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1. Introduction 
 

Under extreme events such as earthquakes and 

typhoons, plastic hinges may form in a steel structure. After 

these extreme events, it is not easy to assess the structural 

damage due to the formation of plastic hinges. Normally the 

assessment of structural conditions relies upon the structural 

responses as an important source of information. However, 

the responses and the state of the structure during these 

extreme events are complicated because of the occurrence 

of yielding, unloading, reloading, etc. especially around the 

plastic hinges. Therefore better understanding of such 

complicated structural behaviour during extreme events is 

valuable for engineers to assess the structural conditions 

and to make the necessary decisions for retrofitting. 

The parameters to describe structural behaviour can be 

physical parameters such as stiffness, damping, etc. or 

modal parameters like frequency, mode shape, etc. Many 

techniques have been developed recently for modal 

parameter estimation (Park et al. 2011, Ye et al. 2012, 

Zhang et al. 2013, Yang et al. 2014, Nagarajaiah and Yang 

2015). Compared with the modal parameters, the physical 

parameters can reflect the integrity of structures more 

directly. Physical parameters can also reflect better the 

complicated nonlinear behaviour of structures during 

extreme events including various nonlinear characteristics 

and damage representing the degraded state. Some 

researchers have identified physical parameters from modal  
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information (Burak and Ram 2001, Chakraverty 2005), but 

unfortunately certain information may be lost during the 

solution for the modal information and the physical 

parameters identified from modal information cannot reflect 

the structural degradation. As a result, direct estimation of 

physical parameters from the time domain has become 

popular. Shi et al. (2007) presented a physical parameter 

identification method for linear time-varying systems based 

on the subspace technique. Lu and Law (2007) presented a 

method based on the sensitivity of structural responses to 

identify both the system parameters and the input excitation 

force of a structure. Kang et al. (2005) presented a system 

identification scheme in time domain to estimate the 

stiffness and damping parameters of a structures using 

measured acceleration. Later the method was extended to 

the detection of sudden structural damage that occurs during 

an earthquake based on the moving time window technique 

(Park et al. 2008). Wang et al. (2014) presented a method 

based on discrete wavelet transform for time-varying 

physical parameter identification of shear type structures. 

Huang et al. (2015) presented techniques based on the least 

square estimation combined with the substructure approach 

to identify the parameters of a cable-stayed bridge with a 

large number of degrees of freedom. 

As normally the external excitations have not been 

measured or are not available, Yang et al. (2009) presented 

a method with adaptive quadratic sum-square error and 

unknown inputs for identification of time-varying and 

hysteretic structures. The method was applied to identify 

the time-varying structural parameters of reinforced 

concrete frame (Yang et al. 2014a) and damage to bolted 

connection of a steel frame (Yang et al. 2014b). Al-Hussein 

and Haldar (2015a) presented a method of unscented 

Kalman filter with unknown input to identify defects at the 
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local element level using only a limited amount of noise-

contaminated nonlinear response information and without 

excitations. The accuracy of method was further improved 

using unscented Kalman filter with unknown input and 

weighted global iteration for defect identification within a 

defective element (Al-Hussein and Haldar 2015b).  

In the above studies, the hysteretic models to describe 

damage have been mostly based on linear or linear time-

varying parameters, and there has been relatively little work 

focusing on the identification of nonlinear structural 

behaviour. Normally during extreme events, the plastic 

hinges with hysteretic properties govern the behaviour of 

frames. The plastic deformations at plastic hinges are key 

indicators to assess the structural conditions. In order to 

study such complicated behaviour and to provide a direction 

for engineers to assess the structural conditions for 

necessary retrofitting, a novel method is proposed for 

identification and parameter estimation of frames with 

hysteretic plastic hinges. Only single-bay frames with 

relatively few degrees of static indeterminacy are initially 

chosen for investigation of the proposed method. The basic 

idea in this paper is to treat nonlinear frames as a 

combination of linear members and hysteretic plastic 

hinges. Through comparison of the identified end rotations 

of members connected together, the plastic rotation which 

furnishes information of the location and plasticity degree 

of plastic hinges can be calculated. The force consideration 

of the frame members may be used to relate the stiffness 

parameters to the elastic rotations and the excitation. The 

stiffness parameters can be estimated based on the equation 

constructed through the damped-least-squares (DLS) 

method and the damped-and-weighted-least-squares 

(DWLS) method (Tikhonov 1963). The scenarios with 

unknown input are also investigated. Numerical examples 

including a portal frame and a two-storey frame show that 

the proposed method can identify the plastic rotations and 

estimate the stiffness parameters with satisfactory accuracy. 

