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Abstract. Smart sensors densely distributed over structures can provide rich information for structural
monitoring using their onboard wireless communication and computational capabilities. However, issues such as
time synchronization error, data loss, and dealing with large amounts of harvested data have limited the
implementation of full-fledged systems. Limited network resources (e.g. battery power, storage space, bandwidth,
etc.) make these issues quite challenging. This paper first investigates the effects of time synchronization error and
data loss, aiming to clarify requirements on synchronization accuracy and communication reliability in SHM
applications. Coordinated computing is then examined as a way to manage large amounts of data.
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1. Introduction

The investment of the United States in civil infrastructure is estimated to be $20 trillion. Annual costs

amount to between 8-15% of the GDP for most industrialized countries (U.S. Census 2004, Jensen
2003). This investment is likely to increase; for example, the U.S. Department of Transportation (2003)

†Assistant Professor
‡Doctoral Candidate
‡†Associate Professor
‡‡Nathan M. and Anne M. Newmark Endowed Chair, Corresponding Author, E-mail bfs@uiuc.edu

DOI: http://dx.doi.org/10.12989/sss.2007.3.3.299



300 T. Nagayama, S. H. Sim, Y. Miyamori, and B. F. Spencer, Jr.

has reported that the capital investment to preserve highways and bridges increased 45.7% from $23.2
billion in 1997 to $33.6 billion in 2000. Indeed, much attention has been focused in recent years on the

declining state of the aging infrastructure in the U.S. These concerns apply not only to civil engineering

structures, such as the nation’s bridges, highways, and buildings, but also to other types of structures,

such as the aging fleet of aircraft currently in use by domestic and foreign airlines. The ability to

continuously monitor the integrity of civil infrastructures in real-time offers the opportunity to reduce

maintenance and inspection costs, while providing for increased safety to the public. Furthermore, after

natural disasters, it is imperative that emergency facilities and evacuation routes, including bridges and
highways, be assessed for safety. Addressing all of these issues is the objective of structural health

monitoring (SHM).

To efficaciously investigate damage, a dense array of sensors is required for large civil engineering

structures (Spencer, et al. 2004, Gao 2005). Dense measurement is expected to provide detailed

information on civil infrastructure, which typically consists of a large number of components and has

many degrees of freedom. Monitoring the Tsing Ma Bridge and Kap Shui Mun Bridge in Hong Kong,
which uses 326 channels of sensors and produces about 65 MB of data every hour, is an attempt toward

in-depth monitoring (Wong 2004). Expensive installation of traditional monitoring systems, however,

has limited significantly wider spread implementation (Lynch and Loh 2006, Farrar 2001, and Celebi

2002). Smart sensors with wireless communication capability are reported to reduce installation effort

to a great extent (Lynch, et al. 2005) and help to realize a dense array of sensors.

Though networks of densely deployed smart sensors have the potential to improve SHM dramatically,
limited resources on smart sensors preclude direct application of traditional monitoring strategies on

smart sensor networks. Time synchronization among smart sensors is not as accurate as for a wired

system. Data transfer between sensor nodes is less reliable than in a wired system due to data loss.

Transferring all data to a central station using wireless communication is not practical or scalable, especially

in a system employing a dense array of smart sensors. Moreover, battery power often imposes practical

limits on these functionalities. Although many researchers have reported difficulties in data transfer
rates and reliability, as well as time synchronization (Casciati, et al. 2003, Elson, et al. 2002, Kottapalli,

et al. 2003, Mechitov, et al. 2003, Mosalam 2003, Kurata, et al. 2004 Wang, et al. 2005), the effects on

SHM and ways to address these issues have not been studied in depth. Careful investigation can

provide insight into how to accommodate these difficulties from a SHM perspective. 

This paper studies issues associated with SHM applications employing smart sensor networks.

Several issues critical to realizing a SHM system using smart sensors are first described. Among them,

the effects of time synchronization error and data loss are investigated from a SHM perspective.
Coordinated computing is examined as a way to manage large amounts of data. Numerical simulation

and experimental testing validate the derivation and proposals.

2. SHM employing smart sensors

Smart sensors with computational and communication capabilities have been employed for SHM

research. Some of the first efforts in developing smart sensors for application to civil engineering

structures were presented by Straser and Kiremidjian (1996, 1998) and Kiremidjian, et al. (1997). Since

these initial efforts, numerous researchers have developed smart sensing platforms (Lynch and Loh

2005). With respect to functionality, most of early attempts simply replaced wired communication with

RF links. Together with introduction of battery power at the sensor nodes, RF communication eliminated the
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need for cabling. Such measurement systems with wireless communication links, however, encounter
many difficulties, e.g., slow and unreliable communication, inaccurate time synchronization among

sensor nodes, insufficient sensing capabilities, and limited power. While smart sensor’s computational

capability potentially offers new opportunities for SHM, these issues need to be carefully examined

before a functional SHM system can be realized.

Among the issues is lossy RF communication, which can severely impair a SHM system. Structural

analysis generally assumes data acquired at specified time interval is available with certain accuracy.

