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Abstract. Smart sensors densely distributed over structures can use their computational and wireless
communication capabilities to provide rich information for structural health monitoring (SHM). Though smart
sensor technology has seen substantial advances during recent years, implementation of smart sensors on full-scale
structures has been limited. Hardware resources available on smart sensors restrict data acquisition capabilities;
intrinsic to these wireless systems are packet loss, data synchronization errors, and relatively slow communication
speeds. This paper addresses these issues under the hardware limitation by developing corresponding middleware
services. The reliable communication service requires only a few acknowledgement packets to compensate for
packet loss. The synchronized sensing service employs a resampling approach leaving the need for strict control of
sensing timing. The data aggregation service makes use of application specific knowledge and distributed
computing to suppress data transfer requirements. These middleware services are implemented on the Imote2
smart sensor platform, and their efficacy demonstrated experimentally. 

Keywords: structural health monitoring, smart sensor, middleware services, synchronized sensing, reliable
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1. Introduction

Dense arrays of smart sensors have the potential to improve Structural Health Monitoring (SHM)

dramatically using on-board computational and wireless communication capabilities. Information from

dense measurements is expected to result in deeper insight into the physical state of a structural system. 

Though smart sensors have seen several demonstrative applications (Lynch and Loh 2006, Kim, et al.
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2007), detailed validation of the data from the smart sensor networks and subsequent use for damage

detection has been limited. Measured signals are oftentimes lost during wireless communication or are

not synchronized with each other, hindering subsequent analyses. Slow communication speeds have

prohibited data collection from spatially dense and temporally frequent measurements. (Nagayama, et

al. 2007a). Currently available standardized wireless solution such as WLAN and Bluetooth systems do

not meet SHM requirements for smart sensor networks, such as low power consumption, scalability to

large numbers of sensor nodes, and precise synchronization. Sensing capabilities need to be provided

that meet the demands of SHM applications, while respecting smart sensor hardware limitation.

This paper provides the necessary capabilities for implementing SHM on smart sensor networks by

developing corresponding middleware services. Among the middleware services are (a) reliable

communication service involving only a few acknowledgement packets, (b) synchronized sensing without

the need for strict sensing timing control, and (c) efficient data aggregation with reduced data

transmission demands. These middleware services are implemented on a smart sensor platform, the

Imote2, which is designed for data-intensive applications such as SHM. Note that the middleware

services are generally applicable to other smart sensor platforms possessing similar hardware characteristics

as the Imote2. The implemented middleware services are evaluated and validated experimentally. 

2. Background and motivation 

This section provides necessary background and motivation for the middleware services discussed in

subsequent sections of the paper. 

2.1. Reliable data transfer

Wireless communication is intrinsically lossy. Communication packets are dropped due to various

reasons, including: (a) small signal-to-noise ratio of received signals and (b) packet collision due to

simultaneously transmitting nodes. In SHM applications, packet losses result in loss of commands and

measurement data. Loss of command packets may result in losing control of sensor network operation

especially for SHM systems involving complex internode data processing. The effect of data loss was

theoretically investigated for spectral density estimation applications; data loss was found to degrade

measurement signals in a similar way to observation noise (Nagayama, et al. 2007a). Because the loss

of a large number of packets is not necessarily infrequent (Nagayama & Spencer 2007), packet loss

compensation is required. 

Redundant transmission and acknowledgment-based approaches are candidates to reduce the packet

loss rate during wireless communication. For completeness, these two approaches are first explained

briefly.

Redundant transmission without acknowledgment can statistically improve the reliability of

communication. If the packet loss rate is expected to be approximately constant over time, this

approach can virtually eliminate data loss; the degree of redundancy can be adjusted based on measured

packet loss rates. In smart sensor networks, however, burst packet loss undermines the effectiveness of

this approach. For example, interference from other nearby RF transmission devices operating in the

same frequency range can cause burst loss. The loss of a large amount of data due to burst loss cannot

be completely compensated by such statistical approaches. 

Acknowledgment-based approaches, on the other hand, can guarantee reliable communication between
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nodes, by continuing packet retransmission until acknowledgment is received. However, a poorly-

designed communication protocol involving many acknowledgment messages is notably inefficient;

interwoven transmission and reception of acknowledgement-based approaches may result in slow data

transfer. Instead of acknowledging each packet, the reliable communication protocol developed by

Mechitov, et al. (2004) sends a set of packets and then waits for acknowledgment. If the sender does not

receive acknowledgment, the same set of packets is sent again. Upon reception of acknowledgment, the

sender moves on to the next set of packets. The size of a set of packets needs to be optimized. Therefore,

the number of acknowledgement packets cannot be drastically reduced, limiting the efficiency. A reliable

communication protocol involving a smaller number of acknowledgement packets is needed to

improve the communication efficiency. 