The horizontal excitation can be estimated with certain 

accuracy when it is not available. 

 

 

2. Modelling of members 
 

In order to simulate the members with hysteretic plastic 

hinges, the semi-rigid technique for modelling of plastic 

hinges in members (Au and Yan 2008) is adopted. In this 

study, only material nonlinearity is considered. A brief 

summary of the essential points in the method adopted by 

Au and Yan (2008) is presented here. 

 

 

 

Fig. 1  Concept of fixity factor 
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Fig. 1 Concept of fixity factor 

 

Monforton and Wu (1963) modelled the semi-rigid 

connection as a zero-length linear spring at each end of a 

member as shown in Fig. 1 and presented the fixity factor 

i  at end i of the member as 

1
      ( 1,2)

1 3

e e

i i

i e s total

ii i i

i
EI r L

 


  
   


 (1) 

where 
e

i  is the elastic end-rotation at end i, s

i  is the 

spring rotation at end i, 
total

i  is the total end-rotation at 

end i, 
ir  is the rotational stiffness of the semi-rigid 

connection at end i, E is elastic modulus of the member, I is 

moment of inertia of the member, and L is the length of the 

member. A plasticity factor can be introduced based on the 

fixity factor to describe the behaviour of a plastic hinge 

from the initial elastic state to the plastic state under 

monotonic loading. The plasticity factor (Hasan et al. 2002) 

can be defined as 

1

1 3 / ( / )
i p

i i

p
EI L dM d




 (2) 

The stiffness matrix K  of a member with hysteretic 

plastic hinges can be expressed in the form of plasticity 

factors by replacing the fixity factors 
i  (i = 1,2) with the 

plasticity factors 
ip  (i = 1,2) as 

p

e eK K S  (3) 

where p

eS  is the corresponding correction matrix, and 
eK  

is the standard elastic stiffness matrix (Au and Yan 2008). 

 

 

3. Identification of nonlinear single-bar frames 
 

3.1 Identification of plastic rotations 
 
Each frame is considered as a combination of linear 

members and hysteretic plastic hinges. It is reasonable to 

assume that, for this kind of frames, not all members 

connected together will yield simultaneously during the 

whole dynamic process. Usually the beams and columns 

connected together are of different sizes and so are their 

yielding moments. The displacements of structural 

members are used in the formulation of problem. While it is 

more convenient in actual applications to measure 

vibrations by accelerometers, reasonably accurate estimates 

of the displacement time histories can be obtained by 

successive integration of the acceleration time histories with 

proper correction (Gindy et al. 2016) by velocity estimation 

method, linear baseline correction method, or the use of a 

suitable high pass filter or “omega arithmetic”. 

The displacement ( , )u z t  of a beam can be described 

by a linear combination of interpolation functions as 

1 1 1 2 2 3 2 4( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u z t v t H z t H z v t H z t H z      (4) 

where z is the distance from end 1, ( )iv t  and ( )i t  

(i=1,2) are the end displacements and rotations respectively, 
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and ( )iH z  (i=1,2,3,4) are the interpolation functions for a 

uniform beam of length L as follow 
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 (5) 

If there are four displacement measurements, namely 

 1,u z t ,  2 ,u z t ,  3 ,u z t  and  4 ,u z t , perpendicular to 

the member at different locations 
1z , 

2z , 
3z  and 

4z , 

these displacements can be expressed as 
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 (6) 

or in matrix form as 

u Hφ  (7) 

Then the displacements at the member ends can be 

solved as 

1φ H u  (8) 

The deformation of a member under external bending 

moments is shown in Fig. 2. It is assumed that no loading is 

applied on the member except for the ends. The variable 
total

i  denotes the total rotation at end i  of the member 

under external loading, e

i  is the elastic rotation at the 

end, and 
p

i  is the plastic rotation there. Before the 

application of loading (i.e., the initial configuration of 

member at time t = 0), the orientation of the member is 

denoted by 
0  that is the counter-clockwise angle of 

rotation so that the global X-axis becomes parallel to the 

initial element x-axis. At the time considered (i.e., the 

deformed configuration of member at time t + t), due to 

the effect of loading, the member adopts a deformed 

configuration with an updated member x'-axis pointing 

from end 1 to end 2. The orientation of the updated member 

x'-axis is defined by 
t  that is the counter-clockwise angle 

of rotation so that the global X-axis becomes parallel to the 

updated element x'-axis. The incremental rotation from 
0  

to 
t  is then denoted by  . By reference to Fig. 2 (Au 

and Yan 2008), the elastic rotation e

i  at end i of the 

member is given by 

e total p

i i i       (9) 
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Fig. 2 Deformation of member with plastic hinge 

