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Abstract. A wireless sensing system is designed for application to structural monitoring and damage

detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-

regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive

features of a structure. To validate the performance of the proposed wireless monitoring and damage detection

system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with

the wireless monitoring system for real time damage detection during shaking table tests. White noise and

seismic ground motion records are applied to the base of the structure using a shaking table. Pattern

classification methods are then adopted to classify the structure as damaged or undamaged using time series

coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection

methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The

accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison

to data recorded using a traditional wired monitoring system.
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1. Introduction

Structural monitoring systems that detect damage in large structures, such as buildings and bridges, can

improve safety and reduce maintenance costs. The design of such systems is the goal of structural health

monitoring (SHM). Many existing SHM techniques attempt to detect damage by continuously monitoring

structural responses originating from ambient excitation. To avoid the problems inherent to wired

monitoring systems (e.g. difficult installations, high costs), researchers have recently demonstrated that

wireless sensing networks can be successfully used for structural health monitoring (Lei, et al. 2005,

Wang, et al. 2005). The advantages of using wireless monitoring systems is that they are: 1) easy to install,

2) accurate with wireless data identical to data collected from a tethered data acquisition system, and 3)

highly reliable with little to no data loss in the wireless channel. These merits show that MEMS sensors

and wireless sensing units have great potential for use in future automatic SHM and damage detection

systems.

From the theoretical viewpoint, damage detection using data generated by structural monitoring systems

has been extensively studied over the past 30 years and the literature on the subject is rather immense.

Doebling, et al. (1996) gives a comprehensive survey of vibration based global damage detection techniques.

Various approaches on data analysis for system identification and damage detection have been proposed

in the literature. In the parametric identification method, Kondo and Hamamoto (1996) used an ARMA

(Auto-Regressive Moving Average) model to identify the modal frequencies and modal shapes of the

structure and detect the location of damage from changes of the curvature of mode shapes. Safak (1989)

used ARMAX (Auto-Regressive Moving Average with eXogenous) models with RPEM (Recursive

Prediction Error Model) to identify the real structure of linear time-varying systems. Andersson (1985)

used AFMM (Adaptive Forgetting through Multiple Models) methods to trace time-varying parameters

of the structure. Loh and Lin (1996) also used off-line and on-line identification techniques to

accurately determine time-varying system parameters. Recently, an advanced damage detection

approach using time series analysis of vibration signals was proposed by Los Alamos National

Laboratory (LANL) (2001). The method proposed is based on the “statistical pattern recognition

paradigm; the method is attractive for adoption within an automated monitoring system. Following

their initial work, a procedure based on the time series analysis of vibration signals for damage

detection and localization within a mechanical system was proposed by Sohn, et al. (2001). In this

method the standard deviation of the residual error, which is the difference between actual measured

structural responses and those predicted from a two-stage combination of the AR and ARX models, is

used as the damage-sensitive feature to locate damage. 

At the present stage, advanced embedded system technologies offer the structural engineering community

low-cost yet reliable wireless sensors with powerful computational cores for local damage detection

(Lynch, et al. 2004, Lei, et al. 2003, Lynch, et al. 2006). In this study, a wireless monitoring system

assembled from wireless sensor prototypes proposed by Wang, et al. (2005) was installed on a full-scale

RC frame structure with and without brick walls and used to measure system responses during shaking

table testing in the laboratory. A damage detection method proposed by Sohn and Farrar (2001) was

adopted and embedded in the wireless sensing unit to continuously identify the structural damage situation

in real time during the shaking table test. Application of wireless sensing module for structural control was

also developed by Wang, et al. (2007) With a flexible and capable hardware design, the wireless sensing

unit can easily execute the computational tasks required by a SHM and damage detection system. Based

on the calculation of the AR-ARX model coefficients by the wireless sensing and monitoring system, the

damage feature of the structural system is assessed. A graphical user interface visualization system, in
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connection with the wireless sensor network, is also implemented in this damage detection system for on-

line and real time monitoring. 

