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Abstract. Identification of the nonlinear hysteretic behavior of a reinforced concrete (RC) bridge pier subjected
to earthquake loads is carried out based on acceleration measurements of the earthquake motion and bridge
responses. The modified Takeda model is used to describe the hysteretic behavior of the RC pier with a small
number of parameters, in which the nonlinear behavior is described in logical forms rather than analytical
expressions. Hence, the modified extended Kalman filter is employed to construct the state transition matrix using
a finite difference scheme. The sequential modified extended Kalman filter algorithm is proposed to identify the
unknown parameters and the state vector separately in two steps, so that the size of the problem for each
identification procedure may be reduced and possible numerical problems may be avoided. Mode superposition
with a modal sorting technique is also proposed to reduce the size of the identification problem for the nonlinear
dynamic system with multi-degrees of freedom. Example analysis is carried out for a continuous bridge with a RC
pier subjected to earthquake loads in the longitudinal and transverse directions.

Keywords: sequential modified extended Kalman filter; nonlinear system identification; hysteretic behavior
of RC pier; the modified Takeda model; modal sorting; acceleration measurement only.

1. Introduction

For the health monitoring of civil infrastructures, it is important to identify the nonlinear behavior

related to structural damage. Various system identification techniques are available for the identification of

nonlinear structural dynamic systems. For the identification of structural parameters and their variations

related to the nonlinear behavior, time domain analyses have been used widely, in particular methods of

the least-square estimation (LSE) (Lee and Yun 1991, Loh and Lee 1997, Smyth, et al. 1999, Yang and

Lin 2005) and the filtering approaches including the extended Kalman filter (EKF) (Yun and Shinozuka

1980, Hoshiya and Saito 1984, Loh and Chung 1993, Sato and Takei 1998, Yang, et al. 2006), H
∞

 filter

(Sato and Qi 1998), and Monte Carlo filter (Yoshida and Sato 2002, Sato and Chung 2005). 

The forces induced on a bridge structure with reinforced concrete (RC) piers during major

earthquakes may exceed the yield capacity of some piers and cause large inelastic deformations and
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damages in the piers as depicted in Fig. 1(a). Since the seismic response of the bridge structure is highly

affected by the hysteretic behavior of the damaged RC pier, reliable models for such behavior are

needed. However some models that were derived from the detail information of the material and

sectional characteristics are prohibitively expensive, and in many cases such refined nonlinear models

may not be necessary in a global response evaluation (Umemura and Takizawa 1982). Various

mechanical models have been proposed for the hysteretic behavior of RC structures (Clough, et al.

1965, D’Ambrisi and Fillippou 1999, Kwak, et al. 2004). Such models shall include important

characteristics of damaged RC members such as stiffness degradation, pinching effect, and strength

deterioration (Takeda, et al. 1970, Meyer, et al. 1983). The modified Takeda model (Roufaiel and

Meyer 1987) can effectively reproduce such complex nonlinear hysteretic behavior of RC members

with a limited number of parameters. So it has been widely used for concrete structures. Differently

from many analytical models (Baber and Wen 1981, Yar and Hammond 1986), the modified Takeda

model logically defines the nonlinear hysteretic behavior of RC members.

For the identification of practical structural dynamic systems, it is necessary to reduce the problem

size for the efficiency and stability of the identification procedure. The mode superposition method has

been extended to the nonlinear dynamic systems for this purpose (Mohraz, et al. 1991, Villaverde and

Hanna 1992, Aprile et al. 1994), and there are several general purpose computer software packages

using the mode superposition method for the nonlinear dynamic analysis, such as SAP2000 (Wilson

2002). In spite of the numerical efficiency of this method, however, enough modes have to be included

or the truncated mode effects have to be corrected to achieve reasonable accuracy particularly on local

behavior (Dikens, et al. 1997). 

The extended Kalman filter (EKF) has been widely used for the parameter estimation of a nonlinear

structural dynamic system. Nonetheless, when the EKF is applied to a complex system or a practically

large structural system, a few implementation and numerical problems may arise. To overcome the

numerical difficulties in obtaining the state transition matrix, a modified extended Kalman filter (MEKF)

was developed (Schei 1997) , in which a finite difference scheme is employed to calculate the state

transition matrix without explicit calculation of the Jacobian matrix (Nørgaard, et al. 2000). However

divergence problems related to the system complexity and size and the system/measurement noises still

remain in practical applications of the MEKF.

Fig. 1 Hysteretic behavior of a RC bridge pier
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In this study, identification of the nonlinear hysteric behavior of a RC bridge pier subjected to

earthquake loads is carried out. Only the acceleration measurements of the input earthquake motion and

bridge responses are utilized, which are the easiest quantities in dynamic measurements, particularly for

bridges with long-spans. The modified Takeda model is used to describe the hysteretic behavior of the

RC member with a small number of parameters, in which nonlinear behavior is described in logical

forms rather than an analytical expression. Hence, the modified extended Kalman filter is employed to

construct the state transition matrix using a finite difference scheme. A tow-step approach so called the

sequential modified extended Kalman filter (SMEKF) algorithm is proposed to identify the unknown

parameters and the state vector separately in two steps, so that the size of the problem for each

identification procedure may be reduced and possible numerical problems may be avoided (Yang, et al.

