can sense the excitations

induced by its environment and can also generate control forces to eliminate the undesirable effects or

to enhance the desirable effects. Application of smart structures to vibration control may be traced to

Bailey and Hubbard (1985). There were also other researchers (Arockiasamy et al. 1992, Chandrashekhara

and Agarwal 1993, Kalaycioglu et al. 1998) who have done a great deal of study on this issue. To

ensure maximum control effectiveness, the piezoelectric S/As have to be of suitable size and be

appropriately located which result in challenges for optimal vibration control. 
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The issues of S/A location and geometry, and their optimal selections with respect to certain

performance criteria have drawn much attention due to their importance in structural sensing and

control. Crawley and de Luis (1987) were the first to address the criterion for finding the optimal location

of a piezoelectric actuator for a cantilever beam. Baz and Poh (1988) solved the problem of location

optimization of a preselected actuator size. Devasia et al. (1993) considered the problem of placement

and sizing optimization of distributed piezoelectric actuators in a uniform beam. Udwadia (1994)

proposed a methodology for optimally locating sensors in a vibrating system for best identification of

the parameters to be identified. Generally, the optimization methods for these issues fall into two

categories: traditional methods and genetic-based methods. Kondoh et al. (1990) investigated the

determination of sensor and actuator positioning and feedback gains for the active vibration control of

flexible structures using a recursive quadratic programming algorithm. Lee and Chen (1994) developed

a method for the determination of actuator/sensor locations and feedback gain via minimization of an

energy criterion with a quasi-Newton or recursive quadratic programming algorithm. Varadan et al. (1997)

adopted a gradient-based method to study the optimal placement and size of disk-shaped piezoelectric

actuators to reduce the radiated sound. Bruant et al. (2001) proposed a new approach to find the optimal

location of piezoelectric actuators and sensors on beam structures. The method was based on the

differentiation of the optimization criteria and equations of motion with respect to the design variables.

However, all these conventional optimization techniques encountered difficulties in dealing with

piezoelectric patches confined to discrete locations. 

Recently, genetic algorithm (GA) as an optimization technique has been applied to this kind of

optimization problems. Krishnakumar and Goldberg (1992) explored the use of GA to solve

aerospace-related control system optimization problems. Lee and Han (1996) used GA to obtain

the piezoelectric actuator configuration which maximized the degrees of controllability. Zhang et

al. (2000) presented a float-encoded GA for the optimal control of flexible smart structures

bonded with piezoelectric S/As. Yang et al. (2005, 2006) developed a modified GA to

simultaneously optimize the parameters of vibration control system of smart structures, including

the placement and size of piezoelectric S/As bonded on smart structures and the feedback control

gains. These GA-based optimization methods have the advantage of finding the global optimum

robustly instead of being easily trapped in the local optimum. Jin et al. (2005) proposed a fuzzy

GA system for optimal vibration control of smart cylindrical shells, which improved the search

efficiency as compared to the standard GA.

Both the conventional and the GA methods are essentially numerical computation methods which

involve a sequence of iteration processes. As an alternate counterpart, the analytical computation

method can also be employed for the optimization with the advantage of avoiding iteration and finding

the solutions directly and quickly. However, for those problems with more design variables or implicit

objective function expressions, the analytical computation method will encounter difficulties in finding

the optimization solutions. For such problems, the semi-analytical method which combines the analytical

and numerical methods is able to improve the computation speed as partial analytical solutions are

used. Wang and Quek (2002) proposed a basic mechanics model for the flexural analysis of beams with

embedded piezoelectric layers and carried out a semi-analytical analysis for the dynamic characteristics

of the entire structure. Yang et al. (2003) took into account the effect of axial load for the vibration

control of a cantilever column based on analytical and semi-analytical solutions. Qing et al. (2006)

presented a semi-analytical solution for the static and dynamic analysis of a clamped aluminum plate with

piezoelectric patches. 

In this study, the optimal design of vibration control system for smart structures was investigated
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semi-analytically with the placements and sizes of piezoelectric S/As as design parameters. The

objective function which is the total energy stored in the system was derived analytically with design

variables explicitly shown, and then used for the analytical solutions of the case of single vibration

mode and the semi-analytical solutions of the case of combined vibration modes. The Sequential

Quadratic Programming (SQP) method was employed for solving the latter case and those violating the

prescribed constraints in the former case. The results obtained for a simply supported beam, a simply

supported cylindrical shell and a simply supported plate showed good agreement with those obtained

by the GA method. The proposed method was also more effective in obtaining better optimization

results and much more efficient in terms of computation time.

2. Vibration control modeling and optimization criteria

Consider a beam model and a thin cylindrical shell model, each with Np pairs of collocated

piezoelectric patches bonded on their surfaces as discretely distributed S/As, as shown in Figs. 1

and 2. b, tb and Lb are the width, thickness and length of the beam, respectively, xi1 and xi2 are the

coordinates of the ith pair of collocated piezoelectric patches bonded on the beam, R, h, L and β*

are the radius, thickness, length and curvature angle of the cylindrical shell, respectively, and xil,

xi2, βil and βi2 are the coordinates of the ith pair of collocated piezoelectric patches bonded on the

shell. The patches on the upper surface are the actuators and those on the lower surface are the

sensors. Assume that the piezoelectric patches are much thinner than the host structures, and are

perfectly bonded on the structure surfaces. The effects of the bonding material on the properties of

the whole structure are neglected. The material properties, e.g., mass and stiffness, of the

piezoelectric patches are negligible as compared to those of the main structure. Using the modal

decomposition method and truncating the vibration modes at N, Yang et al. (2005, 2006) derived

the sensing and actuating equations of the beam and shell structures with control systems. Note

that for shell structures, the first N=m×n vibration modes are taken into account. Introducing state

vector χ = , where ηj(t) ( j=1,2,...,N) are the modal participation

factors of the transverse displacement, the sensing and vibration equations can be written in the

following state-space form. This is with the assumption of proportional damping or Reighley

damping so as to decouple the damping matrix.