2.2. Synchronized sensing

The lack of a global clock in smart sensor network is problematic for SHM applications. If modal

analysis is conducted with random and inaccurate time synchronization, the identified mode shapes will

be inaccurate, possibly falsely indicating structural damage. Large synchronization errors make

accurate estimation of cross spectral densities and transfer functions almost impossible. 

Time synchronization for smart sensor networks has been widely investigated. Reference Broadcast

Synchronization (RBS; Elson, et al. 2002), Flooding Time Synchronization Protocol (FTSP; Maroti, et

al. 2004), and Timing-sync Protocol for Sensor Networks (TPSN; Ganeriwal, et al. 2003) are among

the well-known synchronization methods. Mica2 motes employing TPSN are reported to synchronize

with each other to an accuracy of 50 ms. Mechitov, et al. (2004) implemented FTSP on Mica2 motes as

a part of wireless data acquisition system for SHM. This system can maintain better than 1ms

synchronization accuracy for several minutes. When clock drift is significant, synchronization is

applied periodically before the error becomes too large. Thus, fine synchronization among sensor nodes

has been shown achievable. 

However, measured signals may not be synchronized with each other, even when clocks are precisely

synchronized. Sampling timing is not necessarily controlled precisely based on these clocks. Precise

timing control on a sensor node was pursued and demonstrated by Kim, et al. (2007). Nevertheless,

such approaches can be computationally expensive and sometimes impractical. For example, processes

other than sensing need to be turned off to achieve precise sensing timing control while clock drift

compensation in this approach requires on-the-fly calculation of drift. Synchronized sensing without

the need of strict timing control is preferable. 

2.3. Data aggregation

The amount of data typically collected by SHM applications employing wired sensors normally

exceeds practical communication capabilities of smart sensor networks. Central data collection of 80

seconds of data is reported to take several hours (Kim, et al. 2007). One approach to overcome this

problem has been for each node to employ an independent data processing strategy. However, this

approach (i.e., without internode communication) cannot fully exploit information available in the

sensor network (e.g., spatial information is neglected). Distribution of data processing and coordination

among smart sensors is considered to play a central role in addressing this data aggregation issue.

Application specific knowledge can be incorporated into data aggregation strategies to efficiently

collect information from smart sensor network. 
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2.4. Intel Imote2 smart sensor platform

The Imote2 is a new smart sensor platform developed for data-intensive applications (Crossbow, Inc.,

2009). The main board of the Imote2 incorporates a low-power Xscale processor, the PXA271, and an

802.15.4 radio, ChipCon 2420. The processor’s frequency is scalable, thereby improving its power

efficiency. One of the important characteristics of the Imote2, which separates it from other commercially

available wireless sensing nodes, is the available memory size. The Imote2 has 256 KB of integrated

SRAM, 32 MB of external SDRAM, and 32 MB of Strataflash memory, which is particularly important

for the large amount of data required for dynamic monitoring of structures and associated data

processing. These hardware specifications far exceed those of other academic and commercial wireless

sensing units including MicaZ (Lynch and Loh 2006). The ITS400 sensor board (Crossbow, Inc., 2009)

can measure 3-axes of acceleration, light, temperature, and relative humidity. All of the sensors on this

board are digital, A four-channel 12-bit ADC is also implemented on the board so that the Imote2 can

utilize external analog sensor outputs is required. The 3-axis digital accelerometer (LIS3L02DQ;

STMicroelectronics, 2008) has a ±2 g measurement range and a resolution of 12-bits or 0.97 mg. 

The Imote2 running TinyOS with the ITS400 sensor board are employed as the smart sensor platform

in this research. The RAM size allows for buffering a large amount of data in reliable communication.

Also the RAM and the fast CPU enable data processing approaches for realizing synchronized sensing,

without the need for a strict hardware timing control, as well as efficient data aggregation utilizing in-

network data processing. The development and experimental verification of the three middleware

services are explained in the following sections. 

3. Reliable communication

Reliable communication protocols for long data records and for single packet commands are developed in

this section. In SHM applications, most communication takes place as unicast. Nonetheless, multicast

of command packets is oftentimes needed. Some SHM applications can efficiently achieve data aggregation,

taking advantage of multicast of long data records as explained subsequently. Additionally, debugging of

in-network data processing becomes much easier if in-network communication packets are also

multicast to the base station. Both unicast and multicast protocols are, therefore, supported in the

proposed protocols. 

3.1. Communication protocol for long data records 

To reduce the number of acknowledgement packets involved in long data transfer, reliable

communication protocols which send the entire data before waiting for acknowledgement packets are

proposed. While Kim, et al. (2007) also employs a similar approach, their system is a receiver initiated

protocol assuming central data acquisition. The protocols proposed herein assume in-network data

processing, where data transfer is not necessarily one-way or unicast. Also the large RAM of the

Imote2 is utilized to buffer data in a power-efficient manner. 