While measurement noise and quantization errors are usually considered primary sources of errors, data
loss has not been considered as an error source in traditional SHM systems because all the data is

reliably transferred in a wired system. This assumption does not apply to wireless systems; many

researchers have reported data loss during wireless communication (Casciati, et al. 2003, Mosalam

2003, Kurata, et al. 2004). Mechitov, et al. (2003) addressed this communication reliability problem by

utilizing acknowledgement messages. However, reliable communication is stated to be slow due to

associated header information and acknowledgement messages, using more resources of a system.
Studies of the data loss effect on structural analysis are needed to assess the use of more expensive

reliable communication versus simple lossy communication.

Time synchronization error in a smart sensor network is another source of inaccuracy in SHM

applications. Each sensor node has its own clock. By communicating with surrounding nodes, smart sensors

can assess relative difference among their local clocks. Well-known algorithms include Reference

Broadcast Synchronization (Elson, et al. 2002), Flooding Time Synchronization Protocol (Maroti, et al.
2004), and Timing-sync Protocol for Sensor Networks (Ganeriwal, et al. 2003). Time synchronization

is, however, not as accurate as for a wired networked system. Also, the local clock of a smart sensor can

have large drift in time and need to synchronize with each other repeatedly to maintain certain

synchronization accuracy. Time synchronization error problems have been reported both in laboratory

and in full-scale bridge monitoring applications using smart sensors (Lynch, et al. 2005). Requirements

on synchronization accuracy need to be investigated from a SHM perspective.
Data aggregation is especially problematic for SHM applications which typically require large

amounts of data. For example, 2-byte data samples collected at 100 Hz generate 12 kB of data every

minute. While the CC1000, one of RF chips adapted in several early smart sensor platforms, supports

38.4 kbps data rate, the actual rate at which measurement data is transferred is much slower because of

packet collision, packet headers, etc. Acknowledgement messages associated with reliable communication

reduce data transfer speeds even more. A centralized data collection system, which simply replaces the

wired links of a traditional SHM system with RF links, therefore, cannot handle the massive amounts of
data acquired concurrently at hundreds of sensor nodes (see Fig. 1). 

Several researchers have attempted to address the data aggregation problem. Tiered networks

(Govindan, et al. 2005) help centrally collect a large amount of data using several powerful master

nodes together with smart sensor end nodes, though the usage is limited to applications in which use of

Fig. 1 Centralized data collection
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powerful master nodes is viable; cost to install master nodes and the number of required master nodes
are factors in determining its practicality. Another approach to address this data aggregation problem is

independent data processing as shown in Fig. 2. Each smart sensor independently measures and

processes data, typically using same pattern recognition, without sharing information among the

neighboring nodes (Sohn, et al. 2002, Lynch, et al. 2005, Nitta, et al. 2005). Because only the processed

data is sent back to the base station, communication requirements are relatively small. However, from a

SHM perspective, this approach can not utilize available spatial information from neighboring nodes
(e.g. mode shapes). The inability of this approach to incorporate spatial information limits its

effectiveness in SHM applications. Data aggregation utilizing distributed computing (Gao 2005, Nagayama,

et al. 2006) has the potential to achieve effective SHM employing smart sensors. Application specific

knowledge is utilized to efficiently aggregate information in a distributed and coordinated manner (see

Fig. 3). Though this concept has been proposed, only partial implementation of this concept has been

reported so far (Nagayama, et al. 2006). Implementation of the concept is expected to demonstrate a
way to address the data aggregation problem in SHM applications.

3. Effect of time synchronization error on SHM

Time synchronization error in a smart sensor network can cause inaccuracy in SHM applications.

Time synchronization is a middleware service common to smart sensor applications and has been
widely investigated. Each smart sensor has its own local clock, which is not synchronized initially with

other sensor nodes. By communicating with surrounding nodes, smart sensors can assess relative

difference among their local clocks. For example, Mica2 motes employing TPSN are reported to

synchronize with each other to an accuracy of 50 µsec; different algorithms and hardware resources may

result in different precision. Whereas time synchronization protocols have been intensively studied,

requirements on synchronization from an application perspective are lacking. In many SHM applications,
commonly used quantities include cross spectral density (CSD), power spectral density (PSD), correlation

function, and modal parameters. The effects of synchronization error on these estimates are discussed

in this section.

3.1. Modeling of time synchronization error

Consider a signal from a smart sensor in local clock coordinate x(t) can be written using a signal in

the reference clock, or the global clock x(t) as

(1)

where tj is the initial time synchronization error and α is the clock drift rate. In the frequency domain,

x t( ) x 1 α+( )t tj–( )=

Fig. 2 Independent data processing Fig. 3 Coordinated computing strategy
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this relationship is expressed as

(2)

where X(ω) and X(ω) are the Fourier transform of x(t) and x(t), respectively. Clock drift is oftentimes

small. In the following derivation α is assumed to be zero.

3.2. Impact of time synchronization error in input-output identification

Change in the estimation of modal parameters due to the poorly synchronized input and output can be

identified by looking into the transfer function. If the m-th input and n-th output are shifted by tm
in and

tn
out, respectively, the transfer function Hnm(ω) between the shifted input and output is written as

= (3)

where tnm = tm
in – tn

out.  From Fq. (3), the magnitude of transfer function remains unchanged while its

phase is shifted by tnm. When modal parameters are estimated from this transfer function, the natural
frequency, damping ratio, and magnitude of the mode shape remain unchanged; only the phase of mode

shapes is affected by the time synchronization error. The phase shift φk of the k-th mode is estimated as

follows,

(4)

where fk is the natural frequency of the k-th mode.