 

 

The identified end rotation identified

i  from Eq. (8) 

should be the sum of elastic rotation 
e

i  and incremental 

rotation   at the end, which is also equal to the total 

rotation total

i  minus the plastic rotation 
p

i , namely 

identified e total p

i i i i         (10) 

The total rotation total

i  should be the same for all the 

members connected at end i . Therefore, the plastic 

rotation can be calculated by comparing the identified end 

rotations of two members in which only one yields during 

the dynamic process. So far, the procedure has not made use 

of any excitation information or structural model of the 

frames. 

 

3.2 Estimation of stiffness parameters 
 

Besides plastic rotations, the member stiffness is also 

required for further investigation of structural safety. 

According to Eq. (10), the elastic rotation can be calculated 

as 

e identified

i i     (11) 

while the elastic rotation 
e

i  can be evaluated from the 

end moments 
iM  and 

jM  as 

  for 1, 2 or 2, 1
3 6

je i

i

M LM L
i j i j

EI EI
        (12) 

For convenience, the stiffness parameter k of member is 

defined in terms of the flexural rigidity EI and length L as 

EI
k

L
  (13) 
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For both member ends, the end moments 
iM  can be 

calculated as 

4 2    for 1, 2 or 2, 1e e

i i jM k k i j i j        (14) 

Suppose that the single-bay frame in Fig. 3 is subject to 

a horizontal earthquake excitation. For convenience, the 

columns supporting floor q  together with the beam itself 

are collectively called storey q . If the rotational inertial 

effect of the beam and slab is ignored, the bending moments 

alone should satisfy the following rotational equation of 

motion at each beam-column joint 

1

0

JN
J

d

d

M


  (15) 

where 
J

dM  is the bending moment of member d  at joint 

J  of the frame, and 
JN  is the total number of the 

members connected together at joint J . Besides, the 

inertial force, damping force, shear force and the excitation 

force at each storey should also satisfy the following 

equation of horizontal motion 

 
1

0

q
snN

q h h

d g

d q

F m x c x m x    
 

      (16) 

where q

dF  is the shear force of member d  at floor q  of 

the frame, qN  is the total number of columns supporting 

floor q , m  and c  are the lumped mass and damping 

of floor    , 1, , sq q n   , 
sn  is the total number of 

floors, hx  and 
hx  are the horizontal acceleration and 

velocity of the beam at floor   , 1, , sq q n   , and 

gx  is the measured external earthquake excitation. 

Therefore to estimate the stiffness parameters of the 3 sn  

members, 3 sn  equations of motion are necessary. For each 

floor, they include two for the rotational motion of the 

beam-column joints and one for the horizontal motion. The 

system of equations of motion can be established as follows 

 

 

 

Fig. 3 A general single-bay frame 
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or in matrix form as 

3 3 3 1 3 1s s s sn n n n  A γ b  (18) 
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where 
cLqk , cRqk  and bqk   1,2, , sq n  are stiffness 

parameters of the left column (cL) and right column (cR) 

below floor q  and the beam (b) at floor q  respectively, 

e

cLiq , 
e

cRiq  and 
e

biq   1,2, , sq n  are elastic 

rotations at end i  of the left and right columns below floor 

q  and the beam at floor q  respectively, and 
qh  

 1,2, , sq n  is the storey height below floor q . 