3.1.1. Unicast

In the unicast protocol, the sender reliably delivers long data records to a single receiver node. Figure

1 shows a flowchart of this protocol. The sender first performs a handshake and transfers the necessary
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parameters. Then all the data is sent without requesting acknowledgements. After this transfer, the

receiver checks for missing packets and requests retransmission. Following retransmission, the

handshake is terminated. The details of the protocol are explained in the following paragraphs. 

3.1.1.1. Handshaking 

The sender first sends a packet and informs the receiver of the necessary parameters (e.g., data length,

data type, message ID, destination node ID, source node ID, etc.). If the data is in integer format, a

scaling factor and offset of the data are also conveyed to the receiver so that the receiver can reconstruct

the original data. All these parameters are packed in the 28 byte payload of the packet. On reception of

this packet, the receiver node replies with acknowledgement unless this node has already been

communicating with another node. If this node is already communicating, the packet reception is

ignored. The handshake request packet is sent periodically until an acknowledgement from the receiver

is returned. Once the acknowledgement packet is received and two nodes engage in this round of

reliable communication, packets with different message IDs, destination node IDs, or source node IDs

are disregarded. The message ID of the sender is incremented when the sender engages in a new round

of reliable communication. 

For Imote2 nodes to appropriately interpret the received packet, 1 byte of the payload of every packet

is designated for packet interpretation instruction. For example, a packet from the sender with the

instruction ‘1’ is interpreted as the first packet with parameters such as data length and data type. On

reception of a packet, tasks predetermined for the instruction are executed. 

Also, the current state of the sender and receiver are internally maintained using a 1-byte variable on

each node. For example, the sender’s current state is ‘1’ after sending the packet with the instruction

‘1’. This state changes to ‘2’ when the sender finds that an acknowledgment for this packet is received.

The tasks to be executed in events such as packet reception and timer firing are determined based on the

current state variable and the instruction byte of the most recently received packet. 

3.1.1.2. Data transfer

When the sender notices that the acknowledgment has arrived, the entire data record is sent to the

Fig. 1 Block diagram of the reliable unicast protocol for long data records
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receiver. One packet contains either three double precision data points, six 32-bit integers, or twelve 16-

bit integers. Each packet also contains the 2-byte node ID of the sender and the 2-byte packet ID, which

the receiver uses to sort received packets and reconstruct the original data in the buffer. To keep track of

received packets, the receiver maintains a bitmap of received packets. One bit of the bitmap is assigned

to each data packet. Upon reception of each packet, the corresponding bit is changed to one. By

examining this bitmap, the receiver determines which packets are missing. 

3.1.1.3. Detection of missing packets and retransmission 
When the sender finishes transmitting all the data, a packet with an instruction byte of ‘2’ conveying

the end of the data transmission is sent to the receiver. The sender periodically send this packet until an

acknowledgement is received. Knowing that all of the data was transmitted from the sender, the

receiver checks the bitmap. If the receiver notices that some packets are missing, the receiver responds

by sending a packet with the missing packets’ IDs. The first eight missing packets’ IDs are packed in

the payload of an acknowledgment packet. The sender then retransmits these packets. At the end of

transmission, the packet with the instruction-byte of ‘2’ is sent again. If there are still missing packets,

the same procedure is repeated. 

3.1.1.4. Completion of communication 

When all of the packets are transferred, the sender tells the receiver that the data transfer is complete

by sending a packet with the instruction-byte of ‘4’. This message is also retransmitted until an

acknowledgment packet is returned from the receiver. When the receiver first acknowledges the packet,

the receiver judges that this set of receiving activities on this node has been completed. When the

sender node receives this acknowledgment, the sender completes this set of data transfer. The

handshake is called off and the two nodes are ready to start another round of data transfer. 

3.1.2. Multicast
In the multicast communication protocol, the sender reliably transmits long data records to multiple

receivers utilizing acknowledgment packets. At the beginning of communication, the sender searches

for receiver nodes. Then handshaking, data transfer, and retransmission follow before calling off the

handshake, as in the unicast communication protocol. The differences from the unicast protocol are

explained herein. 

3.1.2.1. Search for receivers and handshaking
The primary difference between the multicast and unicast protocols is the first step of searching

for the receivers. Before the sender transmits parameters such as data length and data type, the

receiver node IDs, source node ID, and message ID are broadcast. The instruction byte of this

packet is ‘f’ in hexadecimal. A maximum of eight receiver node IDs are sent in a single packet.

When data is sent to more than eight nodes, multiple packets containing the receiver node IDs are

broadcast. As is the case for unicast communication, the sender periodically resends these packets

until the receivers reply. 

Upon reception of this initial packet, receivers compare their own node IDs and those contained in the

packets. If the node is one of destination nodes, this node returns an acknowledgment to the sender and

commits itself to this round of communication. Once the sender receives acknowledgements from all

the receivers, the sender moves to necessary parameter transfer and then to data transfer as in the

unicast protocol. 
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3.1.2.2. Acknowledgement
Note that if multiple receivers reply to the sender at the same time, packet collision may take place;

therefore, timing for replies to the sender needs to be scheduled appropriately. In this protocol, the

receivers reply in the order of node IDs in the packets with the instruction-byte of ‘f’. For example, the

node corresponding to the eighth node ID in the ‘f’ packet waits 7×β seconds before the acknowledgment is

sent back to the sender; β is unit waiting time. The order of reply and β are stored on each receiver; all

of the following acknowledgment messages in this multicast protocol use this scheduling. Optimization

of the waiting interval, β, may result in faster communication. 