(1)

where

(2)

(3)

η1 η2 … ηN η· 1 η· 2 … η· N, , , , , , ,[ ]T

χ· Aχ Bφa+=

φs Cχ=⎩
⎨
⎧
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(4)

For beam structures, the coefficients in Eqs. (3) and (4) can be expressed as

(5)

in which Uj(x) are the mode shape functions of the transverse displacement, Ka = brad31Ep, Ks = - h31r
s,

i = 1,2,..., Np, and j = 1,2,..., N.

For shell structures, the coefficients in Eqs. (3) and (4) can be expressed as

(6)

(7)

in which  are the mode shape functions of the transverse displacement, ,

i = 1,2,..., Np, j = n·(p-1)+q, p = 1,2,...,m, q = 1,2,...,n.

(8)

in which ωj (j = 1,2,...,N) is the jth natural frequency of the structure, and ςj is the damping ratio of the

jth vibration mode. For shell structures, ωj = ωpq ( j = n·(p-1)+q, p = 1,2,...,m, q = 1,2,..., n), and ωpq is

the natural frequency of the shell.

In the above equations, φa is the voltage vector applied to the actuators and φs is the output voltage

vector over the sensors. For beam structures, d31 and Ep are the piezoelectric strain constant and the

Young’s modulus of the actuators, respectively, and h31 is the piezoelectric constant of the sensors. For

shell structures, e31
a

and e31
s

are the piezoelectric stress constant of actuator and sensor, respectively, ε33
is the permittivity constant, and ρ is the mass density of the shell. In addition, hs is the thickness of the

sensor, rs and ra denote the distance measured from the neutral surface of the structure to the mid-

surface of the sensor and actuator, respectively. For more details on the derivation of the state-space

equations, refer to Yang et al. (2005, 2006).

The most attractive methodology that accounts for transient vibration responses is characterized by

the maximization of the dissipation energy extracted by the feedback control system. The more the

energy is dissipated by the control system, the less the energy is stored in the system. When considering

a constant negative velocity feedback φa = , where G is the feedback gain matrix, the

integrated total energy stored in the system can be written as
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(9)

Application of the standard state transformation techniques to Eq. (9) yields

(10)

where  is the initial state and P is the solution of the following Lyapunov equation

(11)

in which

.

Thus, the problem can be expressed as a nonlinear optimization problem with objective function W like

Minimize (12)

where  is the vector of the coordinates of the S/As, which are defined as the design variables. The

problem is also subject to geometric constraints to prevent overlapping any piezoelectric patches. For

beam structures,  (i = 1,2,...,Np) and  (i = 1,2,...,Np-1) should be satisfied. For

shell structures, the constraints of , , and , or , or , or

 (i, j = 1,2,..., Np, i ≠ j) are necessary.

It is worth noting that the optimization problem can be affected by the initial conditions. As

reflected in Eq. (10), the initial conditions  are included in the objective function. This implies

that different initial conditions have different objective functions, which affects the optimization

results.

3. Analytical solution for single vibration mode

In this section, the optimal design of the control system for single vibration mode is discussed. In

certain situations, if the structure is excited by some periodic external forces which have close or

identical frequencies as the natural frequency of the structure, it is possible for the structure to vibrate in

this specific frequency with a single mode. Thus, the control of this vibration mode is of main concern

and the optimization of the geometric distribution of the S/As is important to achieve optimal control. 

Assume that the jth vibration mode is considered and the feedback gain matrix is set as a constant

g, the close-loop vibration equation with negative velocity feedback considered can be written as

(13)

where (14)

W χ
T

0

∞
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W χ
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The solution of Eq. (13) can be expressed as follows if the initial conditions of  and

 are assumed.

(15)

where 

Substituting Eq. (15) into Eq. (9), and noting that d > 0, the total energy stored in the system can be

derived as

= (16)

As the goal is to minimize W, i.e., the total energy stored in the system, the problem can thus be

transformed into maximizing d, as given in Eq. (14).

For a simply supported beam, the normalized modal shape can be expressed as Uj(x) =

sin ( jπx/Lb), and the natural frequency is, ωj = j2π2/Lb
2

, where Eb, Jb, ρb and Ab are the

Young’s modulus, moment of inertia, density and cross sectional area of the beam, respectively. Eq.

(14) can be rewritten as follows based on the modal shape of the simply supported beam.

(17)

where .

By differentiating Eq. (17) with respect to xi1 and xi2 respectively, the maximization of Eq. (17) is

equivalent to solving the following equations.

, (i = 1,2,...,Np) (18)

For a simply supported cylindrical shell, substituting the modal shape functions Upq(x, β) = sin(pπx/

L) sin(qπβ/β*) into Eqs. (6) and (7), Eq. (14) can be expressed as

(19)

where .

By differentiating Eq. (19) with respect to xi1, xi2, βi1 and βi2, respectively, the maximization of Eq.

(19) is equivalent to solving the following equations.
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, (i = 1,2,...,Np)(20)

If the solutions of Eqs. (18) and (20) satisfy the constraints given in Eq. (12), the optimal geometric

distributions of the piezoelectric S/As are the solutions of Eqs. (18) and (20). Otherwise, if there is

conflict between the solutions and the constraints, the SQP method is employed with the help of the

optimization functions provided in MATLAB which are based on the standard optimization algorithms.

In constrained optimization, the general aim is to transform the problem into an easier sub-problem that

can then be solved and used as the basis of an iterative process. The SQP method represents state-of-

the-art in nonlinear programming. The method allows one to closely mimic Newton’s method for

constrained optimization just as is done for unconstrained optimization. At each major iteration, an

approximation is made of the Hessian of the Lagrangian function using a quasi-Newton updating

method. This is then used to generate a quadratic programming (QP) sub-problem whose solution is

used to form a search direction for a line search procedure. 