2. Communication procedure for two-tier time series damage detection 

Approaches based upon the statistical pattern recognition paradigm proposed by Sohn, et al. (2001)

and extended by Lynch, et al. (2002), appear promising and easy to implement in the computational

core of a wireless sensing unit to detect structural damage that occurs at different stages. The

wireless sensing and monitoring modular system (WiMMS) is shown in Fig. 1. The design of the

wireless sensing unit is optimized for the application of structural monitoring and includes three

major subsystems: the sensing interface, the computational core, and the wireless communication

system. The sensing interface is responsible for converting analog sensor signals on multiple

channels into 16-bit digital formats. The digital data is then transferred to the computational core by

a high-speed serial peripheral interface (SPI) port. Abundant external memory (128 kB) is associated

with the computational core for local data storage and analysis. The hardware profile and functional

design of the WiMMS system is shown in Fig. 1 (Lynch, et al. 2002). The Maxstream XStream

wireless modem, operating on the 2.4 GHz wireless band is used for peer-to-peer communication

between sensors and between sensors and the data repository.

The damage detection monitoring system contains one wireless sensing unit with MEMS accelerometers

interfaced to collect the response of the structure and one receiver unit (server) outside of the structure to

coordinate the system. By integrating the damage detection algorithm upon the wireless sensing unit, the

wireless monitoring system can be used for on-line damage detection of the structure. The on-line damage

detection algorithm and data broadcast between the sensing unit and the receiver (server) is described as

follows:

1. The wireless sensing unit continuously collects a series of ambient vibration of structural responses

and broadcasts the collected structural responses to the receiver (to the server side). This ambient signal

will serve as the reference data of the structure.

2. Under the assumption of a stationary response time history of the structure at a single measurement

location (for the case of a white noise excitation), an autoregressive (AR) time series model is fit to the

response data, y(t),

(1)ym k( ) φ
p

i=1 iym k i–( )∑ rAR
m

k( )+=

Fig. 1 Hardware architecture design of wireless sensing and monitoring system (Lynch, et al. 2005)
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where φi is the i-th AR coefficient, p is the order of the AR model (p = 22 is assumed in this study),

rAR(k) is the residual error and m indicates m-th time series. For a given model order, it is generally

assumed that the residual error between the measurement and the prediction from the AR model is

mainly caused by the unknown external input. Since “m” sets of response data has been collected, a

set of reference AR coefficients can be obtained for the structure. It is important to identify the

suitable model order for the AR model. Improper selection of model order may influence the residual

error term, rAR(k). A plot of response prediction error with respect to the model order must first be

developed. As shown in Fig. 2, the vector norm of the residual error time history of the AR model is

plotted as the “loss function” versus the model error. Based on these identified AR models, one can

select a suitable one as a reference model (with a high probability of occurrence). The collected data

corresponding to the selected AR model (or the reference model) will be used as the reference

database. 

3. The residual error, rnAR (k), from Eq. (1) will be used as the background (or environmental signal)

noise. Therefore, with this selected reference data set, an ARX model is employed to reconstruct the input/

output relationship between rnAR (t) and yn(t):

(2)

where α and β are the coefficients of the ARX model, and a and b are the order of the ARX model (in

this study a=12 and b=10 are assumed). The final residual error of the ARX model,  is defined as

the damage sensitive feature of the structure (Sohn, et al. 2001). This model parameter estimation

procedure is conducted at the server with the AR-ARX model parameters archived as a valid reference

model of the structure in its undamaged state. An extensive library of AR-ARX models, all of the same

model size, corresponding to the undamaged structure is generated by exciting the structure with

different levels of ambient excitation.

4. For the structure in an unknown structural state, a new set of ambient vibration data of the structure is

measured from the wireless sensing unit after an earthquake excitation. An AR model of the same order

(p=22) is fit to the new recorded ambient signal, .

yn k( ) α
a

i=1 iyn k i–( )∑ β
b

j=0 jrAR
n

k j–( )∑ εARX
n

k( )+ +=

εARX
n

ỹ k( )

Fig. 2 Plot of loss function with respect to the order of AR model
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(3)

This estimation is conducted in the wireless sensing unit and broadcast to the server.

5. At the sever, the newly received AR coefficients are compared with each AR model of the signal

from the reference database (as shown in Eq. (1)) so as to select a reference model most closely associated

with the unknown structure’s AR model. To select the suitable reference model, it is defined by

minimizing the following difference of the AR coefficients:

difference = (4)

The minimum value of the difference in Eq. (4) will be used as a means of selecting the bets AR-ARX

model pair. Once selected, the ARX model coefficients and the standard deviation of  of the

reference AR-ARX model pair are broadcast to sensing unit. 

5. The wireless sensing unit on the structure will receive the selected ARX model coefficients from

sever and determine the residual error of the reference ARX model using the unknown structure’s time

history response.