Although the broadcast transmission reaches all of the nodes in the neighborhood, only the engaged

nodes process the received packet. The source ID, the destination ID, and the message ID are used on

receivers to distinguish packets to be processed from other packets. 

3.1.2.3. Acknowledgement reception check 

The sender needs to check the acknowledgment messages from all of the receivers. The sender keeps

track of acknowledgments from the receivers using a bitmap. One bit of the bitmap corresponds to one

receiver. Before the sender transmits a packet needing acknowledgement from the receivers, this bitmap

is initialized to zeroes. Upon reception of an acknowledgment from a receiver, the corresponding bit is

changed to one. The sender periodically sends an acknowledgement request until all the bits become one.

3.1.2.4. Detection of missing packets and retransmission 
Retransmission is performed not for each receiver but for all of the receivers. After sending the end-

of-transmission notice packet to the receivers, the sender waits for replies from the respective receivers.

Within the assigned time slot, each receiver sends back an acknowledgment packet containing missing

packet IDs. After the time assigned for all of the nodes to reply has passed, the sender broadcasts the

requested packets. At the end of broadcast of these requested packets, a packet with the instruction-byte

of ‘2’ is sent, asking for packets still missing. 

3.2. Communication protocol for commands 

Communication protocols suitable to transfer single packet commands reliably are also needed.

Appropriate unicast and multicast reliable communication protocols are developed. 

In the unicast protocol, the sender transmits a packet, including the destination ID, source ID,

message ID, command, and other parameters periodically until an acknowledgement packet from the

destination node is received. The payload of one packet is 19 bytes in addition to communication

parameters such as source and message IDs. 

The multicast protocol is implemented in a similar manner to the unicast protocol. The primary

difference is the first step of searching for the receivers. The sender first transmits a packet including

the receivers’ node IDs. Once all of the receivers return acknowledgment packets to the sender, the

sender transmits a packet containing a command and associated parameters periodically until all the

receivers return acknowledgement packets. Acknowledgement return scheduling and reception checks

are performed in a similar manner to the multicast protocol for long data records. 

3.3. The common issue of communication completion judgement 

Receivers cannot reliably determine the end of communication. This difficulty is also known as the
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Byzantine Generals Problem (Lamport, et al. 1982). The sender can clearly determine the end of

communication when an acknowledgment packet to the communication completion notice packet,

which is the packet with the instruction byte of ‘4’ in the long data record protocol case, is received.

However, the receiver cannot. The receiver does not know whether the acknowledgment reaches the

sender or not. After the transmission of this acknowledgment packet, there are two possible situations:

(a) the acknowledgment packet reached the sender and this data transfer was successfully completed;

and (b) the acknowledgment packet did not reach the sender and the sender is periodically transmitting

packets with the instruction-byte of ‘4’, none of which had arrived at the receiver node. There is no way

for the receiver node to judge between these two possibilities. 

This inability to judge the end of communication may cause serious problems. If only the receiver

calls off the handshake, then the sender will keep sending the last packet to the receiver; the receiver

never replies because the receiver is already disengaged from this round of data transfer. 

This problem is alleviated by storing message and source IDs for the last several rounds of reliable

communication and separating the final acknowledgment process from the other communication

processes. When the communication completion notice packet is received for the first time, this node

sends an acknowledgment back and is disengaged from this communication activity. The message and

source IDs are stored on this node. In case of multicast communication, the waiting time before

returning an acknowledgement packet is also stored. If this receiver node later receives the communication

completion notice packet again, the message and source IDs are examined. Once the receiver finds in

the memory the pair of the message and source IDs that are the same as those of the received packet, an

acknowledgment is sent back to the sender. Even when a node is engaged in another round of

communication, this acknowledgement process separated from the others can be executed independently. 

4. Synchronized sensing

Synchronized sensing without the need of strict timing control is proposed utilizing a resampling

approach. The accuracy of the Imote2’s time synchronization is first estimated and then issues critical

to synchronized sensing are investigated. Finally, synchronized sensing is realized by extending a

resampling method and combining the method with accurate time synchronization and time stamping

of the Imote2 (Nagayama & Spencer 2007, Nagayama, et al. 2006a, 2007a, & 2007b, Spencer and

Nagayama, 2006). 

4.1. Estimation of time synchronization error

The accuracy of the Flooding Time Synchronization Protocol (FTSP; Maroti, et al. 2004) implementation

on the Imote2 is evaluated. This implementation is first reviewed briefly, and then the accuracy is

examined in terms of synchronization errors and clock drift. 