3.3. Impact of time synchronization error in output-only identification

The effect of time synchronization errors on modal parameters such as the natural frequency,

damping ratio, and mode shape are examined for the case when only output measurement is available.
When the excitation can be assumed to be broadband and the structural response stationary, the

correlation function between the output measurements can be used to determine modal parameters by

virtue of the Natural Excitation Technique (NExT) (James, et al. 1992). Investigating the correlation

function, change in modal parameters due to the time synchronization inaccuracy can be identified. 

For completeness, NExT is briefly reviewed here. Consider the equation of motion in  under the

assumption that the random responses are stationary.

(5)

where M, C, and K are the n × n mass, damping, and stiffness matrices, respectively; x(t) is a n × 1

displacement vector; f (t) is a m × 1 force vector; (t) and (t) are the velocity and the acceleration

vector. By multiplying displacement at reference sensor and taking expected value, is transformed as
follows.

X ω( ) 1

1 α+
-------------e
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-------------–
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-------------⎝ ⎠
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+ (6)

Because the input force and response at the reference sensor location are uncorrelated for τ ≥ 0, the

right hand side is zero. The expectation between the two signals is the correlation function. Therefore,

by denoting E[x(t + τ)y(t)] as the correlation function Rxy(τ),  Eq. (6) is rewritten as

(7)

When  and  are weakly stationary processes, the following relation holds (Bendat and Piersol

2000).

(8)

A similar relation holds for higher derivatives. 

(9)

where the superscript, m, denotes the m-th derivative. Consequently, Eq. (7) can be rewritten as 

(10)

Thus, the correlation function for the stationary responses is shown to satisfy the equation of motion for

free vibration. This fact can be directly used for modal analysis such as Eigensystem Realization Algorithm

(ERA) (Juang and Pappa 1985).

Time synchronization errors enter into correlation function estimation. Consider a cross correlation
function  between a response xi(t) at location i and the reference signal xref (t). The sensor node

at location i has a time synchronization error of txi
 relative to the reference node. The correlation

function, , under the synchronization error, can be written as

= (11)

If txi
 is positive, the correlation function for the interval (0, txi

) does not have the same characteristics as

the succeeding signal. In a structural analysis context, this portion has negative damping; therefore, the

beginning portion of the signal needs to be removed. When txi
 is unknown, a segment corresponding to

the maximum possible time synchronization error, tx
max

, is truncated from the correlation function. 

The correlation functions, each having independent time synchronization errors, do not satisfy the

equation of motion, Eq. (10). The correlation functions after the truncation, however, can be decomposed
into modal components as follows

ME x·· t τ+( )xref t( )[ ] CE x· t τ+( )xref t( )[ ]+

KE x t τ+( )xref t( )[ ]=E f t τ+( )xref t( )[ ]

MRx··xref
τ( ) CRx·xref

τ( ) KRxxref
τ( )+ + 0,  τ 0>=

A
·

t( ) B t( )

R
A
·
B
τ( ) R

·
AB τ( )=

R
A

m( )
B
τ( ) RAB

m( )
τ( )=

MR
··
xxref τ( ) CR

·
xxref τ( ) KRxxref

τ( )+ + 0,   τ 0>=

Rxixref
τ( )

Rxixref
τ( )

Rxixref
τ( ) E xi t txi– τ+( )xref t( )[ ] Rxixref

t txi–( )=

Rx′xref ′
τ( ) Φ′ΛA=

Φ′ ϕ1′ ϕ2′ … ϕ2n′[ ]=
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(12)

where  is the correlation function matrix on the interval (txmax, ∞), φij is j-th element of i-th

mode shape, hi and ωi are i-th modal damping ratio and modal natural frequency, respectively, and ai is

a factor accounting for the relative contribution of the i-th mode in the correlation function matrix.

Modal analysis techniques such as ERA can be used to identify these modal parameters. As  shows, the

natural frequencies and damping ratios remain the same. The observed mode shapes Φ'  are different

from the original mode shapes; changes in mode shape amplitude are negligible due to small hi and tx
i
,

while phase shift can be meaningful. Mode shape phases can indicate structural damage and are important

modal characteristics from a SHM perspective (Nagayama, et al. 2005). Time synchronization error of

1ms results in about 3.6 degree phase delay of a mode at 10 Hz, while the same time synchronization

error causes 36 degree phase delay at 100 Hz. The phase delay tolerance depends on the applications.

When change in phase is investigated as in Nagayama, et al. (2005), even 3.6 degree phase delay is considered

to obscure the important features of the response. The requirements on the time synchronization for
modal analysis need to be assessed mainly from the viewpoint of mode shape phases.