2006, Yang and Huang 2007). Mode superposition with a modal sorting technique is also proposed to

reduce the size of the identification problem for the nonlinear dynamic system. Example analyses are

carried out for a continuous bridge model with a RC pier subjected to earthquake loads in the longitudinal

and transverse directions. 

2. Nonlinear hysteric behavior of RC bridge piers

Experimental studies have shown that the hysteretic behavior of RC components is dependent upon

numerous structural parameters which greatly affect the deformation and energy absorbing

characteristics of the components (Park, et al. 1972, Otani and Sozen 1972, Atalay an Pezien 1975). It

is, therefore, important to recognize that a highly versatile model is required to closely reproduce the

hysteretic behavior, in which several important aspects of hysteretic loops can be included, viz.,

stiffness degradation, strength deterioration, pinching behavior, and variability of hysteretic areas at

different deformation levels under repeated load reversals (Kunnath, et al. 1988). However, the model

should also be simple to implement.

The modified Takeda model by Roufaiel and Meyer (1987) can effectively describe the nonlinear

hysteretic behavior of damaged RC members with a small number of nonlinear parameters. This model

allows a finite plastic zone instead of a plastic hinge of zero length, which often leads to too conservative

estimates of the rotational ductility capacity of the end section (Mork 1994).

In this study, the modified Takeda model with axial force effect is employed for identification of the

nonlinear hysteretic behavior of a RC bridge pier subjected to earthquake excitation. Then the nonlinear

parameters in this model are estimated based on the measured acceleration records of the ground

motion and structural responses using a Kalman filtering technique; namely the sequential modified

extended Kalman filter.

2.1. Moment-curvature curve for cyclic loading by the modified Takeda model

Under load reversals, the stiffness of a RC section may experience degradation due to the cracking of

the concrete and slip of the reinforcing bar. In the modified Takeda model, four different kinds of

braches may exist in the hysteresis of the moment-curvature (M-φ) relationship as in Fig. 2, and each

branch is logically defined as
• Elastic loading and unloading of the primary M-φ curves are characterized by a slope (EI)1=(EI)e,

where (EI)e is the elastic stiffness of the RC member.
• Inelastic loading of the primary M-φ curve after yield point (φy, My) is defined by a slope
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(EI)2 = α(EI)e, where φy and My are the yield curvature and yield moment, and α is the ratio of the post

yield stiffness to the elastic stiffness of the RC member.
• Inelastic unloading is defined by a slope (EI)3, where two points (φo, Mo) and (φr

+, 0) are defined in

Fig. 2.
• Inelastic reloading in the negative direction is characterized by a slope (EI)4, which may be determined as

in Fig. 2.

In Fig. 2, (φ x
+ , Mx

+) and (φ x
− , Mx

−) are the maximum previous excursions in the positive and negative

directions, which are to be updated along with (EI)3 and (EI)4 as the hysteresis proceeds.

2.2. Stiffness degradation 

Under the load reversals well into the inelastic range, the stiffness of a reinforced concrete member

decreases due to the cracking in concrete and slip of reinforced bars. As a consequence, a reduction in

the overall structural stiffness occurs. This degradation process is simulated as in Fig. 3(a).

2.3. Pinching effect by shear force

From various test data, it was reported that a strong correlation exists between the degree of pinching

and the relative magnitude of shear at the section under consideration (Ma, et al. 1976, Popov, et al. 1972).

To reflect the pinching effect into a hysteretic moment-curvature relation representing the bending

behavior, Roufaiel and Meyer (1987) proposed a modification of the reloading branch as shown in

Fig. 3(b). The characteristic point (φp, Mp) on the original elastic loading curve is determined as

(1)

where ε = 0 for a/d<1.5, ε = 0.4(a/d) - 0.6 for 1.5<(a/d) < 4.0, ε = 1 for (a/d) ≥ 4.0; a = the shear span

φp εφn;  Mp εMn= =

Fig. 2 Hysteretic moment - curvature behavior of the modified Takeda model
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length; d=the effective depth of the section; and ( ) is the crossing pint of the reloading curve and

the initial elastic loading curve.

2.4. Pinching effect by axial force

When RC member is subjected to an axial load, the moment-curvature relation may alter. From the

empirical formula (Ozcebe and Saatcioglu 1989), which reflects the effect of the axial load on the

pinching effect, the following formula was adapted for M* in Fig. 3(c) as

(2)

where ( ) represents the maximum previous excursion in the opposite direction; the characteristic

point ( ) can be determined similarly to the case of the shear effect; φy is the corresponding

curvature at yield; P is the axial compressive force(negative value); P0 is the nominal compressive

strength of the member; and β is the parameter which controls the pinching behavior by the axial force. 