4. Semi-analytical solutions for combined vibration modes

Assuming the first N vibration modes are considered simultaneously when Np pieces of piezoelectric

S/As are used, the close-loop vibration equation with negative velocity feedback considered can be

written as

(21)

where A is as given in Eq. (11), and can be rewritten as follows with the design variables included if the

feedback gain matrix is set as a constant g.

(22)

where for simply supported beam

(23)

Lcos pπxi1 L⁄( ) Lcos pπxi2 L⁄( )– 2pπ xi1 xi2–( )sin pπxi1 L⁄( )+ 0=
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and S is as given in Eq. (17); and for simply supported cylindrical shell

(24)

and T is as given in Eq. (19). 

Note that in Eqs. (23) and (24), δjk = 1 ( j = k) and δjk = 0 ( j ≠ k).

If N = 2, by solving the Lyapunov equation given in Eq. (11) and substituting the solution P into Eq.

(10), the total energy W stored in the system can be obtained as follows by assuming the initial

condition .

(25)

Note that if d12 = 0 and v2 = 0 are assumed, which means that the second vibration mode is ignored,

Eq. (25) can be simplified as -v1
2/d11, which is identical with Eq. (16) in which the first vibration mode

is considered.

For the case N = 3 and assuming that the initial condition is , the total

energy can be derived as Eq. (A1) presented in the appendix.

If d13 = 0, d23 = 0 and v3 = 0 are assumed and substituted into Eq. (A1), which implies that only the

first two vibration modes are considered, Eq. (A1) can be simplified as follows

which is identical with Eq. (25) that is for the first two combined modes if ω1

2 = α and ω 2

2 = r1ω1
2are

substituted into Eq. (25).

For the combined vibration modes, although the objective function can be explicitly derived with

design variables included, as shown in Eqs. (25) and (A1), the expressions are quite complicated and it

is difficult to obtain the corresponding derivatives for the design variables. Thus, the SQP method is

employed for the optimization of the combined vibration modes.

5. Results and discussions

In this section, based on the analytical expression of the total energy stored in the system and the

 

χ 0( ) 0  0  v1  v2[ ]T=
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analytical solution for the case of single vibration mode, three examples of a simply supported beam, a

simply supported cylindrical shell and a simply supported plate are presented to illustrate the feasibility

and efficiency of the analytical and semi-analytical methods for optimal vibration control. 

5.1 Simply supported beam

Consider a simply supported beam with collocated S/As bonded on its surfaces, as shown in Fig. 1.

The characteristic data of the beam are listed in Table 1. In the following design, the first four vibration

modes are assumed to be the controlled modes, which are considered either separately or simultaneously.

The initial conditions of the generalized coordinate vector are given by Yang et al. (2005) as

 and 

to ensure the first four vibration modes are roughly equivalent to the kinetic energy stored in the

uncontrolled system.

In order to ensure the system is asymptotically stable, the feedback control gain matrix G is set as a

constant of 0.4. 

5.1.1 Analytical optimization solution for single vibration mode

Optimization of the distributions of the S/As for single vibration mode can be obtained from Eq. (18)

if the jth vibration mode for Np pieces of S/As are considered. For those not satisfying the design

η 0( )T 0 0 0 0[ ]= η· 0( )T 0.2 0.4 0.6 0.8[ ]=

Fig. 1 Beam model with sensors and actuators

Table 1 Beam and piezoelectric patch specifications

Item Beam Actuators Sensors

Mass density (kg/m3)
Young’s modulus (GPa)
Poisson’s ration

1190
3.1028

0.3

1800
2

0.3

1800
2

0.3

Piezo-constant d31 (m/V) 2.3×10-11 2.3×10-11

Piezo-constant h31 (V/m) 4.32×108

Thickness (m)
Length (m)
Width (m)
Damping ratio

1.6×10-3

0.5
0.01
0.01

4×10-5 4×10-5
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constraints given in Eq. (12), the SQP optimization method is employed based on the derived system

energy given in Eq. (16). In this case, the jth ( j = 1,2,3,4) vibration mode with one to five pieces of S/

As respectively is studied. The obtained optimal geometric distributions of the piezoelectric patches are

shown in Table 2 together with the solutions obtained using GA method. It is apparent from Table 2 that

the results are in good agreement with those obtained using the GA method. In addition, the objective

function values are actually slightly better than those obtained by the GA method, e.g., for the case of

the 2nd vibration mode with four pieces of piezoelectric patches and the case of the 4th vibration mode

with five pieces of piezoelectric patches. However, the distributions of the piezoelectric patches have

some discrepancy for certain cases like the 3rd vibration mode with two pieces of piezoelectric patches.

Regardless of the distribution difference, the objective function values are exactly the same which

implies that both the results are the optimum. The distribution difference indicates that the optimal

solution for this problem is not unique. 

Table 2 Optimal placement and size of S/As for single vibration mode of simply supported beam

jth mode
patch Np

1st 2nd 3rd 4th

xi1~xi2 (m) W xi1~xi2 (m) W xi1~xi2 (m) W xi1~xi2 (m) W

1 0.0645-0.4355 0.0533 0.2822-0.4678 0.0439 0.1882-0.3118 0.0373 0.3911-0.4839 0.0324

1* 0.0645-0.4355 0.0533 0.2822-0.4678 0.0439 0.1882-0.3118 0.0373 0.1411-0.2339 0.0324