3.4. Numerical simulation in 2 DOF model

To confirm the analytical investigation in the previous section, a numerical simulation is conducted

using the 2 DOF model shown in Fig. 4. In this example, the natural frequencies and damping ratios of
the model are listed in Table 2. Two independent band limited white noise inputs are imposed on the nodes,

and accelerations of the lumped masses are simulated with the sampling time of 1 msec. 50 sample time

histories are obtained for different input excitations and each time history is 81.91 seconds long.

φ11 λ1tx
1

–( )exp φ21 λ2tx
1

–( )exp … φ2n1 λ2ntx
1

–( )exp

φ12 λ1tx
2

–( )exp φ22 λ2tx
2

–( )exp … φ2n2 λ2ntx
2

–( )exp

:· :·  :·

φ1m λ1txm–( )exp φ2m λ2txm–( )exp … φ2nm λ2ntxm–( )exp

=
…

Λ diag λ1τ( )exp   λ2τ( ) exp … λ2nτ( )exp[ ]( )=

λi hiω i– jω i 1 hi

2
–+=

A diag a1  a2 … a2n[ ]( )=

Rx′xref ′
τ( )

Fig. 4 Analytical model
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Several cases of time synchronization errors (∆τ = 1, 3, 5, 10, 25, 50, 100 msec) are considered for the
simulated acceleration data of the 2nd nodal point. 

Input-output and output-only identification methods are applied to estimate the mode shapes of the

system. The transfer functions calculated from the unsynchronized input force and output accelerations

are used to obtain the operational mode shapes. Eq. (3) is used to get the transfer functions analytically

for comparison. In addition, NExT/ERA is used to estimate the mode shapes by using only output accelerations.

Since the natural frequency and damping ratio are invariant under the time synchronization error, only
changes in the mode shapes are considered. 

The calculated mode shapes are shown in Fig. 5 and Fig. 6 with respect to the time synchronization

errors. The left figures represent the ratio between the mode shape amplitudes of the two nodes,

and right figures are the phase delay between the two nodes. As expected, phase delay significantly changes

as the time synchronization error increase while the amplitude ratio change is relatively small. For

example, nodes 1 and 2 are almost in phase at 0.1 sec synchronization error in Fig. 6; however, the

amplitude ratio is not changed when the input and output are used, or is increased by 2.4% when
only output is used. Note that the higher modes are more sensitive to the synchronization error

because the phase delay depends on the natural frequency. As shown in Fig. 5 and Fig. 6, the

Table 1 2DOF model

Mass (kg)
m1 1

m2 2

Stiffness (N/m)
k1 200

k2 400

Table 2 Natural frequency and damping ratio

Mode Natural frequency (Hz) Damping ratio

1st 1.261 0.01

2nd 4.018 0.01

Fig. 5 Comparison between analytical and simulation results in the 1st mode
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amplitude ratios of the output-only case are affected by the synchronization error, though it is

small, which implies the methods using output only are more susceptible to the synchronization

error.

The impact of the time synchronization error on the identification of the 2DOF model indicates that the
synchronization error distorts significantly the phase information of the estimated modes. However, smart

sensors equipped with appropriate hardware and time synchronization protocol have been reported to be

synchronized within several milliseconds without significant waste of resources in a system; this level of

the synchronization error may be acceptable in many SHM applications. 

4. Effect of data loss on SHM

Wireless sensor networks do not necessarily offer reliable data acquisition, which has been assumed

in traditional wired SHM systems. Without proper compensation, lost packets can significantly distort

the transmitted signals resulting in inaccurate estimates of the modal parameters and false indication of

damage status. Reliable communication and proper compensation of lost information are necessary for

sound SHM systems. Smart sensors communication protocols can be designed to send acknowledgment
messages after receiving data and request to send the lost packets again to have reliable communication.

However it is desirable to have simple data transmission without acknowledgement and retransmission when

acceptable, because reliably transferring a large amount of vibration measurement data can be challenging.

Data transfer allowing data loss is therefore advantageous to save power and avoid network congestion.

In this section, the effect of data loss on PSD estimates is formulated and compared with that of

observation noise. Strategies for compensation of the lost data are discussed and their effects on estimation of
the PSD, coherence function, and natural frequency are investigated using numerical simulation. 

4.1. Compensation approaches

Data loss during wireless communication causes significant errors in subsequent calculations unless

appropriately addressed. Measured vibration data in a packet is used to reconstruct a time history on a

Fig. 6 Comparison between analytical and simulation results in the 2nd mode
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receiver node. Time stamps or time indeces in a received packet correctly specify where in the

reconstructed time history the vibration data in the received packet needs to be expanded. Data loss

results in empty space in the reconstructed signal. A way to compensate for the lost data is interpolation

using data points around the lost data. “Hold” and “cubic spline” are two major interpolation methods
to consider. In the hold method, the previous data is simply used for the lost data. The cubic spline

method employs the cubic spline fitting to interpolate the lost data. These two interpolation methods

will be considered in an example of SHM procedure and their performance compared.

As well as interpolation methods, the method to construct data packets is considered to have an

impact on the subsequent analyses. Since lost information due to packet loss is determined by how

packets are constructed, different packetizing methods may result in different accuracy of estimated
modal parameters. A simple method of constructing packets, named group packet, is to pack data

sequentially, as shown in Fig. 7(a). When a packet is lost, data loss is concentrated in short time

duration. Another method, distributed data packing, in which data in a packet are distributed over the

whole data set, is shown in Fig. 7(b). These two kinds of packets are considered in this section.