2.5. Strength deterioration

If a RC member is strained beyond a certain critical level during cyclic loadings, its strength may

deteriorate as shown in Fig. 3(d). The strength deterioration is initiated as soon as the yield load level is

exceeded, and the strength deterioration accelerates as the critical load level is reached. The following

strength drop index is used, which was proposed by Chung, et al. (1989).

φn Mn,

M
*

Mx exp β
φx

φy

-----
P

P0

--------⎝ ⎠
⎛ ⎞⋅=

φx Mx,

φp Mp,

Fig. 3 Significant hysteretic behavior of a RC member
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   (3)

where ΔM is the moment capacity reduction in a single load cycle up to curvature φ; and ΔMf is the

fictitious moment capacity reduction in a single load cycle up to failure curvature φf . For parameter ω,

calibration studies suggested a value of 1.5. If the strength deterioration parameter γ is introduced, and

, and φ = φx, where C1 and C2 are constant, Eq. (3) can be rewritten as

(4)

Fig. 4 shows typical hysteretic behavior of a RC pier subjected to cyclic loadings for several cases of

parameters β and γ .

3. Nonlinear dynamic analysis by mode superposition with modal sorting

In this study, the concrete bridge pier is assumed to be locally damaged at the bottom of the pier due

to severe earthquake ground motion. It is also assumed that dominant nonlinear hysteretic behaviors

such as stiffness degradation, pinching, and stiffness deterioration can be effectively represented by the

Modified Takeda model with 4 parameters My, α, β and γ described in Section 2. 

Nonlinear dynamic analysis is generally carried out by means of a direct step-by-step integration,

which involves a large number of degrees of freedom (DOFs) and high computational cost. However, a

dynamic formulation with a large number of DOFs may cause serious difficulty in the present nonlinear

system identification problem. Hence modal superposition with a modal sorting scheme is employed in

approximation in the nonlinear dynamic analysis procedure, so that the size of the identification problem

may be reduced and the efficiency and accuracy of the parameter identification may be improved.

3.1. Nonlinear equation of motion

If a structure is subjected to a severe earthquake load, some weak elements may experience damage

and the dynamic response of the structural system becomes nonlinear, which can be generally described

ΔM

ΔMf

----------
φ φy–

φf φy–
---------------⎝ ⎠
⎛ ⎞

ω

=

ΔMf C1My φ f, C2φy= =

ΔM γMy

φx φy–

φy

----------------⎝ ⎠
⎛ ⎞

1.5

=

Fig. 4 M-φ relationships in a RC bridge pier (P/|Po| = 0.2, My = 500 KN·m, and α = 0.03)
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by a nonlinear equation of motion as 

(5)

where M, C and K are the mass, damping, and initial stiffness matrix; U(t), ,  are the

displacement, velocity, and acceleration vectors; {L} is the influence vector accounting the direction of

the earthquake excitation;  is the ground acceleration, and R(t) is the nonlinear residual force

vector.

Then Eq. (5) can be rewritten as

(6)

where 

3.2. Mode superposition method with modal sorting

A mode superposition method is used in approximation to reduce the size of the present nonlinear

dynamic problem, and the diagonal modal damping is assumed in this study. Then a series of modal

equations of motion can be obtained from Eq. (6) as 

                (n =1, 2,..., l) (7)

where  and  are the modal displacement, velocity and acceleration for the n-th mode;

ζn and ωn are the corresponding damping ratio and natural frequency; and  is the modal load

which includes the nonlinear residual force which depends on the unknown concurrent structural

response. Hence, the above modal equations can be solved iteratively at each time by updating the

nonlinear residual force. 

From Eq. (7), the following discrete dynamic equation may be obtained at t = kΔt:

(8)

=

where [A] and [B] are constant matrices which may be obtained using the Wilson-θ method, and g(·) is

a function of the state transition.

When the mode superposition method is applied for the analysis of the dynamic systems, the truncation of

modes may cause significant difficulty in obtaining reasonable dynamic response (D’Aveni and

Muscolino 2001), particularly for the locally damaged behavior, which is directly related to the system

identification. Therefore, a modal sorting technique is proposed to select the modes with larger

contribution to the DOF near the damaged location. The j-th modal contribution to the i-th DOF 

under earthquake load nay be evaluated as

(9)

MU
··

t( ) CU
·

t( ) KU t( ) R t( )+ + + M L{ }u··g t( )–=

U
·

t( ) U
··

t( )

u··g t( )
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··

t( ) CU
·

t( ) KU t( )+ + R t( )=

R t( ) M L{ }u··g t( ) R t( )––=

q··n t( ) 2ςnωnq
·
n t( ) ωn

2
qn t( )+ +  f n t( )=

qn t( ) q· n t( ), q··n t( )
 f n t( )

qn

q· n

q··n⎩ ⎭
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⎨ ⎬
⎪ ⎪
⎧ ⎫

k 1+

A[ ]

qn

q· n

q··n⎩ ⎭
⎪ ⎪
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B[ ]  f n t; qn q· n q··n, ,( ){ }+=

g qn k( ) q· n k( ) q··n k( )  f n t; qn q· n q··n, ,( ), , ,( )

Ξi j

Ξi j φijΓjSj=
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where  is the j-th eigenvector at the i-th DOF, Γj is the modal participation factor at the j-th mode; Sj

is the deformation response spectrum of the ground motion at the j-th natural period at ω = ωj. The

modes are sorted by the order of the magnitudes of those modal contribution values for a specific DOF.