2 0.0681-0.3915
0.3915-0.4655

0.0530 0.0322-0.2177
0.2822-0.4678

0.0324 0.0215-0.1452
0.1882-0.3118

0.0257 0.2661-0.3589
0.3911-0.4839

0.0213

2* 0.0678-0.3966
0.3966-0.4670

0.0530 0.0322-0.2178
0.2822-0.4678

0.0324 0.0215-0.1452
0.3548-0.4785

0.0257 0.0161-0.1088
0.2661-0.3588

0.0213

3 0.0372-0.1183
0.1183-0.3813
0.3813-0.4624

0.0527 0.0323-0.2177
0.2841-0.4458
0.4458-0.4828

0.0322 0.0215-0.1452
0.1882-0.3117
0.3548-0.4785

0.0196 0.1411-0.2339
0.2611-0.3589
0.3911-0.4839

0.0158

3* 0.0375-0.1190
0.1190-0.3814
0.3814-0.4626

0.0527 0.0322-0.2178
0.2834-0.4547
0.4547-0.4854

0.0322 0.0215-0.1452
0.1882-0.3118
0.3548-0.4785

0.0196 0.0161-0.1088
0.1411-0.2338
0.3911-0.4839

0.0158

4 0.0386-0.1213
0.1213-0.3613
0.3613-0.4230
0.4230-0.4785

0.0526 0.0323-0.2178
0.2683-0.3090
0.3090-0.4408
0.4408-0.4813

0.0319 0.0217-0.1452
0.1880-0.3116
0.3559-0.4631
0.4631-0.4885

0.0195 0.0161-0.1089
0.1411-0.2339
0.2661-0.3589
0.3912-0.4839

0.0126

4* 0.0280-0.0864
0.0864-0.1553
0.1553-0.3769
0.3769-0.4613

0.0526 0.0334-0.2046
0.2046-0.2353
0.2674-0.3046
0.3046-0.4659

0.0320 0.0227-0.1305
0.1305-0.1552
0.1882-0.3118
0.3548-0.4785

0.0195 0.0161-0.1089
0.1411-0.2339
0.2661-0.3589
0.3911-0.4839

0.0126

5 0.0264-0.0817
0.0817-0.1420
0.1420-0.3508
0.3508-0.4172
0.4172-0.4731

0.0525 0.0326-0.1908
0.1908-0.2303
0.2684-0.3110
0.3110-0.4373
0.4373-0.4803

0.0317 0.0213-0.1452
0.1882-0.3117
0.3465-0.3752
0.3752-0.4581
0.4581-0.4870

0.0193 0.0158-0.1091
0.1412-0.2336
0.2662-0.3587
0.3920-0.4724
0.4724-0.4912

0.0125

5* 0.0258-0.0794
0.0794-0.1407
0.1407-0.3765
0.3765-0.4298
0.4298-0.4770

0.0525 0.0189-0.6000
0.6000-0.1907
0.1907-0.2313
0.2673-0.3043
0.3043-0.4659

0.0317 0.0132-0.0421
0.0421-0.1437
0.1782-0.2028
0.2028-0.3106
0.3548-0.4785

0.0194 0.0161-0.1089
0.1354-0.1583
0.1583-0.2327
0.2661-0.3589
0.3911-0.4839

0.0126

The results marked with * are from Yang et al. (2005) using GA method.
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The results shown in Table 2 are selectively and schematically depicted in Fig. 3. The dashed lines

denote the nodal lines of the vibration modes and the regions filled with diagonal lines represent the

piezoelectric patches bonded on the beam, to intuitively show the geometric distributions of the S/As.

The figure is drawn diversely for the cases where the piezoelectric patch numbers are more or less the

same as the number of regions separated by the vibration nodal lines. It can be seen from Fig. 3 that for

the single vibration mode, no matter how many piezoelectric patches are used, the optimal distributions

of the piezoelectric patches should be located within the regions separated by the vibration nodal lines.

This finding agrees with the conclusion drawn by Yang et al. (2005).

It was found that for the cases where the number of piezoelectric patches is less than or equal to the

number of regions separated by the corresponding vibration nodal lines, the results can always be

obtained from the solutions of Eq. (18). For other cases, the use of the SQP method is necessary.

5.1.2 Semi-analytical optimization solutions for combined vibration modes

For this case, the first few vibration modes are considered simultaneously, i.e., the first two and the

first three vibration modes with one to seven pieces of piezoelectric patches are addressed respectively.

As explained in the previous section, for the optimization of combined vibration modes, the SQP

method is employed based on the analytical expression of the objective function. The obtained optimal

geometric distributions of the piezoelectric patches are shown in Table 3 together with the solutions

obtained using the GA method. It can be seen from Table 3 that the computed objective function values

are identical with those obtained by the GA method. Moreover, both the geometric distributions of the

Fig. 2 Thin cylindrical shell with discretely distributed piezoelectric patches

Fig. 3 Optimal geometric distributions of piezoelectric patches for single vibration mode of simply supported beam
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piezoelectric patches coincide, with minor differences in the order of fourth decimal digit for some

cases. This is different from the case of single vibration mode which has different distributions of

piezoelectric patches but with identical objective function values because of the multi-solutions of the

problem. 

Some selected results of Table 3 are schematically shown in Fig. 4 for better illustration of the

geometric distributions of the piezoelectric patches. It can be seen from Fig. 4 that unlike for the single

vibration mode, for some cases, the distributions of the piezoelectric patches are not located within the

regions separated by the nodal lines of the combined vibration modes. In conjunction with Fig. 4 and

with further observation from Table 3, it can be found that when the number of piezoelectric patches

used is identical with the number of regions separated by the nodal lines of the combined vibration

modes, the optimal distributions of the patches should be located within these regions. However, for

other numbers of patches used, it may not be tenable. This result is the same as concluded by Yang et al.

(2005) using the GA method.