4.2. Effect of data loss on PSD and CSD

In this section, PSD of a signal with the distributed packet data loss is investigated to obtain an

expression of data loss in terms of equivalent observation noise. The PSD is used in calculating the

transfer function from the measured data, which is widely employed in modal analysis using the input

and output information. Investigation of data loss on PSD estimation will give an insight into its effect

on a SHM systems. 

Consider a discrete time sequence . yn is assumed as a stationary random process.
For simplicity, the hold method is used to compensate for the lost data. A total of ND randomly selected

data points are assumed to be lost. Subscript ni (i = 1,2,..., ND) corresponds to the lost points. The

reconstructed signal in the discrete time domain can be expressed as

(n = 1,2,..., N) (13)

where Ai is the difference between yn and the interpolated value (i.e. ), and δn is the

delta function. pn is discrete time sequence representing difference between yn and . The discrete-time

Fourier transform (DFT) of y is given by

(14)

yn n 1 2 ..., N, ,=( )

yn yn Ai

i 1=

ND

∑ δn ni–+ yn pn+= =

Ai yni 1– yni
–=

y

Yk ∆t yn

n 0=

N 1–

∑ exp
j2πkn–

N
------------------=

Fig. 7 Data packet (N: number of data, np: number of data in a packet)
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The PSD of y is 

(15)

* denotes the complex conjugate. The DFT of pn is given by

(16)

The cross spectral density (CSD) between y and pn can be obtained as 

(17)

By taking the expectation of ynAi first, 

(18)

where R(t) is the autocorrelation function of yn. Using  Eq. (16) and assuming that E[Ai Aj] ( ) is
negligible due to the assumption that the lost points are sparse, 

(19)

where ∆t is the time step. From Eq. (15), Eq. (18), and Eq. (19), the error in the PSD estimation defined

by  is 

(20)

The first term in the right side of Eq. (20) is proportional to Syy and much smaller than Syy due to ND/N.
However, the second term is constant over frequency. This term can be large compared to Syy at zeros of

a system; indeed, Syy is extremely small at zeros of a system. The overall shape of the PSD is therefore

mainly determined by the second term.

In contrast to the PSD, the CSD is less susceptible to either data loss or measurement noise. Because

correlation between the data loss terms pn of two different signals is small, the cross spectrum of these

two data loss terms can be assumed zero (i.e. Sp
1
p
2
= 0). Thus, the CSD is only affected by the cross
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terms between the signal and data loss, which does not significantly blur the zeros of the system. The
output-only modal analysis utilizes primarily CSD functions and a limited number of PSD funcitons at

reference points; the input-output modal analysis requires PSD functions to obtain each transfer

function. The output-only modal analysis is therefore expected to outperform the methods using both of

input and output with respect to data loss.

Comparison of the second term with the error in the PSD estimation induced by the observation noise

reveals the data loss level in terms of the noise level. Consider the white noise with the standard

deviation σn. The PSD of the noise is constant in the frequency domain and represented as σn
2 · ∆t. An

equation to relate the observation noise level with the data loss level in Eq. (19) can be written as

follows.

(21)

Let the RMS noise level and the data loss level be ρn and ρd, respectively. 

(22)

where σy is the standard deviation of yn. Eq. (21) is then simplified as

(23)

Data loss is shown to have similar effect on PSD as observation noise. Though not derived analytically

here, Eq. (23) is expected to hold for subsequent analyses, i.e., modal analysis and damage detection.

This conjecture, as well as the effect of packetizing, is investigated with numerical simulation.

4.3. Example

A computer simulation is conducted for a truss model to investigate the effects of data loss on the

procedure of the SHM. The selected model is a 53DOF statically determinate structure as shown in

Fig. 8. Each element has a Young’s modulus of 200GPa and cross-sectional area of 112.2 m2. The truss

is vertically excited at node 6 with the band-limited white noise, and the vertical accelerations of the

2∆t ND⋅
N

-------------------- R 0( ) R ∆t( )–( ) σ n

2
∆t⋅=

ρn

σn

σy
-----=

ρd

# of lost data

# of data
-------------------------------=

ρd

ρn

2

2 1
R ∆t( )
R 0( )
--------------–⎝ ⎠

⎛ ⎞
--------------------------------=

Fig. 8 Planar truss model
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bottom nodes (node 2~14) are measured. After data is acquired at the sampling frequency of 380 Hz,

a certain percentage of packets are randomly dropped to simulate data loss. Two ways of data loss,
group and distributed packet data, are applied to the simulated acceleration of the planar truss model.

In this simulation, the size of packet is selected to be 8. The lost points are selected randomly, and the

hold and cubic spline methods are used to interpolate lost data. ERA is employed in modal analysis.

Each simulation is repeated 100 times and averaged. The simulation results are shown in Fig. 11 and

Fig. 12. 

To verify Eq. (23), the outcome is compared to that of the computer simulation including
observation noise (but without data loss). A band-limited white noise is added to each of the

observed signals. The RMS noise level is specified as a percentage of the RMS of physical response.