With the sorted modal vectors, the global displacement vector can be obtained as

(10)

where  is the matrix of the sorted eigen-vectors matrix, and Q(t) is the corresponding modal displacement

vector.

4. Identification of nonlinear parameters by extended Kalman filtering techniques

4.1. State equation

For identifying the hysteretic behavior of a RC bridge pier under severe earthquake loads, the extended

Kalman filtering (EKF) technique is utilized in this study. At first a series of the modal equations of

motion in discrete time, Eq. (8), are transformed into a general form of a nonlinear discrete state

equation at t = kΔt as

 (11)

where Xk is the augmented state vector including the modal displacements, velocities, accelerations and

the unknown parameters (My, α, β and γ as defined in Section 2) as

(12)

where l is the number of modes included; and wk is a system noise vector with a covariance Q. In Eq.

(12), the unknown parameters are treated as time varying quantities, so their estimates may be updated

as the time progresses.

In Eqs. (11)-(12) the state vector includes the acceleration terms in addition to the conventional state

vector consisting of displacement and velocity terms. Eq. (11) is obtained using the Wilson-θ method

with θ =1.4 for each modal equation of motion. Acceleration records are easier to measure than

displacement and velocity, particularly for bridges with long-spans, hence only acceleration measurements

are utilized in the present identification problem. Then the observation equation can be written as

 (13)

where

  (14)

and Yk is the acceleration measurement vector at t = kΔt, which contains the relative accelerations at the

φij

U t( ) Φ̃Q t( )=

Φ̃

Xk 1+ G Xk  f k Xk( );k,( ) wk+=

Xk q1 k( )  q· 1 k( )  q··1 k( )  … ql k( )  q· l k( )  q··l k( )  My k( )  α k( )  β k( )  γ k( )T[ ]=

Yk HkXk νk+=

Hk

0 0 φi1 0 0 φi2 … 0 0 φi l 0 0 0 0

0 0 φj1 0 0 φj2 … 0 0 φj l 0 0 0 0

:
·

0 0 φm1 0 0 φm2 … 0 0 φml 0 0 0 0

=
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selected nodes to the ground motion that can be obtained by subtracting the measured ground acceleration

from the measured absolute accelerations of the structure; Hk is the observation matrix; φij are the i-th

DOF component of the j-th mode selected by the modal sorting; i, j,..., and m are the measured DOFs;

and vk is the observation noise vector with a covariance Rk.

4.2. Extended Kalman filter

The extended Kalman filter (EKF) is used for the sequential state estimation based upon the observed

data of the response. At a time step k, the state Xk+1 and the error covariance matrix Pk+1|k for the next

time step k+1 can be predicted by using the discrete state equation, Eq. (11), as

(15)

(16)

where Φk+1|k is the state transition matrix which can be approximately obtained using the Jacobian

matrix as

Φk+1|k = (17) 

and the covariance of the system noise Qk is commonly taken as a time-invariant value.

As the observation Yk+1 becomes available at k+1, the state vector and the error covariance can be

updated by a filtering process as (Yun and Shinozuka 1980, Hoshiya and Sato 1984).

(18)

(19)

where Kk+1 is the Kalman gain matrix at time step k + 1 as

(20)

and the covariance of the observation noise Rk is also taken as a time-invariant value.

Then the prediction of the state may proceed to the next time step k+2.

4.3. Modified extended Kalman filter

The EKF is based on the first order Taylor approximation of the state transition equation on the

estimated state trajectory. However, there are limitations if the first order derivatives of the nonlinear

terms are not well defined as in the modified Takeda model used in the present study, so that the

covariance matrices in Eq. (15) may not be adequately evaluated. Schei (1997) proposed the modified

extended Kalman filter (MEKF) algorithm with a finite difference scheme to improve this limitation of

the EKF.

In the MEKF, the state transition matrix is approximately obtained using a finite difference scheme as

X̂k 1 k+ G X̂k |k  f k,( )=

Pk 1 k+ Φk 1 k+ Pk kΦk 1 k+

T
Qk+=

I Δt
∂G X f;t,( )

∂X
-------------------------

X X̂k |k=

+

X̂k 1 k 1++ X̂k 1 k+ Kk 1+ Yk 1+ Hk 1+ X̂k 1 k+–[ ]+=

Pk 1 k 1++ 1 Kk 1+ Hk 1+–[ ]Pk 1 k+ I Kk 1+ Hk 1+–[ ]T Kk 1+ RkKk 1+

T
+=

Kk 1+ Pk 1 k+ Hk 1+

T
Hk 1+ Pk 1 k+ Hk 1+

T
Rk+[ ]

1–
=
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(21)

where ej is small perturbation in the j-th component of the state vector X. Using this state transition

matrix and Cholesky factorization of the error covariance matrixes Pk/k, the predicted error covariance

Pk+1/k at time step k+1 can be obtained without calculation of the Jacobian matrix in Eq. (17). The

square root estimation procedure has been utilized for keeping the positive definiteness of the error

covariance matrix (Schei 1997). Then the updated state vector and covariance matrix  and

 can be obtained using the same procedure of the EKF.