 

3.3 Damped-least-squares method and damped-and-
weighted-least-squares method 

 

If the whole dynamic process is divided into 
tn  equal 

time steps of duration t, Eq. (18) can be established for all 

the time steps as 

   3 13 3 3 1st s s t s
nn n n n n   

A γ b  (19) 

To solve Eq. (19), usually the least-squares-method is 

adopted. Like common inverse problems, the results from 

the straightforward least squares method will be ill-

conditioned. In order to provide bounds to the solution, the 

DLS method (Tikhonov 1963) is adopted, namely 

 
1

T T


 γ A A I A b  (20) 

where   is a non-negative damping coefficient governing 

the participation of least-squares error in the solution, I  is 

the identity matrix and the dimensions have been dropped 

for brevity. In Eq. (17), the horizontal equations of motion 

resulting from Eq. (16) contain more measurement 

information than that of the moment equations resulting 

from Eq. (15). Therefore during the solution of Eq. (17) for 

the stiffness parameters, the horizontal equations of motion 

can be given more weight than the moment equations. The 

weighted-least-squares method is adopted in conjunction 

with the DLS method, thereby resulting in the DWLS 

method as 

 
1

T T


 γ A WA I A Wb  (21) 

where W  is the weight matrix giving the corresponding 

importance to the related equations. The size of weight 

matrix W  is quite large because of the large row size of 

matrix A . In the implementation of the DWLS method, a  

 

 

response selection scheme is adopted to choose the response 

at certain intervals characterised by the integer  . As 

shown in Fig. 4, the full length response can be re-sampled 

as several shorter response sequences. Each re-sampled 

response sequence can be used for the estimation of 

stiffness parameters. The average value of the results from 

various re-sampled response sequences can be taken as the 

final result. 

In practice, the excitation may not be available, but the 

proposed method can still be applied to reconstruct the 

excitation approximately. The excitation time history is 

initially taken to be identically zero. The stiffness 

parameters can be approximately estimated using Eq. (20) 

as 

 
1

ˆˆ T T


 γ A A I A b  (22) 

or using Eq. (21) as 

 
1

ˆˆ T T


 γ A WA I A Wb  (23) 

where b̂  is the same as b  except that the ground 

acceleration gx  in Eq. (17) is taken to be identically zero. 

Then incorporating the identified initial stiffness parameters 

γ̂  into Eq. (19), the external excitation can be estimated. In 

Eq. (21) or (23), the weight matrix W  can be determined 

to suit various scenarios as elaborated later. 

 

3.4 Noise-removal technique 
 

In Eq. (19), the information in matrix A  used in the 

stiffness parameter estimation is mostly composed of elastic 

rotations extracted from the measured responses. From the 

measurements to the elastic rotations used in parameter 

estimation, the measurement noise tends to propagate and 

adversely affect the estimation of elastic rotations. Noise is 

first removed from the noise-contaminated response using 

the de-noising technique based on wavelet packets provided 

by MATLAB. Then a smoothing process based on the 

moving time window technique (Park et al. 2008) is carried 

out as shown in Fig. 5. A moving time window is gradually 

shifted from the beginning of response. The average value 

of response in the moving time window is calculated and 

then taken as the smoothed response at the middle of 

window. After the moving time window has swept through  

 

Fig. 4 Illustration of the response selection scheme 

319



 

Francis T.K. Au and Z.H. Yan 

 

Fig. 5 Smoothing by moving time window 

 

 

the whole response, the small spikes caused by the noise 

can be smoothed as shown in Fig. 5. 

 

 

4. Numerical examples 
 

Examples including a portal frame and a single-bay two-

storey frame under horizontal excitations are described 

here. Unless otherwise stated, the Young’s modulus is 

2×10
11

 N/m
2
 while the yield stress is 2.48×10

8
 N/m

2
. Mass-

proportional damping is assumed, and the critical damping 

ratio is taken to be 5%. For simplicity, the rotational inertial 

effect of the beam and slab is ignored and the lumped mass 

matrix is adopted. For convenience, PPHL denotes 

“potential plastic hinge location”. At the beam-column 

joint, the column with higher bending capacity than the 

beam is less likely to yield. 

 

4.1 Example 1: A portal frame 
 

A portal frame made up of steel W-type I-beam, as 

shown in Fig. 6, is used for verification and illustration of 

the proposed method. The properties of the steel W-type I-

beams are given in Table 1. At each of the beam-column 

joints, a 70,000 kg mass point is provided to simulate the 

floor mass together with a vertically downward load of 700 

kN to account for gravity. The beam and columns are 

discretized into elements 0.5m in length. The assumed 

excitation is that of the El Centro earthquake with 

magnified peak ground acceleration of 0.5 g, where g is the 

acceleration due to gravity. The sampling frequency is 1000 

Hz for all measurements. Fig. 6 shows an arbitrary 

arrangement of sensors for measurement. All measurements 

are supposed to be taken relative to the ground. Therefore 

the relative displacement at the column base can be taken as 

zero. As only horizontal excitation is considered and the 

axial deformations are much less significant than bending 

deformations, the vertical displacement at each beam-

column joint can be taken as zero, which is a reasonable  

 