FTSP utilizes time stamps on the sender and receivers. A beacon node broadcasts a packet to the

other nodes. At the end of the packet, a time stamp, tsend, is appended just before transmission. Upon

reception of the packet, the receivers stamp the time, treceive, using their own local clocks. The delivery

time, tdelivery, between these two events includes interrupt handling time, encoding time, and decoding

time. tdelivery is usually not small enough to be ignored; the variation of tdelivery in time is usually small. In

this study, tdelivery is first assumed to be zero and then adjusted so that Imote2s placed on the same shake

table give synchronized acceleration data. Using this value, the offset is determined as treceive–tsend–
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tdelivery . This offset is subtracted from the local time when global time stamps are requested. 

To evaluate time synchronization error, a group of nine Imote2s are programmed as follows. The beacon

node transmits a beacon packet to perform time synchronization every 4 seconds. Two seconds after the

beacon signal, the beacon node sends another packet, requesting replies. The receivers obtain time

stamps on reception of this packet and convert them to a global time stamp using the offset estimated 2

seconds before. These time stamps are subject to two error sources: (a) time synchronization error, and

(b) delay in time stamping upon reception of the second packet. The receivers take turns to report back

these time stamps. This procedure is repeated more than 300 times.

Time stamps from the eight nodes are compared in Figs. 2 and 3. Fig. 2 shows the difference in the

reported global time stamps using one of the eight nodes as a reference. The time synchronization error

is predominantly less than 10 μs. Scattered peaks may indicate large synchronization error. Note that

the time synchronization error is one of the two above-mentioned factors explaining the error in the

time stamps. An upper-bound estimate of time synchronization error is estimated as 80 μs. 

The same approach is utilized to estimate clock drift. Upon reception of the second packet, which

requests replies, the receivers return their offsets (instead of global time stamps) to the sender to

estimate the global time. If clocks on the nodes were ticking at exactly the same rate, the offsets should

be constant. Fig. 3 shows the offset time histories of eight receiver nodes. This figure shows that the

clock drift is not negligible, and the drift rate is quite constant in time. A maximum clock drift rate of

around 50 μs per second is observed. 

Fig. 2 Time synchronization error estimation

Fig. 3 Drift estimation
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Estimated time synchronization error is considered small for SHM applications, but clock drift is not

negligible if long measurement records are taken. The delay of 10 μs corresponds to a 0.072-degree

phase error for a mode at 20 Hz. Even at 100 Hz, the corresponding phase error is only 0.36 degree.

However, after a 200 second measurement, the time synchronization error may become as large as 10 ms,

corresponding to a 72-degree phase error for a 20 Hz mode. The resampling approach explained

subsequently addresses this issue of clock drift. 

4.2. Issues toward synchronized sensing

Accurate synchronization of local clocks on Imote2s does not guarantee that measured signals are

synchronized. Measurement timing cannot necessarily be controlled accurately based on the global time. To

allow better understanding on difficulties in realizing syncrhonized sensing, a brief explanation on the

sampling process on the Imote2 is provided as follows. After the Imote2 triggers sensing, the sensor

board proceeds to collect a predetermined number of data points and provide the data to the Imote2.

Sensing time stamps for every Ndata data points are available. The difficulties encountered in this

process are explained next. 

4.2.1. Uncertainty in start-up time

Starting sensing tasks at all of the Imote2 nodes in a synchronous manner under TinyOS is not

possible. Even when the commands to start sensing are queued at exactly the same moment, the execution

timing of the commands is different on each node. TinyOS is not a real time OS, and the waiting time

before command execution cannot be deterministically predicted. Thus, the start of sensing will not be

synchronized to each other. 

In addition, the warm-up time for the sensing devices after the invocation of the start command is not

deterministic. Even if the commands are invoked at the same time, sensing will not start simultaneously. 

4.2.2. Difference in sampling rate among sensor nodes

The sampling frequency of the accelerometer on the available Imote2 sensor boards has nonnegligible

random error. According to the data sheet of the accelerometer, the sampling frequency may differ from

the nominal value by at most 10 percent (STMicroelectronics, 2009). Such variation was observed when

14 Imote2 sensor boards were calibrated on a shake table (see Fig. 4). 

Fig. 4 Sampling frequencies of 14 sensor boards
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4.2.3. Fluctuation in sampling frequency over time 

Additionally, nonconstant sampling rate was observed with the Imote2 sensor boards, which if not

addressed, results in a seriously degraded acceleration measurement. When a block of data is available

from the accelerometer, the Imote2 receives the digital acceleration signal and obtain the time stamp of

the last data point. By comparing differences between two consecutive time stamps, the sampling frequency

of the accelerometer is estimated. Fig. 5 shows the difference between the timestamps when the block

size is set at 110 data points. This figure provides an indication of the variation in the sampling

frequency. The difference in two consecutive time stamps fluctuates by about 0.1 percent. Though

imperfect time stamping on the Imote2 is a possible source of the apparent nonconstant sampling rate,

the slowly fluctuating trend suggests the variable sampling frequency as a credible cause of the

phenomenon. With this fluctuation, measurement signals may suffer from a large synchronization error

and a nonconstant sampling rate. 