4.4. Sequential modified extended kalman filter

In the EKF and MEKF techniques, an augmented state vector including the unknown parameters is used

for the identification of the parameters. Therefore the size of the state vector and the corresponding

state equation can be easily too big to handle particularly for the problems related to real and practical

structural systems. Hence, in this study, two steps approach so called the sequential modified extended

Kalman filter (SMEKF) is proposed. At first the state vector consisting of only the system responses is

estimated based on the concurrent estimates of the parameters using the MEKF. Then the unknown

parameters are identified based on the estimated state using the sequential prediction error method

(Goodwin and Sin 1984, Lee and Yun 1991, Yun, et al. 1997, Blumin and Pogodaev 2003). The SMEKF

procedure is summarized in Fig. 5.

The sequential prediction error method for the parameter estimation can be summarized as 

 (22)

where ; and Bk+1 is the adaptation gain matrix which can be

obtained as

(23)

and Ψk is the Jacobian matrix of the observation error vector function e(k + 1, ) as

Φk 1 k+

∂ Gi X( )
∂ Xj

-----------------
1

2ej

------- Gi X ej+( ) Gi X ej–( )–[ ]≈=

X̂k 1 k 1++

Pk 1 k 1++

θ̂ k 1+ θ̂ k Bk 1+ Ψk e k 1 θ̂ k,+( ){+=

e k 1 θ̂ k,+( ) Yk 1+ Hk 1+ X̂k 1 k 1++ θ̂ k( )–=  

Bk 1+

1–
Bk

1– ΨkΨk

T
+=

θ̂ k

Fig. 5 Sequential modified extended kalman filter (SMEKF) algorithm
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(24)

In Eq. (22), Ψk is approximately evaluated using a finite difference scheme similarly to the state

transition matrix Φk+1/k. Then Eq. (22) can be rewritten as

(25)

where Lk+1 is the Cholesky decomposition of the adaptation gain matrix Bk+1, and 

(26)

and lj is the j-th row vector of the Cholesky-decomposed adaptation gain matrix. The updated adaptation

gain matrix in Eq. (23) maintains the positive definiteness by using the square root estimation scheme

(Schei 1997). 

In general large initial values of the error covariance P0/0 and the adaptation gain matrix B0 increase

the speed of convergence, but deteriorate the stability (Loh and Chung 1993). In MEKF and SMEKF,

the sensitivities of the identification results to those initial values are found to be increased by

introducing the finite difference scheme to the state transition matrix. So, for the stable parameter

estimation, it is needed to reduce the time increment of the identification procedure or to carry out

global iterations with small values of P0/0 and B0. If the adaptive techniques which have been proposed

by Sato and Chung (2005), Yang and Lin (2005), and Yang, et al. (2006) are applied, the number of

required global iteration may be reduced. However, such techniques are not considered in this study.

5. Examples for identification of hysteretic behavior of RC piers

5.1. Single degree of freedom case

The first example is an idealized single degree of freedom case with a lumped mass and a vertical

column, as shown in Fig. 6(a). The lumped mass is 500 ton, and the sectional properties of the column

are shown in Fig. 6(a). 

Ψk

∂e k 1 θ,+( )
∂θ

-----------------------------

θ θ̂k=

–=

θ̂ k 1+ θ̂ k Lk 1+

T
Ek e k 1 θ̂ k,+( ){ }+=

Eij( )k
ei θ lj+( ) ei– θ lj–( )

2
----------------------------------------------

θ θ̂k=

=

Fig. 6 Single degree of freedom model
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The nonlinear hysteretic behavior of the column is examined for a harmonic load with a frequency

1.5 Hz and a slowly varying envelope as shown in Fig. 6(b). The hysteretic behavior is characterized

using the modified Takeda model with four nonlinear parameters; i.e., My, α, β and γ as in Section 2. It

is assumed that the shear span to depth ratio (a/d) is greater than 4.0, so ε = 1.0 in Eq. (1). Then the

pinching effect is only affected by a constant axial force of P/|Po| = 0.2 in Eq. (2). The exact values of

the nonlinear parameters are assumed as My = 500 KN·m, α = 0.03, β = 0.7, and γ = 0.02. The natural

frequency of the undamaged linear case is obtained as 1.39 Hz, and the damping ratio is assumed as

5%. For the nonlinear parameter estimation of this model, the ground motion and acceleration

responses are assumed to be measured. Fig. 6(c) shows the relative acceleration response of the lumped

mass. The measurement noises are assumed to be 3% of the exact values in the root mean square

(RMS) levels. 