For the SQP method, the final optimization results highly depend on the initial point chosen for the

Table 3 Optimal placement and size of S/As for combined vibration modes of simply supported beam

N modes
patch Np

1st and 2nd 1st and 2nd [*] 1st, 2nd and 3rd 1st, 2nd and 3rd [*]

xi1~xi2 (m) W xi1~xi2 (m) W xi1~xi2 (m) W xi1~xi2 (m) W

1 0.0349-0.2442 0.1049 0.0349-0.2442 0.1049 0.0245-0.1730 0.1500 0.0245-0.1730 0.1500

2 0.0364-0.2500
0.2500-0.4636

0.0873 0.0364-0.2500
0.2500-0.4636

0.0873 0.0251-0.1797
0.3203-0.4749

0.1238 0.0251-0.1797
0.3203-0.4749

0.1238

3 0.0381-0.2136
0.2136-0.2864
0.2864-0.4619

0.0857 0.0381-0.2137
0.2137-0.2865
0.2865-0.4619

0.0857 0.0275-0.1807
0.1807-0.3194
0.3194-0.4725

0.1090 0.0275-0.1810
0.1810-0.3206
0.3206-0.4724

0.1090

4 0.0383-0.1936
0.1936-0.2499
0.2499-0.3062
0.3062-0.4618

0.0852 0.0384-0.1937
0.1937-0.2500
0.2500-0.3063
0.3063-0.4616

0.0852 0.0278-0.1663
0.1663-0.2490
0.2490-0.3333
0.3333-0.4722

0.1066 0.0278-0.1663
0.1663-0.2490
0.2490-0.3332
0.3332-0.4722

0.1066

5 0.0222-0.0712
0.0712-0.1942
0.1942-0.2502
0.2502-0.3062
0.3062-0.4615

0.0848 0.0222-0.0717
0.0717-0.1944
0.1944-0.2505
0.2505-0.3067
0.3067-0.4616

0.0848 0.0283-0.1511
0.1511-0.2093
0.2093-0.2907
0.2907-0.3490
0.3490-0.4717

0.1052 0.0283-0.1511
0.1511-0.2094
0.2094-0.2907
0.2907-0.3491
0.3491-0.4717

0.1052

6 0.0223-0.0719
0.0719-0.1941
0.1941-0.2500
0.2500-0.3059
0.3059-0.4283
0.4283-0.4778

0.0844 0.0223-0.0717
0.0717-0.1941
0.1941-0.2500
0.2500-0.3059
0.3059-0.4283
0.4283-0.4778

0.0844 0.0283-0.1411
0.1411-0.1910
0.1910-0.2489
0.2489-0.3080
0.3080-0.3585
0.3585-0.4717

0.1046 0.0283-0.1415
0.1415-0.1914
0.1914-0.2496
0.2496-0.3083
0.3083-0.3584
0.3584-0.4717

0.1046

7 -- -- -- -- 0.0171-0.0563
0.0563-0.1447
0.1447-0.1941
0.1941-0.2532
0.2532-0.3098
0.3098-0.3591
0.3591-0.4714

0.1041 0.0172-0.0560
0.0560-0.1449
0.1449-0.1945
0.1945-0.2540
0.2540-0.3104
0.3104-0.3597
0.3597-0.4718

0.1041

The results marked with [*] are from Yang et al. (2005) using GA method.
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optimization process as local optimum may be obtained if the initial point is not appropriately chosen.

From the computation for the case of the first three vibration modes, it is found that the final optimization

results can be achieved for an average of 6 times out of the 100 randomly generated initial points used.

It means that for the other 94 initial points, the local optimum is obtained or the optimization process

failed because of exceeding the preset function evaluation or iteration numbers. For the GA method,

there is no guaranty that the global optimum for each optimization process can be found either. If a

good initial population is chosen, there is a possibility of finding a better result with even faster speed

for the GA method. 

To check the efficiency of the proposed method in terms of the number of function evaluation within

the iteration processes, a more complicated case of the first three vibration modes with 7 piezoelectric

patches used is studied. The objective function value versus the number of function evaluation is shown

in Fig. 5. It can be seen that the final result is obtained with about 600 times of function evaluation.

Actually a maximum of 1400 times of function evaluation was set as the termination criterion in the

simulation, which implies that the final optimum can be obtained with at most 1400 times of function

evaluation.

In Yang et al. (2005), the GA control parameters like the population size and the maximum number of

generations were set at 200 and 300, respectively. A maximum approximated number of 200×300=

Fig. 4 Optimal geometric distributions of piezoelectric patches for combined vibration modes of simply supported
beam

Fig. 5 Objective function value history versus function evaluation number for a typical case
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60,000 was used for the function evaluation to obtain the final optimum, which is significantly larger

than the number used in the proposed method. This means the proposed method is much more efficient

than the GA method from the computation point of view.

5.2 Simply supported cylindrical shell

Consider a cylindrical shell with four edges simply supported on which collocated S/As are bonded,

as shown in Fig. 2. The material properties and dimensions of the system are listed in Table 4. The

first six (m = 2, n = 3) vibration modes with initial conditions of  and

 are investigated either separately or with some modes combined.

The feedback control gain matrix is set as a constant of 10.0.

5.2.1 Analytical optimization solution for single vibration mode
To investigate the optimal geometric distributions of the S/As for single vibration mode, the jth

( j = n·(p-1)+q) vibration mode with one to five pieces of S/As is separately investigated. Three cases of

p=1 and q=2, p=2 and q=2, and p=1 and q=3 are addressed with the obtained optimal geometric

distributions of the piezoelectric patches shown in Table 5. Similar to the case of the simply supported

beam, Eq. (20) was used to obtain the results for the above mentioned three cases with the number of

piezoelectric patches less than or equal to 2, 4 and 3, respectively. If more piezoelectric patches were

used, the SQP method was employed for the optimization due to the violation of constraints as

presented in Eq. (12). Actually the numbers shown above for different vibration modes are the numbers of

regions separated by the nodal lines of the individual vibration mode.

Some results of Table 5 are selectively illustrated in Fig. 6. From Fig. 6 and Table 5, it is apparent that

for single vibration mode, the optimal distributions of piezoelectric patches should be located within the

regions separated by the nodal lines regardless of the number of patches used. This finding is the same

as concluded from the example of the simply supported beam.