Data loss level of 0.38% is estimated from Eq. (23) to have similar effects on power spectral density

as observation noise of 5%. Fig. 9  shows both of data loss and noise result in the same effect on the

PSD and coherence function. 

The loss of data reduces the coherence function except at the system’s poles (see Fig. 9). Because of

Fig. 9 Data loss effect on power spectral density and coherence at node 10

Fig. 10 Data loss effect on cross spectral density between node 8 and 10
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the random nature of data loss occurrence and the excitation, the coherence function varies from

simulation to simulation. In FFT calculations, twenty averages are used. The coherence function’s
deviation from unity depends on the input and output, between which the function is calculated. All the

investigated coherence function plots, however, support 10 % noise addition affects the coherence

function in a similar way as the loss of 0.5~2.5 % data does, which agrees with what Eq. (23) suggests

for PSD.

The zeros of the estimated CSDs of accelerations at node 8 and 10 remain clear with either data loss

or measurement noise (See Fig. 10). Although there is some difference at the zeros, both data loss and
measurement noise do not distort the CSD significantly as compared to the PSD plot in Fig. 9.

Randomness of data loss and noise makes Sp
1
p
2
= 0, resulting in an accurate estimation of the CSD. Note

that the two CSDs with data loss and measurement noise are close to each other, which implies Eq. (23)

still hold for CSD estimation and modal analysis using output only.

Fig. 11 and Fig. 12 illustrate the errors in the estimated natural frequencies under the various levels of

data loss. The errors are calculated with respect to the estimated natural frequencies without any data

Fig. 11 Errors of estimated natural frequencies when input and output are used

Fig. 12 Errors of estimated natural frequencies when only output is used



Issues in structural health monitoring employing smart sensors 313

loss. These figures reveal the cubic spline method does not give a significant benefit in spite of the
additional computation required. When the hold method is used, both of the group and distributed

packets provide a similar level of accuracy overall. However, the effect of these two packetizing

methods on the damage detection algorithm employed in a SHM system should be investigated before

selecting one of them. In addition, the modal analysis methods using only output information are found

more robust against both of data loss and noise by comparing Fig. 11 and Fig. 12. The mean and

standard deviation of the error are significantly reduced in Fig. 12, which agrees with the small errors in

estimation of CSD with data loss and noise.
The relationship between noise and data loss, Eq. (23), can be verified to hold for modal analysis in

Fig. 11 and Fig. 12. The distributed packet and hold method are assumed when Eq. (23) is obtained

in the previous section. The estimated natural frequencies from the distributed packet and hold

methods exhibit close error mean and standard deviation to those of the noise case in Fig. 11 and Fig.

12. The mean error in Fig. 12 are difficult to distinguish; however, if zoomed in, they are close.

Particularly Fig. 12 indicates that Eq. (23) works for the methods using output only as expected from
CSD estimation. 

In this example, the effect of data loss on the SHM system is discussed. The PSD estimates from

the simulated data validate Eq. (23), the relationship between data loss and observation noise level.

Even though not verified analytically, Eq. (23) appears to hold for other function estimates and the

subsequent analysis results, such as CSD, coherence, and the natural frequency estimation. The hold

method with either group or distributed packet is recommended in a SHM system allowing small
amounts of data loss. 

5. Coordinated computing

The amount of data involved in SHM applications normally exceeds practical communication
capabilities of smart sensor networks if all the measurement data needs to be collected centrally; data

aggregation has been an important issue to be addressed before a SHM system employing smart sensors

is realized. One approach to overcome this data aggregation problem has been an independent data

processing strategy. This approach, however, cannot fully exploit information available in the sensor

network. Distribution of data processing and coordination among smart sensors play central roles in

addressing many smart sensor implementation issues, including data aggregation. This section will

demonstrate that distribution and coordination can be well planned so that the data aggregation problem
is addressed without sacrificing structural analysis performance. Two examples of distributed computing

based on SHM analyses are provided to illustrate the approach.

5.1. Distributed implementation of correlation function estimation

Correlation function estimation is oftentimes the beginning step of output-only SHM of civil
infrastructure and usually involves a large amount of measurement data (Gao 2005). Cross-correlation

estimation needs data from two sensor nodes. Measured data needs to be transmitted from one node to

the other before the processing takes place. Associated data communication can be prohibitively large

without careful consideration for implementation. Distribution of data processing and coordination

among smart sensors are addressed herein to incorporate application specific knowledge into data

aggregation.
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Correlation functions are, in practice, estimated from finite length records. Power and cross spectral
density (PSD/CSD) functions are estimated first through the following relation (Bendat and Piersol

2000): 

(24)

where Gxy(ω) is CSD estimation between two stationary Gaussian random process, x(t) and y(t). X(ω)

and Y(ω) are the Fourier transform of x(t) and y(t); the * denotes the complex conjugate. T is time
length of sample records, xi(t) and yi(t). When nd = 1, the estimate has a large random error. The random

error is reduced by computing an ensemble of the estimates from nd different or partially overlapped

records. The normalized RMS error ε[|Gxy(ω)|] of the spectral density function estimation is given as 

ε [|Gxy(ω)|] = (25)

γxy is the coherence function between x(t) and y(t), indicating the degree of linearity between them.