(5)

The standard deviation of the ARX model residual error, , using the newly measured data (or

signal from the damaged signal) is determined. The residual error ratio is then calculated:

(6)

6. The sensing unit broadcasts the ratio h to the server. The server then decides if the structure is

damaged based on the ratio. For example, if the unknown structural state is undamaged, then the

anticipated ratio will be near 1. However, if damage has occurred in the structure, then none of the

reference AR-ARX models will fit the damage structural response well. The result will be a damage ratio

ỹ k( ) φ̃
p

i=1 iy k i–( )∑ r̃AR k( )+=

φi φ̃i–( )
p 2

i=1∑

εARX
n

k( )

ynp k( ) α
a

i=1 iynp k i–( )∑ β
b

j=0 jrAR
n

k j–( )∑ ε̃ARX
np

k( )+ +=

σ ε̃ARX( )

h σ ε̃ARX( ) σ εARX( )⁄=

Fig. 3 Implementation of the AR-ARX damage detection strategy in a wireless monitoring system to conduct
the continuous damage detection of large structural testing in the laboratory
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is exceeding 1. 

Fig. 3 shows the major program flow of the damage detection strategy in a wireless monitoring system.

The AR-ARX time series damage detection method is well suited for automated execution by a wireless

monitoring system since no data is shared between wireless sensors and calculations are self-contained to

each wireless sensor.

3. Test structures

To verify the proposed on-line damage detection technique using wireless sensing units, shaking table

tests on three different types of reinforced concrete (RC) frame structures exposed to different levels of

Fig. 4 (a) Top view of the test specimen (A1f), (b) Side view of the test specimen. Locations of accelerometers (■)
and LVDT ( ▲  ) are also shown
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base excitation are conducted. Three sets of near full-scale RC frames were designed, constructed and

tested at the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan, to

study the dynamic behavior of RC frames without and with infill brick walls (along the out-of-plane

direction of the ground motion). The three different RC frames are specified as: (1) Frame A1F, (2) Frame

P1F, and (3) Frame B1F. Frame A1F is an RC frame with two 12 cm thick post-laid brick walls. As shown

in Fig. 4(a) (top view), the A1F structure consists of four RC columns, a strong top floor, a strong

foundation and two side walls. The distances between the center lines of the columns along the X and Y

directions are 2.1 m and 3.05 m, respectively. The height of the columns is 2.8 m. The column section is

0.35 by 0.3 m with eight #5 longitudinal steel bars and #3 transverse ties with spacing of 0.25 m. The

nominal strength of the concrete and steel are 180 kg/cm2 and 2800 kg/cm2, respectively. The 10-ton top

floor and the 13-ton foundation are both designed to be strong compared with the columns and are

considered as rigid diaphragms herein. Accelerometers (Setra 141A with a maximum range of ±4g) are

installed at the top and base of the structure while four linear variable differential transformer (LVDT)

displacement measurement devices are positioned on each brick wall so as to measure the deformation of

the wall, as shown in Fig. 4(b). Preliminary modal analysis using displacement-based beam-column

elements with fiber sections using OpenSees (ver. 1.7.1) (McKenna and Fenves 2000) reveal the dominant

natural period of the specimen is 0.24 sec. Frame P1F is designed with the same details as frame A1F but

without infill walls. Another 2-story RC frame structure is also designed for this study. The detailed design

drawings of this structure are shown in Fig. 5. The dominant frequency of this 2-story RC frame is 12.0

Hz. Fig. 6 shows the photos of the three frame structures tested. 

There are three objectives in this study: 1) to assess the accuracy of the wireless monitoring system, 2) to

utilize the computational capabilities of the wireless sensing unit for continuous real time damage

detection, 3) to evaluate the reliability of the damage detection algorithm and the capabilities of the

visualization system for real time structural health monitoring. Both conventional wired sensors and the

wireless sensing unit are installed on each specimen to monitor their response induced by the shake table.

Fig. 5 Draft of the front view and side view of the two-story RC frame
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Fig. 6 (a) Photo of the specimen A1F frame, (b) Photo of the specimen P1F frame, (c) Photo of the 2-story
RC frame structure

Table 1 (a) Estimation of the ratio of residual error through wireless damage 
detection module (for case of wall frame structure: A1F)

Wall Frame (A1F) Ratio of residual error

Excitation Intensity 

White Noise 1 50 gal Reference

TCU078EW 150 gal

White Noise 2 50 gal 0.902

TCU078EW 500 gal

White Noise 3 50 gal 1.027

TCU078EW 1000 gal

White Noise 4 50 gal 1.377

TCU078EW 1500 gal

White Noise 5 50 gal 1.545

Table 1 (b) Estimation of the ratio of residual error through wireless damage
detection module (for case of pure frame structure: P1F).