5.2.2 Semi-analytical optimization solutions for combined vibration modes

As the analytical expression of the total energy stored in the system is derived up to N=3 vibration

modes, the first two and first three vibration modes are addressed separately, i.e., m=1 and n=2, m=2

and n=1, and m=1 and n=3. The same number of patches as adopted by Jin et al. (2005) for these three

η 0( )T 0 0 0 0 0 0[ ]=

η· 0( )T 0.5 0.4 0.3 0.2 0.2 0.1[ ]=

Table 4 Cylindrical shell and piezoelectric patch specifications

Item Shell Actuators Sensors

Mass density (kg/m2)
Young’s modulus (GPa)
Poisson’s ration
Piezo-constant d31 (m/V)

7800
210
0.3

7600
1.6
0.3

6×10-12

1780
1.6
0.3

30×10-12

Piezo-constant e31 (N/(V·m))
Permittivity constant ε33 (F/m)

0.0096 0.048
8.85×10-9

Thickness (m)
Length (m)
Curvature angle (rad)
Radius (m)
Damping ratio

0.001
1.0
π/3
1.2
0.01

0.0004 0.0004
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different cases is used for the purpose of comparison. The optimal geometric distributions of the

piezoelectric patches are shown in Table 6 together with the solutions obtained using the GA method. It

can be seen from Table 6 that for the first two cases, both methods attained identical objective function

values with minor difference in the geometric distributions. However, for the third case, a better

Table 5 Optimal placement and size of S/As for single vibration mode of simply supported cylindrical shell

jth mode

patch Np

p = 1, q = 2 p = 2, q = 2 p = 1, q = 3

xi1~xi2 (m), 
βi1~βi2(rad)

W
(10-3)

xi1~xi2 (m), 
βi1~βi2(rad)

W
(10-3)

xi1~xi2 (m),
βi1~βi2(rad)

W
(10-3)

1 0.1290-0.8710,
0.5911-0.9797

4.9211 0.0645-0.4355,
0.5911-0.9797

0.7017 0.1290-0.8710,
0.7432-1.0022

4.7761

2 0.1290-0.8710,
0.0675-0.4561
0.1290-0.8710,
0.5911-0.9797

3.9145 0.5645-0.9355,
0.0675-0.4561
0.0645-0.4355,
0.5911-0.9797

0.6515 0.1290-0.8710,
0.3941-0.6531
0.1290-0.8710,
0.7432-1.0022

3.6429

3 0.1290-0.8710,
0.0713-0.4100
0.1290-0.8710,
0.4100-0.4874
0.1290-0.8710,
0.5911-0.9797

3.8945 0.5645-0.9355,
0.0675-0.4561
0.0645-0.4355,
0.5911-0.9797
0.0645-0.4355,
0.0675-0.4561

0.6081 0.1290-0.8710,
0.0450-0.3040
0.1290-0.8710,
0.3941-0.6531
0.1290-0.8710,
0.7432-1.0022

2.9443

4 0.1290-0.8710,
0.0713-0.4100
0.1290-0.8710,
0.4100-0.4874
0.1290-0.8710,
0.5598-0.6372
0.1290-0.8710,
0.6372-0.9759

3.8747 0.0645-0.4355,
0.5911-0.9797
0.0645-0.4355,
0.0675-0.4561
0.5645-0.9355,
0.0675-0.4561
0.5645-0.9355,
0.5911-0.9797

0.5701 0.1290-0.8710,
0.0241-0.0758
0.1290-0.8710,
0.0758-0.3015
0.1290-0.8710,
0.3941-0.6531
0.1290-0.8710,
0.7432-1.0022

2.9302

5 0.1290-0.8710,
0.0713-0.4100
0.1290-0.8710,
0.4100-0.4874
0.1290-0.8710,
0.5627-0.6477
0.1290-0.8710,
0.6477-0.9231
0.1290-0.8710,
0.9231-1.0081

3.8509 0.0645-0.4355,
0.5911-0.9797
0.0645-0.4355,
0.0675-0.4561
0.5645-0.9355,
0.0675-0.4561
0.5645-0.9355,
0.5598-0.6372
0.5645-0.9355,
0.6372-0.9759

0.5692 0.1290-0.8710,
0.0475-0.2733
0.1290-0.8710,
0.2733-0.3250
0.1290-0.8710,
0.3966-0.6224
0.1290-0.8710,
0.6224-0.6740
0.1290-0.8710,
0.7432-1.0022

2.9162

Fig. 6 Optimal geometric distributions of piezoelectric patches for single vibration mode of simply supported
cylindrical shell
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objective function value is obtained by the proposed method, which implies that the proposed method is

more effective in achieving better solutions. In the work of Jin et al. (2005), the correctness and

effectiveness of the GA method was validated by comparing with the work of Sadri et al. (1999). The

agreement between the results obtained by the proposed method with those obtained by Jin et al. (2005)

shows the correctness and effectiveness of the proposed method in this paper.

In addition to effectiveness, efficiency of the proposed method is quite salient when comparing the

number of function evaluations for both methods. Similar study as for the simply supported beam has

been done and it was found that the number of function evaluations required for the proposed method to

obtain the optimum is significantly less than that for the GA method, which provides the advantage of

reducing computation efforts without compromising accuracy of results.

5.3 Simply supported plate

Assuming R→∞  and y = R·β, the simply supported cylindrical shell can be converted into a plate with

four edges simply supported. In this section, a simply supported plate with material properties and

system dimensions shown in Table 7 is studied. Similar to the simply supported cylindrical shell, the

first six (m = 2, m = 3) vibration modes with the same initial conditions are investigated. The feedback

control gain matrix is set as a constant of 10.0 as well.