Through the averaging process, the estimation error is reduced. Averaging of 10-20 times is common

practice. The estimated spectral densities are then converted to correlation functions by inverse Fourier

transform.

An implementation of correlation function estimation for a small community of sensors in a
centralized data collection scheme is shown in Fig. 13. where node 1 works as a reference sensor.

Assuming ns nodes, including the reference node, are measuring structural response, each node

acquires data and sends to the reference node. The reference node calculates the spectral density as in

Eq. (24). This procedure is repeated nd times and averaged. After averaging, the inverse FFT is taken

to calculate the correlation function. All the calculation takes place at the reference nodes. When the

spectral density is estimated from discrete time history records of length N, data to be transmitted
through the radio is N×nd×(ns−1).

In the next scheme, data flow for correlation function estimation is examined and data transfer is

reorganized to take advantage of computational capability on each smart sensor node. After the first

measurement, the reference node broadcasts the time record to all the nodes. On receiving the record,

each node calculates the spectral density between its own data and the received record. This spectral

density estimate is locally stored. The nodes repeat this procedure nd times. After each measurement,

the stored value is updated by taking a weighted average between the stored value and the current
estimate. In this way, Eq. (24) is calculated on each node. Finally the inverse FFT is applied to the spectral

density estimate locally. The resultant correlation function is sent back to the reference node. Because

the subsequent modal analysis such as ERA uses, at most, half of the correlation function data length,

Gxy ω( ) 1

ndT
-------- + Xi

*

i 1=

nd

∑ ω( )Yi ω( )=

1

γxy nd

-------------------

Fig. 13 Centralized NExT implementation
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N/2 data is sent back to the reference node from each node. The total data to be transmitted in this

scheme is, therefore, N × nd + N/2 × (ns−1) (see Fig. 14). 

As the number of nodes increases, the advantage of the second scheme, in terms of communication
requirements, becomes significant. The second approach requires data transfer of O(N · (nd + ns)), while

the first one needs to transmit to the reference sensor node data of the size of O(N · nd · ns). The

distributed implementation leverages knowledge regarding the application to reduce communication

requirements as well as to utilize CPU and memory in a smart sensor network efficiently.

The data communication analysis above assumes that all the nodes are in single-hop range of the

reference node. This assumption is not necessarily the case for a general SHM application. However,
Gao (2005) proposed a Distributed Computing Strategy (DCS) for SHM which support this idea. Neighboring

smart sensors in a single-hop communication range make local sensor communities and perform SHM

in the communities. In such applications, the assumption of nodes being in single hop range of a

reference node is reasonable.

5.2. Distributed computing strategy (DCS)

The DCS for SHM proposed by Gao (2005) is suitable for implementation on networks of densely

distributed smart sensors. The conceptual hierarchical organization of the DCS approach is shown in

Fig. 15. In contrast to traditional SHM algorithms which require all the measured information to be

transferred to a central station, the measured information is aggregated locally by a selected sensor

within the sensor group, termed the manager sensor, and only limited information is sent back to the

central station to provide the condition of the structure. Small numbers of smart sensors are grouped to
form different communities so that all sensors in a community are located in the range of single hop.

Although each sensor in Fig. 15 is included in only one community, in the DCS approach smart sensors

can be contained in multiple communities. Each manager sensor collects necessary information and

Fig. 15 Sketch of hierarchical organization

Fig. 14 Distributed NExT implementation
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implements the damage detection algorithm for its community. Adjacent manager sensors interact with
each other to exchange information. In Fig. 15, manager sensors in communities 1, 2, and 3 interact

with each other while community 4 does only with community 3. Once information is aggregated, the

manager sensors determine information to be sent back to the central station. The manager sensor of the

community in which damage has not occurred transmits only an “OK” signal to the central station. If

damage has occurred, the manager sensor of the community needs to send damage information such as

damage location, which is reflected by the solid line in Fig. 15. Thus, the DCS approach requires only

limited information need to be transferred between sensors throughout the entire sensor network. This
approach will significantly reduce the communication traffic in the sensor network. 

Gao (2005) shows that NExT (James, et al. 1992), Eigensystem Realization Algorithm (Juang and Pappa

1985), and Damage Locating Vector method (Bernal 2002) can be utilized as structural analysis techniques

to materialize this DCS concept. These structural analyses are applied in each sensor community. The

manager sensors communicate with each other to assess mode shapes’ normalization constants and to

make redundant judgment about damaged element; most of data processing and communication takes
place inside each sensor community. Coordination among smart sensors employing DCS, which has yet

to be implemented, is expected to realize a SHM system using densely installed smart sensors. 