Pure Frame (P1F) Ratio of residual error

Excitation

White Noise 1 50 gal Reference

TCU078EW 150 gal

White Noise 2 50 gal 0.955

TCU078EW 500 gal

White Noise 3 50 gal 0.930

TCU078EW 1000 gal

White Noise 4 50 gal 2.354

White Noise 5 50 gal 1.706

White Noise 6 50 gal 1.407

TCU078EW 1500 gal

White Noise 7 50 gal 1.616

TCU078EW 1800 gal

White Noise 8 50 gal 3.003
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To quantify the accuracy of the wireless monitoring system, the laboratory data acquisition system

(Pacific Instrument Series 5500 data acquisition classis) is also used to offer high-resolution data

acquisition with a sample rate of 200 Hz. In the wireless monitoring system, a sampling rate of 100Hz is

used. To excite these three structures, respectively, various intensities of base excitations are applied by the

shaking table. It should be noted that the white noise and seismic ground motion records are applied back

to back sequentially in a uni-axial direction. Table 1 summarizes the excitations during the laboratory

study for each of the structural specimens. The response of the test structures to the ground motion of the

Chi-Chi 1999 earthquake collected at the TCU078 seismic station are used for this study. Comparisons

between the recorded roof acceleration response of the wired and wireless system reveal nearly identical

results. Comparison of the floor acceleration collected from both the wired and wireless systems were also

verified. From the recorded acceleration response of the frame structure during earthquake excitation, the

restoring force diagrams of different test stages are also examined. Fig. 7 shows the restoring force

diagram of the three structures for different levels of excitation. From the restoring force diagram

corresponding to the different test cases, inelastic hysteretic behavior can be observed for case of large

excitations. 

4. Damage detection through the embedded AR-ARX system

4.1. Real-time damage detection using the two-tier damage detection model

The first set of tests is intended to calibrate the residual error ratio of Eq. (6) to different levels of seismic

damage in the RC frame structures. Towards this end, a reference database of AR-ARX model pairs

corresponding to the undamaged structure must first be populated. For the undamaged structure, the

acceleration response of the roof during white noise excitation (normalized to 50 gals peak ground

acceleration) is collected. After each test, the wireless sensor communicates with the server and is

Table 1 (c) Estimation of the ratio of residual error through wireless damage
detection module (for case of pure frame structure: B1F)

Pure Frame (P1F) Ratio of residual error

Excitation

White Noise 1 50 gal Reference

TCU078EW 150 gal

White Noise 2 50 gal 0.955

TCU078EW 500 gal

White Noise 3 50 gal 0.930

TCU078EW 1000 gal

White Noise 4 50 gal 2.354

White Noise 5 50 gal 1.706

White Noise 6 50 gal 1.407

TCU078EW 1500 gal

White Noise 7 50 gal 1.616

TCU078EW 1800 gal

White Noise 8 50 gal 3.003
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commanded to determine the AR-ARX model pair for the undamaged structure. Once the reference

database is established, an AR-ARX model pair is fit using ambient white noise response data for the

structure after damage has been introduced by a seismic ground motion. Following the procedures in the

previous section, the ratio of AR-ARX two-tier model residual errors can be generated for each damage

states. Table 1 archives the estimation of the residual error ratio based on the white noise test data of the

three structures (i.e., wall frame (A1F), pure frame (P1F) and the 2-story RC frame (B1F) structures).

From all three structural systems, the ratio of residual error increases in tandem with the increasing

earthquake excitation level. In essence, the residual error ratio is a good indicator of the degree of

damage in the structure. From the observation of Table 1, it is found that the residual error calculated

after earthquake excitation with peak acceleration of 1000 gals is much larger than one which indicates

Fig. 7 (a) and (b) Restoring diagram of the test structure from different input excitation level (150 gal, 500 gal,
1000 gal and 1500 gal), (a) A1F structure, (b) P1F structure, and (c) Restoring diagram of the test structure
from different input excitation level (400 gal, 800 gal, 1000 gal, 1500 gal and 2000 gal) for (c) B1F structure
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Fig. 8 (a) Ratio of AR-ARX two-tier model residual error from test of RC frame (A1F) in filled with 1/2B
post-laid brick walls (using off-line data), (b) Ratio of AR-ARX two-tier model residual error from test
of RC frame without walls (P1F), (c) Ratio of AR-ARX two-tier model residual error from test of 2-
story RC frame without walls (B1F)
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severe damage was developed in the frame structure after the earthquake excitation with peak

acceleration of 1000 gal. 