5.3.1 Analytical optimization solution for single vibration mode

Substituting R→∞  and y = R·β into Eqs. (19) and (20), Eq. (19) can be simplified as

(26)d 2ζjω j T
cos pπxi1 L⁄( ) cos pπxi2 L⁄( )–[ ]2

xi2 xi1–
--------------------------------------------------------------------------------

i 1=

Np

∑
cos qπyi1 a⁄( ) cos qπyi2 a⁄( )–[ ]2

yi2 yi1–
-------------------------------------------------------------------------------⋅ ⋅+=

Table 6 Optimal placement and size of S/As for combined vibration modes of simply supported cylindrical shell

m = 1, n = 2 m = 2, n = 1 m = 1, n = 3

xi1~xi2 (m), 
βi1~βi2(rad)

W
(10-3)

xi1~xi2 (m), 
βi1~βi2(rad)

W
(10-3)

xi1~xi2 (m),
βi1~βi2(rad)

W
(10-2)

0.1290-0.8710, 
0.0741-0.5221
0.1290-0.8710, 
0.5252-0.9731

7.7511 0.0967-0.5005, 
0.1351-0.9121
0.5005-0.9031, 
0.1351-0.9121

5.4831 0.1290-0.8710, 
0.0557-0.3400
0.1290-0.8710, 
0.3400-0.4955
0.1290-0.8710, 
0.4955-0.6920
0.1290-0.8710, 
0.6920-0.9920

1.0719

Results below are from Jin et al. (2005) using GA method.

0.1290-0.8710, 
0.0741-0.5221
0.1290-0.8710, 
0.5252-0.9731

7.7511 0.0992-0.5000, 
0.1351-0.9121
0.5000-0.9009, 
0.1351-0.9121

5.4831 0.1290-0.8715, 
0.0787-0.3564
0.1290-0.8715, 
0.3564-0.5585
0.1290-0.8715, 
0.5585-0.7303
0.1290-0.8715, 
0.7303-0.9722

1.0929



Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure 783

where  and a is the width of the plate, and Eq. (20) can be

simplified as

, (i = 1,2,...,Np) (27)

Eq. (27) can be used to obtain the solutions for the single vibration mode if no constraint presented in

Eq. (12) is violated, otherwise it is necessary to use the SQP method to obtain the solutions. Similar to

the simply supported cylindrical shell, three cases of p = 1 and q = 2, p = 2 and q = 2, and p = 1 and

q = 3 are addressed and the obtained optimal geometric distributions of the piezoelectric patches are

shown in Table 8. Fig. 7 graphically shows the geometric distributions of the piezoelectric patches

based on some selected results from Table 8. It can be seen from Table 8 and Fig. 7 that, the optimal

distributions of piezoelectric patches should be located within the regions separated by the nodal lines

of the single vibration mode is still applicable.

5.3.2 Semi-analytical optimization solutions for combined vibration modes

Substituting R→∞  and y = R·β into Eq. (24), the coefficients in the expression of the total energy

stored in the system can be simplified as

.

(28)

where T is as given in Eq. (26).

Similar to the simply supported cylindrical shell, the first two and the first three vibration modes are

investigated respectively, with the same numbers of piezoelectric patches as those of Yang et al. (2006).

T g
4e31

a

ρh
----------

h
s
e31

s

ε33
-----------r

a
r
s
aL

p

qL
2

--------
q

pa
2

--------+⎝ ⎠
⎛ ⎞ 2⋅ ⋅=

Lcos pπxi1 L⁄( ) Lcos pπxi2 L⁄( )– 2pπ xi1 xi2–( )sin pπxi1 L⁄( )+ 0=

Lcos pπxi1 L⁄( ) Lcos pπxi2 L⁄( )– 2pπ xi1 xi2–( )sin pπxi2 L⁄( )+ 0=

a cos qπyi1 a⁄( ) a cos qπyi2 a⁄( )– 2qπ yi1 yi2–( )sin qπyi1 a⁄( )+ 0=

a cos qπyi1 a⁄( ) a cos qπyi2 a⁄( )– 2qπ yi1 yi2–( )sin qπyi2 a⁄( )+ 0=⎩
⎪
⎪
⎨
⎪
⎪
⎧

djk 2– ζjω jδjk T
cos pπxi1 L⁄( ) cos pπxi2 L⁄( )–[ ] cos rπxi1 L⁄( ) cos rπxi2 L⁄( )–[ ]⋅

xi2 xi1–
---------------------------------------------------------------------------------------------------------------------------------------------------------------

i 1=

Np

∑⋅–=

cos qπyi1 a⁄( ) cos qπyi2 a⁄( )–[ ] cos sπyi1 a⁄( ) cos sπyi2 a⁄( )–[ ]⋅
yi2 yi1–

--------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Table 7 Plate and piezoelectric patch specifications

Item Plate Actuators Sensors

Mass density (kg/m3)
Young’s modulus (GPa)
Poisson’s ration
Piezo-constant d31 (m/V)

7800
210
0.3

7600
63
0.3

37×10-12

1780
2

0.3
30×10-12

Piezo-constant e31 (N/(V·m))
Permittivity constant ε33 (F/m)

2.331 0.06
8.85×10-9

Thickness (m)
Length L (m)
Width a (m)
Damping ratio

0.001
1.0
2.0
0.01

0.0004 0.0004
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The obtained optimal geometric distributions of the piezoelectric patches are shown in Table 9 together

with the solutions obtained using the GA method. It can be seen from Table 9 that the objective

function values are more or less the same though some discrepancy exists in the geometric distributions

Table 8 Optimal placement and size of S/As for single vibration mode of simply supported plate

jth mode

patch Np

p = 1, q = 2 p = 2, q = 2 p = 1, q = 3

xi1~xi2 (m),
yi1~yi2 (m)

W
xi1~xi2 (m),
yi1~yi2 (m)

W
(10-2)

xi1~xi2 (m),
yi1~yi2 (m)