The acceleration response is included in the state vector in order to use the measured acceleration data

directly. The state vector is taken differently for the MEKF and SMEKF methods as

In the MEKF method: 

In the SMEKF method; [X = ]T for the state estimation in the MEKF procedure, while θ = [M α

β γ]T for the parameter estimation in the SPEM procedure.

The initial guesses for the nonlinear parameters θ0 were taken as the values of 50% of the exact

values as shown in Table 1. The initial value of the adaptation gain matrix B0 and the error covariance

matrix P0/0 are customarily taken through trial and error procedures. Generally those values used to be

taken as large values to speed up the convergence. Special schemes such as adaptive data weighting are

frequently employed to improve the stability and accuracy. In the present study, the initial B0 was taken

as a diagonal matrix with diagonal elements of 2.0, 0.5, 0.1, and 0.01 of the initial values of My, α, β

and γ, respectively, and initial P0/0 was taken as the diagonal matrix with 0.01 in the diagonals.

Compared with the case using the conventional EKF, those initial values were taken to be relatively

small values to secure the stability of the MEKF and SMEKF which use a finite difference scheme, so a

considerably larger number of global iterations were required. The values of the system noise

covariance matrix Q and the observational noise covariance matrix R were also chosen through several

trials, because those values affect the accuracy and robustness of identification. The diagonal values of

R are commonly taken as the RMS values of the observational noises. In general a large value of R

improves the robustness of identification, but deteriorates the accuracy. On the other hand, a small

value of R may cause a divergence problem in identification. In this study, the diagonal values of R and

Q were taken as 0.01.

The time step Δt of each identification step was taken as 0.002 sec, and the parameter estimation was

carried for duration of 10 sec. From Table 1 and Figs. 7 and 8, it can be observed that the estimated

parameters and hystereses by both of the MEKF and SMEKF methods are very excellent, though the

results by the SMEKF are better. It is interesting to note that the acceleration responses recalculated

using the identified nonlinear parameters by two methods very well coincide with the exact value as in

Figs. 7(b) and 8(b).

Fig. 9 shows the parameter tracking procedures for four nonlinear parameters in global iterations by

the SMEKF. For the present hysteretic behavior for a RC pier, the yield moment and post yield stiffness

parameters (My and α) mainly control the overall shape of the hysteresis, while the remaining

parameters (β and γ) reflect the pinching and strength deterioration characteristics. It has been found

that the estimates for the first two parameters (My and α) converge to the assumed exact values much

faster, while the estimates of the other two parameters (β and γ) depend on the accuracy of the former

two. It is also found from a series of parametric studies that the required number of the global iterations

X q  q·   q··  M  α  β  γ[ ]T=

q q·  q··
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for the parameter estimation is about 20 for this example, and it may be reduced by reducing the time

step for the parameter estimation. 

Table 1 Results of parameter estimations for a SDOF model

Nonlinear Parameters My (KN⋅m) α β γ

Exact Values 500.0 0.0300 0.7000 0.0200

Initial guesses 250.0 0.0150 0.3500 0.0100

With SMEKF 504.6 0.0296 0.6967 0.0201

With MEKF 511.2 0.0323 0.6352 0.0158

Fig. 7 Nonlinear responses estimated by the SMEKF (____ : Exact and -----: Estimated)

Fig. 8 Nonlinear responses estimated by the MEKF (____ : Exact and -----: Estimated)
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5.2. Two-span continuous bridge model in longitudinal direction

The second example is a simplified continuous bridge model with a pier in the middle of the deck. It

is assumed that the deck is supported by rollers at both ends in the longitudinal direction of the bridge

and earthquake load is applied in the direction, so the effect of the deck may be considered as an

additional lumped mass on the top of the pier. The pier is modeled by 5 beam elements in the 2-D plan.

Two DOFs; i.e., a longitudinal displacement and a rotation, are assigned at each node, so the total

number of DOFs is 10. The geometric and sectional properties of the pier are shown in Fig. 10. A

scaled El Centro earthquake (NS, peak ground acceleration (pga)=0.15 g, 1940) is used in this study.

Nonlinear hysteretic behavior is assumed to occur at the bottom of the pier during the earthquake. 

Fig. 11 shows the measured input earthquake acceleration and relative acceleration response at the

top of the pier. The corresponding moment-curvature response at the bottom of the pier is also shown in

Fig. 11(c). 

The assumed exact values of the parameters of the hysteretic behavior are: My = 1200 KN·m,

α = 0.01, β = 1.0, and γ = 0.05. The first natural frequency of this model in the longitudinal direction is

obtained as 0.64 Hz, while the damping ratio is assumed as 5% viscous damping for each mode.