Fig. 6 Example 1: A portal frame for verification and 

illustration ( : sensor with measurement direction 

indicated) 

 

 

Table 1 Example 1: Properties of steel W-type I-beams used 

Member Area (m2) 
Moment of 

Inertia (m4) 

Yield Moment 

(Nm) 

Column 

(W21×93) 
1.7613×10−2 8.6160×10−4 8.9814×105 

Beam 

(W12×87) 
1.6516×10−2 3.0801×10−4 5.3645×105 

 

 

approximation to enable reduction of sensors. Similarly the 

horizontal displacements at beam-column joints of the same 

floor are also regarded as the same, which requires 

measurement at one location only. Therefore only two 

sensors are required in each member for measurement of 

displacements perpendicular to member axis. In particular, 

the horizontal acceleration and velocity of the beam are also 

needed for the estimation of stiffness parameters. 

The proposed method is first examined based on 

simulated measurements without noise. The noise-removal 

technique is not applied. By comparing the identified end 

rotation from Eq. (8), the plastic rotations at selected plastic 

hinges can be identified as shown in Fig. 7. The fluctuations 

of result at PPHL3 are primarily due to the assumption of 

zero vertical displacement at beam-column joints. It shows 

that the plastic rotation can be identified by the proposed 

method using simulated measurements without noise. 

In the parameter estimation, both the DLS and DWLS 

methods are adopted, and the results are compared. The 

damping coefficient in Eqs. (20)-(23) is chosen as ρ=1×10
-7

. 

For the portal frame, the weight matrix W is defined as 

1 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0
t

t

n

 
 
 
 
 
 
 
 

W

WW

W

 (24) 

where the sub-matrix tW  to apply weights on the two 

moment equations and the horizontal equation of motion of 

each floor is given by 
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0.1 0 0

0 0.1 0   for 1,2,

0 0 1

t tt n

 
 

 
 
  

W  (25) 

In other words, more weight is placed on the horizontal 

equations of motion as they involve more measurements. 

The response selection scheme adopted for the DWLS 

method is characterised by a value of   that is equivalent 

to a time interval of 0.012s. There are 12 re-sampled 

response sequences each with 1000 time points. The DWLS 

method is then applied to each of them. The estimated 

stiffness parameters by averaging the individual results are 

shown in Table 2, together with the percentage errors 

calculated based on the absolute value of deviation from the 

theoretical value. Table 2 shows that for the zero-noise 

scenario, results from both the DWLS and DLS methods are 

nearly the same. In this case, the results from the DLS 

method are slightly better for most stiffness parameters as it 

uses all data together for estimation, while the DWLS 

method adopts smaller sets of re-sampled data for 

estimation before averaging them. Table 2 also shows that 

even though the excitation is unknown, the stiffness 

parameters can still be estimated with acceptable accuracy 

under zero-noise condition. The estimated earthquake 

excitations from both the DLS and DWLS methods are 

presented in Fig. 8, which shows that both work 

satisfactorily under zero-noise condition. 

In order to evaluate the sensitivity of the proposed 

method to noise, random noise is added to the simulated 

noise-free measurement vector 
nfy  to form the simulated 

noise-polluted measurement vector npy as (Au et al. 2004) 

 

 

 

 

 

Fig. 8 Example 1: Estimated earthquake excitations (zero-

noise scenario) 

 

 

 RMSnp nf nf levelN   y y y R  (26) 

where  RMS nfy  is the root-mean-square value of the 

noise-free measurement vector nfy , 
levelN  is the noise 

level, and R  is the random noise vector with zero mean 

and unit standard deviation. In the present study, 2.5% noise 

level is adopted. The noise-removal technique mentioned 

above is applied before the measurements go into the 

identification process. The width of the moving time 

window is 0.15s. 
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Table 2 Example 1: Identified stiffness parameters (Unit: Nm; zero noise) 

 
Theoretical 

value 

DLS with known 

excitation 

DWLS with known 

excitation 

DLS with unknown 

excitation 

DWLS with unknown 

excitation 

kc1 3.4464 × 107 3.4435 × 107 (0.08%) 3.4431 × 107 (0.10%) 3.2455 × 107 (5.83%) 3.2525 × 107 (5.63%) 

kc2 3.4464 × 107 3.4494 × 107 (0.09%) 3.4518 × 107 (0.16%) 3.2487 × 107 (5.74%) 3.2374 × 107 (6.06%) 

kb 0.8800 × 107 0.8904 × 107 (1.18%) 0.8906 × 107 (1.20%) 0.8388 × 107 (4.68%) 0.8383 × 107 (4.74%) 

  
(a) PPHL1 (b) PPHL3 

Fig. 7 Example 1: Plastic rotations at selected plastic hinges (zero-noise scenario) 
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The other conditions are the same as before. The identified 

plastic rotations at selected plastic hinges are shown in Fig. 