W
(10-2)

1 0.1290-0.8710, 
0.1290-0.8710

0.1242 0.0645-0.4355, 
1.1290-1.8710

1.1051 0.1290-0.8710, 
0.7527-1.2473

4.1342

2 0.1290-0.8710, 
0.1290-0.8710
0.1290-0.8710, 
1.1290-1.8710

0.0818 0.5645-0.9355, 
0.1290-0.8710
0.5645-0.9355, 
1.1290-1.8710

0.7031 0.1290-0.8710, 
0.0860-0.5807
0.1290-0.8710, 
1.4193-1.9140

2.6893

3 0.1290-0.8710, 
0.1290-0.8710
0.1290-0.8710, 
1.1362-1.7830
0.1290-0.8710, 
1.7830-1.9309

0.0811 0.5645-0.9355, 
0.1290-0.8710
0.0645-0.4355, 
1.1290-1.8710
0.0645-0.4355, 
0.1290-0.8710

0.5155 0.1290-0.8710, 
0.0860-0.5807
0.1290-0.8710, 
0.7527-1.2473
0.1290-0.8710, 
1.4193-1.9140

1.9928

4 0.1290-0.8710, 
0.0691-0.2170
0.1290-0.8710, 
0.2170-0.8640
0.1290-0.8710, 
1.1362-1.7830
0.1290-0.8710, 
1.7830-1.9309

0.0804 0.5645-0.9355, 
0.1290-0.8710
0.5645-0.9355, 
1.1290-1.8710
0.0645-0.4355, 
1.1290-1.8710
0.0645-0.4355, 
0.1290-0.8710

0.4070 0.1290-0.8710, 
0.0860-0.5807
0.1290-0.8710, 
0.7575-1.1886
0.1290-0.8710, 
1.1886-1.2873
0.1290-0.8710, 
1.4193-1.9140

1.9799

5 0.1290-0.8710, 
0.1362-0.7829
0.1290-0.8710, 
0.7829-0.9309
0.1290-0.8710, 
1.0747-1.2370
0.1290-0.8710, 
1.2370-1.7629
0.1290-0.8710, 
1.7629-1.9251

0.0796 0.5645-0.9355, 
0.1290-0.8710
0.5645-0.9355, 
1.1290-1.8710
0.0645-0.4355, 
1.1290-1.8710
0.0645-0.4355, 
0.0691-0.2170
0.0645-0.4355, 
0.2170-0.8640

0.4048 0.1290-0.8710, 
0.0860-0.5807
0.1290-0.8710, 
0.7527-1.2473
0.1290-0.8710, 
1.3832-1.4913
0.1290-0.8710, 
1.4913-1.8420
0.1290-0.8710, 
1.8420-1.9502

1.9646

Fig. 7 Optimal geometric distributions of piezoelectric patches for single vibration mode of simply supported
plate



Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure 785

of the piezoelectric patches. However, slightly better results are obtained by the proposed method in

terms of the objective function values. 

Again, similar study for the efficiency of the proposed method has been conducted. That less number

of function evaluations is required for the proposed method to find the optimum demonstrates that the

proposed method is more efficient than the GA method.

6. Conclusions

In this paper, the optimal design of the vibration control system for smart structures was studied. The

placements and sizes of the piezoelectric S/As were optimized based on the energy dissipation criteria.

The total energy stored in the system, used as the objective function, was analytically derived for the

optimization. For the case of single vibration mode, the optimal result could be analytically obtained

by differentiating the objective function. Those conflicting with the constraints were solved using the

SQP method, which was also applied to the combined vibration mode case with quite complicated

expression of objective function. The results of a simply supported beam, a simply supported

cylindrical shell and a simply supported plate agreed well with those obtained by GA, and were even

slightly better for the objective function values for some cases. Similar conclusions about the

relationship of the distributions of the piezoelectric S/As and specific vibration modes were drawn in

comparison with the GA method. More importantly, it was found that the proposed method was

much more efficient than the GA method with regard to the optimization process time. The proposed

method provides an alternate counterpart for the optimal vibration control of smart structures, in a

more efficient way. With the modification of objective function, it can be easily extended to other

applications such as plates and shells. 

Table 9 Optimal placement and size of S/As for combined vibration modes of simply supported plate

m = 1, n = 2 m = 2, n = 1 m = 1, n = 3

xi1~xi2 (m),
yi1~yi2 (m)

W
xi1~xi2 (m),
yi1~yi2 (m)

W
xi1~xi2 (m),
yi1~yi2 (m)

W

0.1290-0.8710, 
0.1913-1.0024
0.1290-0.8710, 
1.0024-1.8080

0.3624 0.1129-0.5006, 
0.2580-1.7420
0.5006-0.8870, 
0.2580-1.7420

0.2982 0.1290-0.8710, 
0.1467-0.6440
0.1290-0.8710, 
0.6440-0.9973
0.1290-0.8710, 
0.9973-1.3560
0.1290-0.8710, 
1.3560-1.8524

0.3720

Results below are from Yang et al. (2006) using GA method.

0.1290-0.8710, 
0.1919-1.0141
0.1290-0.8710, 
1.0141-1.8087

0.3625 0.1130-0.5017, 
0.2580-1.7420
0.5017-0.8871, 
0.2580-1.7420

0.2982 0.1290-0.8710, 
0.1503-0.6807
0.1290-0.8710, 
0.6807-1.0667
0.1290-0.8710, 
1.0667-1.3948
0.1290-0.8710, 
1.3948-1.8568

0.3722
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Appendix

(A1)

where, P1 = P1t/P, P2 = P2t/P, P3 = P3t/P, and
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(A2) 
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(A3) 
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(A4) 
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(A5)

Note that in Eqs. (A2)-(A5), α = ω1
2 , r1 = ω 2

2/ω1
2 , and r2 = ω 3

2/ω1
2 .

 