In this example, the performance of two system identification techniques, i.e., the SMEKF and

MEKF, is compared, and the influence of the number of the modes included in the nonlinear dynamic

analysis is examined. It is assumed that random noises are included in the measured ground excitation

and acceleration response at the top of the pier and the noise levels are 3% in RMS levels. The initial

Fig. 9 Parameter tracking procedures in global iterations by the SMEKF
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guesses for the nonlinear parameters θ0 were taken as the values of 50% of the exact values as shown in

Table 2. The initial adaptation gain matrix B0was taken as a diagonal matrix with diagonal elements of

2.0, 0.5, 0.01 and 0.001 of the initial values of My, α, β, and γ, respectively, through several trials. The

initial error covariance matrix P0/0 and the system and observation noise covariance matrices Q and R

were taken as diagonal matrices with 0.01 in the diagonals as in the previous example.

Table 2 and Figs. 12 and 13 show that the SMEKF has provided excellent estimates for the nonlinear

parameters with the acceleration response measurement only at the top of the pier, if the first 3 modes

are used in the dynamic analysis. On the other hand, the MEKF has failed to give reasonable estimates

for the present system of multi-degrees of freedom with a very limited observation data. 

In the nonlinear system identification using the mode superposition, if more modes are introduced,

more accurate results can be obtained. As shown in Fig. 12, the accuracy in the identification improves

with the increasing number of the modes (i.e. 3 modes) used in the SMEKF. But the estimated results

Fig. 10 Two span continuous bridge model subjected earthquake excitation in longitudinal direction

Fig. 11 Input excitation and nonlinear responses

Table 2 Estimated parameters of bridge pier for earthquake in longitudinal direction

Nonlinear Parameters My (KN⋅m) α β γ

Exact Values 1200.0 0.0100 1.0000 0.0500

Initial guesses 600.0 0.0050 0.5000 0.0250

w/ 1 mode
SMEKF 849.5 0.0090 1.1373 0.0349

MEKF 901.3 0.0122 0.5649 0.0421

w/ 3 modes
SMEKF 1175.5 0.0093 1.0876 0.0352

MEKF 892.9 0.0122 1.6470 0.0345
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by the MEKF do not improve even though 3 modes are included. This is due to the increased system

dimension and complexity in the augmented state vector used in the MEKF, particularly for the present

complex hysteretic behavior. The results also show the limitation of the MEKF for multi-degrees of

freedom with a very limited number of the observation response; i.e. one acceleration measurement at

the top of the pier. The recalculated acceleration responses at the top of the pier using the identified

nonlinear parameters are compared with the exact value in Figs. 12(c) and 13(c). The response

recalculated using the identified nonlinear parameters by the SMEKF have been found to coincide very

well with the exact value.

5.3. Two-span continuous bridge model in transverse direction

The third example is a two span continuous bridge model subjected to an earthquake load in the

transverse direction. The bridge deck has hinge supports at both ends in the transverse direction. It is

assumed that the deck and the pier have uniform cross-sections. The bridge structure is modeled by

beam elements; 10 elements for the deck and 5 elements for the pier as in Fig. 14. The bottom of the

bridge pier is assumed to be damaged by a scaled El Centro earthquake (NS, pga = 0.4 g, 1940). The

Fig. 12 Recalculated hystereses and acceleration response using the estimates by the SMEKF and modal
sorting (____ : Exact and -----: Estimated)

Fig. 13 Recalculated hystereses and acceleration response using the estimates by the MEKF and modal sorting
(____ : Exact and -----: Estimated)
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geometric and sectional properties are shown in Fig. 14(a). Since the present example structure is

symmetric with respect to the bridge pier, the response in the transverse direction may be calculated

by assigning 2 DOFs at each node; i.e., a transverse displacement and a rotation. However, in this

example, 6 DOFs were assigned at each node to demonstrate the effectiveness of the modal sorting

approach. The acceleration responses in the transverse direction are assumed to be measured at 6

points, 5 points on the bridge deck and 1 point near the bottom of the pier, as shown in Fig. 14(a). It

is assumed that 3% noises in RMS level are included in the excitation and response measurements.

The input ground acceleration is shown in Fig. 14(b). The nonlinear parameters of the hysteretic

behavior at the bottom of the pier are assumed as My = 1200 KN·m, α = 0.01, β = 1.0, and γ = 0.2.

The fundamental natural frequency of this bridge model is obtained as 6.31 Hz in the vertical

direction and 9.3 Hz in the transverse direction (the 3rd mode). The viscous damping ratio is assumed

as 5% for each mode. 

In this example, mode superposition with modal sorting is utilized to reduce the problem size for

the system identification. To evaluate the performance of the proposed modal sorting method, modal

contribution values in Eq. (9) were estimated at Node ⑥ near the bottom of the bridge pier in Fig. 14,

in which local damage was expected during the earthquake. In the present case with a deck and a

pier, two lowest modes are the vertical modes of the deck, so they do not contribute any to the bridge

response for the earthquake load in the transverse direction. That is why the modal sorting has been

introduced here. Fig. 15 shows the effectiveness of the modal sorting method in the nonlinear

dynamic analysis. It is noteworthy that all the modes selected by the modal sorting method are

transversely dominant modes. Hence the transverse responses of the pier computed using the first 5

sorted modes are found to be very reasonable. However, those without using the modal sorting

scheme gave erroneous estimates owing to the omission of important modes in the direction. The

results also show that practically exact dynamic responses can be obtained using 12 modes either

sorted or unsorted. Fig. 16 shows that the nonlinear M−φ curves can be exactly reproduced using 12

sorted modes.