4.3. Realization of synchronized sensing

Strict timing control is a possible solution for synchronized sensing. However, implementation of

real-time operation makes the system large and complex. Real-time control of wireless sensors in a

network is particularly challenging; the situation is exacerbated for the high sampling rates required in

SHM applications. Also, even when a sensor node itself has real-time control, the peripheral devices

such as the sensor chip may have execution time delay or uncertainty in timing. 

Instead of pursuing real time control, synchronized sensing is realized herein using postprocessing on

the non-real time OS of the Imote2, TinyOS. This post-processing approach depends less on the timing

control quality of the sensors or timing properties of the smart sensor hardware; this approach should be

easily adaptable to other systems and is considered a more universal approach. Note that even with a

non-real time OS, the Imote2’s high clock rate practically enables accurate timing control, as compared

to real time systems with low clock rate. 

Resampling based on the global time stamps addresses the three problems mentioned above. This

section first reviews the basics of resampling and its polyphase implementation. The polyphase implementation

is then modified to achieve finer resolution resampling. Finally, this proposed resampling method is

combined with time stamps of measured data to address the three issues concurrently. 

Fig. 5 Variation in the sampling frequency over time
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4.3.1. Resampling

Resampling by a rational factor is performed by a combination of interpolation, filtering, and

decimation (see Fig. 6). Consider the case in which the ratio of the sampling rate before and after

resampling is expressed as an rational factor, L/M. The signal is first upsampled by a factor of L. The

original signal x[m] is interpolated by L–1 zeroes as in Eq. (1),

(1)

where v[l] is the upsampled signal. A discrete-time low-pass filter with a cutoff frequency, π/L, is then

applied to eliminate frequency components created by the insertion of zeroes. To scale properly, the gain

of the filter is set to be L. Before decimation, all of the frequency components above the new Nyquist

frequency need to be eliminated. A discrete-time lowpass filter with a cutoff frequency of π/M and gain of

1 is applied. This lowpass filter can be combined with the one in the upsampling process. The cutoff

frequency of the filter is set to be the smaller value of π/L and π/M, and the gain is L. Decimation by a

factor of M is then performed. Thus, the combination of upsampling, filtering, and decimation completes

the resampling process. 

One of the possible error sources of this resampling process is imperfect filtering. A perfect filter,

which has a unity gain in the passband and a zero in the stopband, needs an infinite number of filter

coefficients. With a finite number of filter coefficients, passband and stopband ripples cannot be zero. A

filter design with 0.1 to 2 percent ripple is frequently used. Though this signal distortion during filtering

is preferably suppressed, this process is not the only cause of such distortion. Other digital filters and

AA filters also use imperfect filters. The filter in the resampling process needs to be designed so that it

does not degrade signals as compared with the other filters. 

4.3.2. Polyphase implementation

The polyphase implementation leverages knowledge that upsampling involves inserting many zeroes

and that an FIR filter does not need to calculate the output at all of the upsampled data points. This

implementation is explained in this section mainly in the time domain. Oppenheim, et al. (1999) provided

a detailed description of the polyphase implementation in the Z-domain. 

Upsampling and lowpass filtering with an FIR filter can be written in the following manner: 

(2)

v l[ ]
x m( ),  l Lm L 0= 1± 2 …,±, , ,=

0,                  otherwise⎩
⎨
⎧

=

y j[ ] h k[ ]
k 0=

N 1–

∑ v j k–[ ]=

v l[ ]
x m( ),  l Lm m 0= 1± 2 …,±, , ,=

0,                  otherwise⎩
⎨
⎧

=

Fig. 6 Basic approach to resampling
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where x[m] is the original signal, v[l] is the upsampled signal, and y[ j] is the filtered signal. h[k] is the

filter coefficients for the lowpass FIR filter. The number of the filter coefficients is N. L is, again, an

interpolation factor. By combining the two relationships in Eq. (2) and the following,

(3)

upsampling and filtering can be written as 

(4)

where  and  represent the ceiling and floor functions, respectively. The number of algebraic

operations is reduced using the knowledge that v[l] is zero at many points. 

Downsampling by a factor of M is formulated as 

(5)

where z[j] is the downsampled signal. The outputs are calculated only at every M-th data point of the

upsampled signal. This polyphase implementation, thus, reduces the number of numerical operations

involved in resampling. 

4.3.3. Fine resolution resampling utilizing initial delay compensation and interpolation 

First, the resampling is generalized by introducing an initial delay, li. Eq. (5) is rewritten with li as

follows: 

 (6)

where li is integer. By introducing li, the beginning point of the downsampled signal can be adjusted.