9, which shows that the method works with measurements 

contaminated with noise. The estimated stiffness parameters 

from different methods are shown in Table 3 while, for the 

case of unknown excitation, the estimated earthquake 

excitations are shown in Fig. 10. 

The presence of noise in measurements does affect the 

performance of methods for identification of stiffness 

parameters as shown in Tables 2 and 3. The stiffness estimates 

for scenarios with known excitations are very accurate. For 

scenarios with unknown excitations, the accuracy of results 

deteriorates but they are still reasonable. 

 

 

Fig. 10 Example 1: Estimated earthquake excitations  

(2.5% noise) 

 

 

 

 

 

Fig. 10 shows that the estimated excitation for the scenario 

with unknown excitation is also acceptable. The DLS method 

generally performs slightly better in the perfect situation of 

zero noise, but for scenarios with noise when the excitation is 

unknown, the DWLS method works slightly better. 

 

4.2 Example 2: A single-bay two-storey frame 
 

A more realistic single-bay two-storey frame made up of 

steel W-type I-beam, as shown in Fig. 11, is then studied to 

verify the capability of the proposed method. The member 

used and their properties are shown in Table 4. The lumped 

mass at each beam-column joint is 50,000 kg, while the 

joint loads to account for gravity are 
1 1000kNP   and 

2 500kNP  . Fig. 11 also shows an arbitrary arrangement 

of sensors for measurements. Each frame member is 

discretized into three elements by having the sensor 

locations as interior nodes. All other conditions and 

parameters are the same as those in Example 1 unless 

otherwise stated. The identified plastic rotations at selected 

plastic hinges for the zero-noise scenario as shown in Fig. 

12 indicates that, in spite of the more complicated 

behaviour of the frame, the proposed method can identify 

the plastic rotations satisfactorily. The weight matrix W  

for the frame in Fig. 11 is similarly given by Eq. (24) with 

the sub-matrix 
tW  to apply weights on the equations of 

motion of both floors given by 
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Table 3 Example 1: Identified stiffness parameters (Unit: Nm; 2.5% noise) 

 
Theoretical 

value 

DLS with known 

excitation 

DWLS with known 

excitation 

DLS with unknown 

excitation 

DWLS with unknown 

excitation 

kc1 3.4464 × 107 3.3870 × 107 (1.72%) 3.3945 × 107 (1.51%) 3.0312 × 107 (12.05%) 2.9925 × 107 (13.17%) 

kc2 3.4464 × 107 3.4523 × 107 (0.17%) 3.4850 × 107 (1.12%) 3.0999 × 107 (10.05%) 3.1749 × 107 (7.88%) 

kb 0.8800 × 107 0.8846 × 107 (0.52%) 0.8898 × 107 (1.11%) 0.7930 × 107 (9.89%) 0.7977 × 107 (9.35%) 

  
(a) PPHL1 (b) PPHL3 

Fig. 9 Example 1: Plastic rotations at selected plastic hinges (2.5% noise) 
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(27) 

 

 

 

 

 

 

 

The identified stiffness parameters for the zero-noise 

scenario are shown in Table 5 while, for the case of 

unknown excitation, the estimated excitations are shown in 

Fig. 13. As each component equation of Eq. (17) related to 
d

qD  1,2, , sq n  gives an estimate of the excitation, the 

final result can be obtained by averaging the estimates. 