The initial guesses for the nonlinear parameters θ0 were taken as the values of 50% of the exact

values. The initial adaptation gain matrix B0 was taken as a diagonal matrix with diagonal elements of

2.0, 0.5, 0.01 and 0.001 of the initial values of My,  α, β,  and γ, respectively. The initial error covariance

Fig. 14 Two span continuous bridge model and input ground motion in the transverse direction
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Fig. 15 Acceleration responses by mode superposition with modal sorting (2-6 sec; : Exact and : Recalculated)
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matrix P0/0 and the system and the observation noise covariance matrices Q and R were taken as

diagonal matrices with 0.01 in their diagonals. Table 3 shows two estimated nonlinear parameters using

various numbers of the sorted modes and SMEKF. The results indicate that the accuracy of the

estimated parameters got improved with the increasing number of the modes included. Reasonable

estimates of the parameters were obtained with the SMEKF, which can reproduce excellent hystereses

Fig. 16 M−φ relationships by mode superposition with or without modal sorting using the exact parameters
(____ : Exact and -----: Recalculated)

Table 3 Estimated parameters of bridge pier in transverse direction using modal sorting and SMEKF

Nonlinear Parameters My (KN⋅m) α β γ

Exact Values 1200.0 0.0100 1.0000 0.2000

Initial guesses 600.0 0.0050 0.5000 0.1000

w/ 2-modes 1156.8 0.0096 0.4956 0.1674

w/ 5-modes 1174.2 0.0096 0.4894 0.1789

w/ 12-modes 1167.8 0.0096 0.5509 0.1789
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as shown in Fig. 17. In Fig. 18, the recalculated acceleration responses with the identified parameters

using 12 sorted modes are compared with the exact responses. It can be found that very accurate

responses have been estimated.

Fig. 19 shows the tracking procedures of the parameter estimation in global iterations. In the present

case, the nonlinear parameters have been estimated by increasing the number of the included sorted

modes. So the estimated parameters were reused as the initial guesses for the next identification

procedure which included more modes. Fig. 19 shows that the yield moment and post yield stiffness

parameters (My and α) were reasonably identified with the two sorted modes. The strength deterioration

parameter γ was found to converge to an exact value, if 5 sorted modes were used. Fig. 19(c) shows that

the pinching parameter β was identified at the last stage of identification which included 12 sorted

modes. The accuracy of the estimate for β is not so good as shown in Table 4. However, very good

estimate has been obtained for the hysteresis as shown in Fig. 17, which indicates the insensitivity of

the parameter for the overall hysteretic behavior in the present example case.

Fig. 17 Estimated M−φ relationships by the SMEKF and modal sorting (____ : Exact and -----: Recalculated)

Fig. 18 Recalculated acceleration responses by the SMEKF with 12 sorted modes (2-6sec; ____ : Exact and -----:
Recalculated)
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6. Conclusions

In this study, identification of the nonlinear hysteretic behavior of a RC bridge pier is carried out. The

hysteretic behavior is modeled using the modified Takeda model, in which important nonlinear

characteristics of the damaged RC pier, such as stiffness degradation, pinching effect and strength

deterioration, can be effectively described using a limited number of parameters. As the modified

Takeda model logically defined the hysteresis with various rules of loading and reloading, the modified

extended Kalman filter (MEKF) is employed instead of the conventional extended Kalman filter

(EKF), in which a finite difference scheme is used for calculating the state transition matrix. In this

study, a mode superposition method with modal sorting is proposed to reduce the problem size for the

nonlinear system identification using Kalman filtering techniques. The sequential modified extended

Kalman filter (SMEKF) is also proposed to improve the convergence and to prevent the erroneous

estimation results in practical structural dynamic system with a large number of DOFs, in which the

MEKF is used for the state estimation and the nonlinear sequential prediction error method is for the

parameter identification. 

Example analyses were carried out on a continuous bridge with a RC pier in the middle, which is

subjected to earthquake excitations in the longitudinal and transverse directions. It has been found that

both of the SMEKF and a mode superposition with modal sorting technique are very effective to

identify the nonlinear hysteretic behavior and parameters involved in a locally damaged bridge pier

Fig. 19 Parameter tracking procedures in global iterations by the SMEKF with sorted modes
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with a limited measurement data for the acceleration responses of the bridge structure. The system

identification for nonlinear structural dynamic systems was customarily carried out with displacement

or velocity responses. However, in this study a nonlinear parameter identification method has been

developed using the acceleration measurements only, which are much easier to measure in the practical

bridge structures, such as long-span bridges.
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