4.2. Results from off-line AR-ARX model residual analysis 

In order to verify the accuracy of the damage detection methodology embedded in the computational

cores of the wireless monitoring system’s sensor, the data collected from the wired data acquisition system

(i.e. the NCREE data acquisition system) is also used to conduct the damage detection analysis off-line

using the same two-tier damage detection algorithm. Fig. 8 plots the ratio of AR-ARX two-tier model

residual error for the three test structures for different test cases using the ambient vibration data (each test

data was separated into 6 different segments). It is observed that the estimated residual error is consistent

with the results from the on-line real-time damage detection system tabulated in Table 1. However, the off-

line data analysis yields AR-ARX two-tier model residual error ratios slightly larger than those obtained

from wireless sensing unit. This slight difference can be attributed to the difference in the sampling rate

between these two systems (100 Hz for wireless sensing unit and 200 Hz for wireless system). Therefore,

the estimated residual error is different depending upon whether data is collected by the wireless or

tethered systems. Regardless, the results all indicate the residual error ratio exceeds one when the structure

is damaged (for excitation larger than 1000 gal) and increases in tandem with damage.

5. Damage detection verification using seismic response measurements

To verify the accuracy of the real-time damage detection strategy using a two-tier time series model, the

seismic response data from the different intensity levels of base excitation are processed using an alternative

strategy. Specifically, a wavelet analysis and an extended Kalman filter estimation method are both

applied to estimate the stiffness degradation of the three frame systems during the application of seismic

excitation.

5.1. Wavelet packet transform (WPT)

The wavelet packet transform (WPT) is one extension of the discrete wavelet transform (DWT) that

provides complete level-by-level decomposition (Corbin, et al. 2000, Hou, et al. 2000, Yen, et al. 2000,

Sun and Chang 2002). It is assumed that cj(t) is the giving i-th wavelet packet component at the j-th level

of decomposition. The amplitude aj(t) and the instantaneous phase function θj(t) are defined as: 

(7)

where  is the Hilbert transform of . Based on Eq. (7), the Hilbert amplitude spectrum can

be constructed using the acceleration response data. Fig. 9(a) and Fig. 9(b) show the frequency-time

Hilbert amplitude spectrum of the A1F and P1F frame structures using their acceleration responses.

Through the comparison of the response data from the ground excitations with peak accelerations of

150 and 1000 gal, the change in the dominant system frequency is self-evident. The Hilbert marginal

spectrum, HMS, (with respect to the. j-th level) is also investigated which is defined as:

aj

i
t( ) cj

i
2

t( ) cj

i H( )
2

t( )+{ }=

cj

i H( )
t( ) cj

i
t( )
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 where  (8)

as applied to the calculated Hilbert marginal spectrum. Fig. 10 shows the HMS of the earthquake

response data of the two structural systems (A1F and P1F). fi is the central frequency of the i-th

component function of j-level WPT. It is clear that fi moves to the lower frequency for the data

correspond to the larger excitation. The change of dominant frequency in the Hilbert marginal

spectrum with respect to the ratio of residual error estimated from ambient vibration data is clearly

identified, as shown in Fig. 11. It is clear that the estimated ratio of residual error has a direct

relationship with the change of structural natural frequency. It is also observed that the residual

value changes very quickly for the structural system subjected to the 1000 gal intensity (or higher)

of ground excitation.

Hj fi( ) aj

i

 

∫ t( )dt=  fi 2i 1–( )fN 2
j 1+

⁄=

Fig. 9 (a) Frequency-time-Hilbert amplitude spectrum of roof acceleration response of A1F and P1F frame
structures (for case of 150 gal excitation), (b) Frequency-time-Hilbert amplitude spectrum of roof acceleration
response of A1F and P1F frame structure (for case of 1500 gal excitation)
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Fig. 10 (a) Hilbert amplitude spectrum of four earthquake response data of A1F structure (150 gal, 500 gal,
1000 gal and 1500 gal), (b) Hilbert amplitude spectrum of four earthquake response data of P1F structure
(150 gal, 500 gal, 1000 gal and 1500 gal)

Fig. 11 Plot of the estimated ratio of residual error from four different sets of ambient data with respect to
system dominant frequency (the acceleration number shown in the figure indicated the intensity level
of input excitation