When the time difference at the start of sensing is taken into account by li, the synchronization accuracy

of signals is not limited by the original sampling period. 

Precise frequency conversion through the polyphase implementation makes filter design quite

difficult. For example, resampling of a signal from 100.01 to 150 Hz requires a lowpass filter with a

cutoff frequency of ρl 15000. This filter needs tens of thousands of filter coefficients. Design of such a

filter is computationally challenging. Also, a large number of filter coefficients may not fit in the

available memory on smart sensors, and their use is computationally burdensome.

The combination of resampling and interpolation alleviates these filter design difficulties. The integer

M is replaced by a real number Mr, and the integer li is replaced by a real number lri. The upsampling

rate, La, remains an integer. Upsampling is the same as previously described. However, the downsampling

process cannot be directly applied, due to the noninteger downsampling factor. Output data points to be

calculated do not necessarily correspond to points on the upsampled signal. Output data points often

fall between upsampled data points. Linear interpolation is used to calculate output values as follows:

Lm j k–=

y j[ ] h j Lm–[ ]
m j N– 1+( ) L⁄=

j L⁄

∑ x m[ ]=
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m nM N– 1+( ) L⁄=

nM L⁄

∑ x m[ ]= n 0= 1± 2 …,±, ,

z n[ ] y nM li+[ ]=
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i
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i

+( ) L⁄

∑ x m[ ]= n 0= 1± 2 …,±, ,
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(7)

A value of La ranging from 20 to 150 is employed in algorithmic testing and shown to yield reasonable

results. While Mr and La are not uniquely determined, La needs to be in an appropriate range. A

upsampling factor makes filter design challenging. On the other hand, a too small upsampling factor

distort signals through interpolation. 

4.3.4. Resampling-based synchronized sensing 

The proposed fine-resolution resampling is employed to realize synchronized sensing. First, Imote2s

start sensing nearly simultaneously without strict timing control. The Imote2s obtain a time stamp

every Ndata data points. The beginning of synchronized signals is specified in terms of global time.

When the specified beginning time falls between the previous and the current time stamps, the delay lri

is determined as the difference between the beginning time and the previous time stamp. By subtracting

previous time stamp from the current one, the Imote2 estimates the sampling frequency and determines

Mr. The fine resolution resampling is applied to this Ndata points. When the next Ndata points with the

corresponding time stamp become available, Mr is determined in the same manner. lri is set to accounts

for the time between the last resampled data point and the first data point of the current data set. The

resampling process is applied and goes to the next Ndata points. By repeating this process, synchronized

sensing data is obtained. 

5. Data aggregation

This section demonstrates that distribution and coordination can exploit application specific knowledge so

that the data transfer requirements can be reduced without sacrificing performance of SHM algorithms.

This data aggregation method is scalable to networks of large numbers of smart sensors (Nagayama, et

al. 2006b, 2007a, Spencer and Nagayama 2006). 

5.1. Analysis on the application model

In the analysis of dynamic response measurements of civil infrastructure where input force is

unknown, correlation function based analyses are often employed. The Natural Excitation Technique

(NExT; James, et al. 1993) states that correlation functions of vibration responses satisfy the equations

of motion for free vibration. Correlation functions and their frequency domain representation, spectral
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density functions, are also used for more general purposes such as periodicity detection and time delay

estimation. 

Cross spectral density functions are, in practice, estimated from finite length records as in the

following equation (Bendat & Piersol 2000): 

(8)

where  is an estimate of cross spectral density function, , between two stationary

Gaussian random processes, x(t) and y(t). X(ω) and Y(ω) are the Fourier transforms of x(t) and y(t); *

denotes the complex conjugate. T is time length of sample records, xi(t) and yi(t). Oftentimes, xi(t) and

yi(t) are windowed and individual sets of signals may overlap in time. The normalized RMS error,

ε ( ), of the spectral density function estimation is given as

(9)

(10)

where γ
2

xy (ω) is the coherence function between x(t) and y(t), indicating the linear dependence between

the two signals. The random error is reduced by computing an ensemble average from nd different or

partially overlapped records. The estimated spectral densities can then be converted to correlation

functions via the inverse Fourier transform. 

5.2. Model based data aggregation 

This study incorporates the correlation function estimation process into data aggregation to reduce

data transfer requirements. The estimation process requires data from two sensor nodes. Measured data

needs to be transmitted from one node to the other before data processing takes place. Associated data

communication can be prohibitively large without careful consideration of the implementation. Two

approaches for the estimation of these functions are explained next. 

An implementation of correlation function estimation in a centralized data collection scheme is

shown in Fig. 7, where node 1 works as a reference sensor. ns nodes, including the reference node, are

measuring structural responses. Each node acquires data and sends it to the reference node. The

reference node calculates the spectral density as in Eq. (8). This procedure is repeated nd times and

averaged. For simplicity, no overlap between individual data sets is assumed. After averaging, the

inverse Fourier transform is taken to calculate the correlation function. All calculations take place at the

reference node. When the spectral densities are estimated from discrete time history records of length

Ĝxy ω( ) 1

ndT
-------- Xi

*
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n
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∑ ω( )Yi ω( )=

Ĝxy ω( ) Gxy ω( )
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G
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Fig. 7 Centralized correlation function estimation
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N, the total data to be transmitted over the network using this approach is N×nd×(ns–1).