5.3. Implementation on smart sensors

In this section, distributed computing is implemented on a network of smart sensors. The distributed
implementation of correlation function estimation is incorporated into DCS; correlation function

estimation in DCS is conducted in the distributed manner. Then ERA is applied at a manager sensor to

estimate modal parameters. The rest of DCS, i.e, DLV and communication between manager sensors, is

currently being implemented. SHM performance is examined in terms of accuracy of signal processing,

while data aggregation performance is assessed from reduction in communication requirements during

correlation function estimation. 
The smart sensor platform used in this demonstration is Imote2. Imote2 has Intel Xscale processor

and 256 kB of RAM. Radio components has data rate of 250 kbps. 256 kB of RAM on Imote2 allows

implementation of correlation function estimation from a large amount of data and ERA involving

large Hankel and system matrices. An open source operating system, TinyOS, is utilized to program

Imote2s. The hardware is appropriate for data processing intensive applications such as SHM.

To understand the performance of the algorithms, the coordinated computing implemented on Imote2

is demonstrated using a numerical truss model shown in Fig. 8. Vertical acceleration responses under
random input are measured at nodes 5 to 13 and injected into a network of nine Imote2s. The Imote2

corresponding to node 5 works as the reference sensor. This node broadcast its own data to the other

node and collect correlation function estimate. Once all the correlation function estimates are collected,

this reference node applies ERA to obtain natural frequencies, damping ratios and mode shapes. The

length, N, of the injected data is 2048 and the number of FFT points is 512, resulting in 7 times

averaging with 50 % overlap. The sampling rate is 500 Hz. 
The acceleration response data and correlation function estimates are stored and transferred in 16-bit

integer data type, considering that accelerometer’s resolution can be reasonably assumed to be around

12-bit. In this way, memory space and bandwidth are efficiently utilized, though cast double precision

data is used during NExT and ERA.

Although a certain amount of data loss is shown to be acceptable in the previous section, reliable

communication is used in this demonstration. In this way, outputs of this coordinated computing, i.e.,
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correlation function estimates, natural frequencies, damping ratios, and mode shapes, are compared

with those calculated on a PC without mixing with the effect of data loss.

Correlation functions are first estimated on the Imote2s and reported back to the reference node.

Fig. 16 shows the estimated correlation function between node 5 and node 6. This estimate matches

the corresponding correlation function estimated on a PC assuming associated quantization error.

Because the difference between these two signals is smaller than 10-13, only the estimate on an
Imote2 is shown on Fig. 16. 

Correlation function estimates collected at the reference sensor node are then analyzed with ERA.

Table 3 summarizes the identified modal parameters. Natural frequencies and damping ratios are

compared with those determined on a PC. Modal assurance criteria (Allemang 2003) are utilized to

compare mode shapes. All of the identified parameters are consistent with calculation on a PC. Together

with the correlation function estimates, this result demonstrates that this coordinated computing approach
can perform SHM analysis accurately.

Data transferred in a network is reduced as explained in 6.1. In this example, data transmission is

reduced by a factor of 5, as compared to centralized NExT implementation. This reduction factor can

be larger depending on the number of sensors and the associated averaging. This reduction shows the

advantage of distributed correlation function estimation. 

Further consideration is necessary to accurately assess the efficacy of the distributed implementation.
Power consumption of smart sensor networks is not simply proportional to the amount of data

transmitted. Acknowledgement messages and synchronization messages are also involved. The radio

listening mode consumes power even when no data is received. However, the size of the measured

data is usually much larger than the size of the other messages to be sent and should be considered

the primary factor in determining power consumption. Small data transfer requirements will lead to

small power consumption.

Fig. 16 A correlation function estimate

Table 3 Results of modal analysis performed on Imote2

Mode 1 2 3 4

Natural Frequency (Hz)
Error (ratio)
Damping ratio (%)
Error (ratio)
Modal Assurance Criteria of mode shapes-1

27.21
-2.13E-13

4.09
-2.93E-14

0

97.23
3.26E-13

10.35
1.08E-13
-2.22E-16

127.36
-3.20E-13

5.32
-1.31E-13
-2.22E-16

176.14
1.71E-13

0.43
1.02E-14

0
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6. Conclusions

Although smart sensor usage in SHM applications is promising, full-fledged SHM systems employing

smart sensors have not yet been realized. Critical issues such as time synchronization error, data loss,

and a large amount of data have been described and investigated.

Time synchronization error was formulated and its effects on SHM applications investigated. Input-

output identification and output-only identification were reviewed with time synchronization error taken

into account. Mode shape phase was shown to be sensitive to time synchronization error. The impact is
not negligible when the ratio of time synchronization error to a natural frequency of a system is large.

However, time synchronization accuracy reasonably available for smart sensors and low natural

frequencies of a large structure oftentimes result in small impact on modal analysis.

Data loss was investigated with respect to the performance of the modal parameter estimation. An

expression was derived relating the amount of data loss to an equivalent measurement noise. Two

types of packet arrangement were considered and shown to have a similar level of accuracy in most
cases. Data loss is found to introduce error into the modal analysis, which also affects the subsequent

analysis. Because of the averaging associated with the PSD and the CSD estimation, a certain

amount of data loss can be accommodated. Particularly, the CSD estimation is found to be robust

against both of data loss and observation noise, allowing the output-only identification to be better

than the one using input and output.

Coordinated computing is shown to be an effective approach for SHM applications, especially for
data aggregation. Two examples of coordinated computing supported by structural analysis are shown.

Implementation on Imote2s demonstrates the efficacy of this approach. 
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