Fig. 12 Estimated time-varying system stiffness from four different sets of earthquake response data, (a) A1F
structure, (b) P1F structure
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5.2. Kalman filter technique for identification

To estimate the change of structural model parameters, such as stiffness, during earthquake excitation,

the Kalman estimation method can be used (Jann, et al. 2004, Jann, et al. 2006). Based upon the

developed adaptive covariance matrix of the estimation error, an error index is introduced in which the

abrupt change of modal parameters can be identified. Through the calculation of error index, defined as

the ratio between the current modified error covariance matrix and the temporal average of error

covariance, and incorporated with the pre-assigned threshold the adaptive factor can be employed in the

Kalman filter estimation algorithm to detect and quantify the change of system parameter (Huang, et al.

2008). Fig. 12 shows the identified stiffness (assumed as that corresponding to a SDOF system) of the two

structural systems from the seismic response data under different earthquake excitation intensity. Fig. 13

Fig. 13 Plot of ratio of residual error from four different sets of ambient data with respect to the identified
system stiffness

Fig. 14 Photos taken at the column location of A1F wall frame structure after different intensity level of
excitations
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plots the estimated ratio of residual error with respect to the identified floor stiffness from the different

stages of base excitation. This relationship provides a physical meaning for the residual error in relating

the structural stiffness reduction to changes in the residual error ratio. Fig. 14 shows the photo taken from

the experiments of different test stage of wall frame structure. Significant cracks at the both end of the

column and major cracking distributed across columns with brick wall partially collapse can be observed

for larger intensity of excitation (such as 1000 gals and 1500 gals). 

6. Integration of WIMMS and LabVIEW (visualization)

LabVIEW is a popular graphical programming language widely used in the design of data acquisition

systems. There are three basic communication subroutines written in LabVIEW as Visualized

Interpretation (VI) function blocks: receive wireless package, transmit wireless unsigned short, and

transmit wireless single float (as shown in Fig. 15) VI’s. In this study three major programs are developed

under LabVIEW using the aforementioned VI’s: real-time display, presentation of the results of the AR

model estimation and presentation of the results of damage detection strategy (as shown in Fig. 16). In

Fig. 16, there are three pages to display. Page1 (as shown in Fig. 16a) displays the real time response time

history and moving window Fourier amplitude spectrum. Page 2 (as shown in Fig. 16b) displays the

results of the embedded AR analysis which includes the AR coefficients (as broadcast by the wireless

sensing unit), the roots of the transfer function, the poles of the transfer function plotted upon the polar

coordinate and the natural frequencies which are extract by considering the complex valued poles of the

transfer function upon the complex plane polar coordinate system. Page 3 (as shown in Fig. 16c) displays

Fig. 15 (a) Receive wireless package VI, (b) Transmit wireless unsigned short, (c) Transmit wireless single float
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Fig. 16 Three pages to display from the wireless health monitoring system: (a) Real-time display, (b) AR
analysis, (c) Damage Detection
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the coefficients of the AR-ARX model, and the ratio of the residue error which is received wirelessly from

the wireless sensing unit. With this setup, the real-time presentation of structural response and the residual

error calculated by the real-time damage detection using the two-tier damage detection model can be

viewed by engineers and facility owners. 

7. Conclusions

This research work has explored the use of wireless sensing units for structural health monitoring

applications. The wireless sensing system has been specially designed for applications in structural

monitoring and damage detection. Embedded in the wireless monitoring module, a two-tier time series

prediction model based upon auto-regressive (AR) and autoregressive model with exogenous inputs

(ARX) time series models is used for obtaining the damage sensitive feature of the structure in real time.

This approach is basically using the ambient vibration measurement of the structure after the excitation of

earthquake to estimate the post-seismic condition of the structure (i.e. existence and degree of damage). In

order to validate the approach, both seismic response data of a series of shaking table tests of three

different RC frame structures and data from low-level white noise excitations are used to estimate the

damage. Through this study the following conclusions can be drawn:

1. The two-tier damage detection model provides a very convenient and easy to apply method within the

computational core of a wireless sensing unit for damage detection using ambient vibration response

signal. The damage index can be estimated immediately after the ambient vibration survey of the structure

and communicated to the appropriate decision makers. 

2. Comparison on the damage estimation method using the AR-ARX model from ambient vibration

response data and using wavelet analysis from seismic response data directly shows good consistent. The

two-tier time series damage detection method together with the wireless sensing unit can provide real-time

damage assessment. 
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