In the next scheme, data flow for correlation function estimation is examined and data transfer is

reorganized to take advantage of computational capability on each smart sensor node. After the first

measurement, the reference node broadcasts the time record to all of the nodes. On receiving the record,

each node calculates the spectral density between its own data and the received record. This spectral

density estimate is stored locally. The nodes repeat this procedure nd times. After each measurement,

the stored value is updated by taking a weighted average between the stored value and the current

estimate. In this way, Eq. (8) is calculated on each node. Finally the inverse Fourier transform is taken

of the spectral density estimate locally. The resultant correlation function is sent back to the reference

node. Because subsequent modal analysis algorithms such as ERA uses, at most, half of the correlation

function N/2 data points are sent back to the reference node from each node. The total data to be

transmitted in this scheme is, therefore, N×nd + N/2×(ns–1)(see Fig. 8).

As the number of nodes increases, the advantage of the second scheme, in terms of communication

requirements, becomes significant. The second approach requires data transfer of O(N·(nd+ns)), while

the first one needs to transmit data of the size of O(N·nd·ns). The distributed implementation leverages

knowledge regarding the application to reduce communication requirements as well as to utilize the

CPU and memory in a network efficiently. 

The data communication analysis above assumes that all the nodes are in single-hop range of the

reference node. This assumption is not necessarily the case for a general SHM application. However,

Gao (2005) proposed a DCS approach for SHM that supports this idea. Neighboring smart sensors in

single-hop communication range form local sensor communities and perform SHM in the communities. In

such applications, the assumption of nodes being within single-hop range of a reference node is

reasonable. 

Further consideration is necessary to accurately assess the efficacy of the distributed implementation.

Power consumption of smart sensor networks is not simply proportional to the amount of data

transmitted. Acknowledgment messages are also involved. The radio listening mode consumes power,

even when no data is received. However, the size of the measured data is usually much larger than the

size of the other messages to be sent and considered the primary factor in determining power

consumption. Reduced data transfer requirements realized by the proposed model-based data aggregation

algorithm will lead to decreased power consumption. 

6. Experimental evaluation 

The three middleware services are implemented on the Imote2 and their performance is experimentally

evaluated. Six Imote2s are placed on the three-dimensional truss model located at the Smart Structure

Fig. 8 Distributed correlation function estimation
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Technology Laboratory of the University of Illinois at Urbana-Champaign (see Fig. 9; http://sstl.

cee.uiuc.edu). These Imote2s are installed on the six structural nodes on one vertical outer plane of two

adjacent truss bays and measure the acceleration response of this truss under band-limited white noise

excitation, using the synchronized sensing middleware service. As explained in the model-based data

aggregation section, the data is then transferred from a reference node to the other nodes using the

multicast data transfer middleware service. 

Fig. 9 Three-dimensional, 5.6 m-long truss structure

Fig. 10 Cross-spectral density estimates from Imote2 data

Fig. 11 Phase of cross spectral densities
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Correlation functions are then calculated and sent back to the reference and base station nodes using

the reliable communication middleware service. Associated command transfer is accomplished by the

unicast and multicast reliable command transfer middleware services. 

The collected correlation functions are converted to spectral density functions and shown in Figs. 10

and 11. The amplitude of cross spectral density functions show clear peaks corresponding to structural

vibration modes. The phase of the spectral density functions is considered to be constant over a wide

frequency range if the sensors are installed on a rigid body and if signals are synchronized with each

other. The slopes of the phase indicate synchronization errors. Though the truss does not behave as a

rigid body, preliminary measurements with a wired system revealed that the observed portion of the

truss does not have mode shape nodes in this frequency range; the slopes still indicate the synchronization

errors. The flat phase in Fig. 11 demonstrates accurately synchronized sensing. 

7. Summary

Middleware services for SHM applications using smart sensors have been developed. The data loss

problem, which has adverse effects on an SHM algorithm, was addressed by developing reliable

communication protocols. To realize synchronized sensing, a resampling-based approach was taken;

the synchronized sensing enables highly accurate distributed sensing. Model-based data aggregation,

including distribution of data processing and coordination among sensor nodes, provided scalability to

a large number of smart sensors while preserving vibration signal information to be used in many of

subsequent structural vibration analyses. These middleware services are implemented on the Imote2

and validated through a structural vibration measurement experiment. This development of the

middleware services is expected to allow many SHM application users to obtain reliable structural

response information from smart sensor networks smoothly and perform detailed structural analyses.

These middleware services are open-source and available at: http://shm.cs.uiuc.edu/.
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