 

 

 

Fig. 11 Example 2: A single-bay two-storey frame ( : sensor with measurement direction indicated) 

Table 4 Example 2: Properties of steel W-type I-beams used 

Member Area (m2) Moment of Inertia (m4) Yield Moment (Nm) 

Column 

(W24×103) 
1.9548×10−2 1.2487×10−3 1.1379×106 

Beam 

(W10×77) 
1.4581×10−2 1.8939×10−4 3.9665×105 

Table 5 Example 2: Identified stiffness parameters (Unit: Nm; zero noise) 

 Theoretical value 
DLS with known 

excitation 

DWLS with known 

excitation 

DLS with unknown 

excitation 

DWLS with unknown 

excitation 

kcL1 6.2435 × 107 
6.2599 × 107 

(0.26%) 
6.2533 × 107 (0.16%) 6.1971 × 107 (0.74%) 6.0891 × 107 (2.47%) 

kcR1 6.2435 × 107 
6.2335 × 107 

(0.16%) 
6.2354 × 107 (0.13%) 6.1664 × 107 (1.23%) 6.0440 × 107 (3.20%) 

kb1 0.7576 × 107 
0.7904 × 107 

(4.33%) 
0.7918 × 107 (4.51%) 0.8227 × 107 (8.59%) 0.8526 × 107 (12.54%) 

kcL2 6.2435 × 107 
6.2453 × 107 

(0.03%) 
6.2554 × 107 (0.19%) 6.4867 × 107 (3.90%) 6.7120 × 107 (7.50%) 

kcR2 6.2435 × 107 
6.2232 × 107 

(0.33%) 
6.2358 × 107 (0.12%) 6.4623 × 107 (3.50%) 6.6791 × 107 (6.98%) 

kb2 0.7576 × 107 
0.8034 × 107 

(6.05%) 
0.8050 × 107 (6.26%) 

0.8344 × 107 

(10.14%) 
0.8630 × 107 (13.91%) 

Note: Percentage errors are shown in parentheses 
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The accuracy of the estimated stiffness parameters for 

the case with known excitation is satisfactory. The relatively 

larger errors of the beam stiffness parameters are largely 

due to the assumption of zero vertical displacements at 

beam-column joints, which also causes fluctuations in the 

identified plastic rotations at plastic hinges formed in 

beams. Understandably the accuracy drops for the case with 

unknown excitation, but the results are still acceptable. Fig. 

13 shows that the estimated excitation for the zero-noise 

scenario is very accurate. 

 

 

 

(a) PPHL1 

 
(b) PPHL3 

 
(c) PPHL5 

Fig. 12 Example 2: Plastic rotations at selected 

plastic hinges (zero–noise scenario) 

 

 

Fig. 13 Example 2: Estimated earthquake excitations (zero-

noise scenario) 

 
 

 
(a) PPHL1 

 
(b) PPHL3 

 
(c) PPHL5 

Fig. 14 Example 2: Plastic rotations at selected plastic 

hinges (2.5% noise) 
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Fig. 15 Example 2: Estimated earthquake excitations 

(2.5% noise) 

 

 

To investigate the feasibility of the proposed method, 

2.5% noise is added to the simulated measurements while 

all other conditions are the same as before. The identified 

plastic rotations at selected plastic hinges are shown in Fig. 

14, confirming that the proposed method works with 

measurements contaminated with noise. Table 6 shows that 

the estimated stiffness parameters from the DWLS method 

are much better than those from the DLS method for both 

the cases with known and unknown excitations. As before, 

the DWLS method is good at dealing with the scenarios 

with measurement noise. The measurement noise tends to 

propagate and adversely affects the elastic rotations 

estimated. Through the noise-removal technique and the 

DWLS method, the stiffness parameters can be estimated 

with satisfactory accuracy for both the cases with known 

and unknown excitations. Fig. 15 shows that, for the case of 

unknown excitation, the proposed method can estimate the 

excitation with reasonable accuracy. 

 
 
5. Conclusions 

 

This paper has proposed a novel method to identify the 

properties of nonlinear single-bay frames with hysteretic 

plastic hinges. In particular, the structure is decomposed  

 

 

into linear and nonlinear parts, so that the nonlinear effects 

can be considered separately for estimation of the 

parameters of linear members. The proposed method can 

give the plastic rotations which furnish information of the 

locations and plasticity degrees of plastic hinges. For 

stiffness parameter estimation in the zero-noise situation 

with known excitation, the results for the beams are less 

accurate than those for the columns. In scenarios with 

higher measurement noise, the accuracy tends to suffer but 

adoption of suitable correction method helps. In 

comparison, the damped-and-weighted-least-squares 

method performs better than damped-least-squares method 

for estimation of stiffness parameters from noise-

contaminated responses. Even with scenarios having 

unknown excitations, both the stiffness parameters and 

ground excitation can be estimated with acceptable 

accuracy. 
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