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1. Introduction 
 

Functionally graded materials (FGMs) are a kind of 

non-homogeneous composites materials, in which the 

material characteristics change smoothly and continuously 

from one surface to another. A typical FGM is fabricated 

from a mixture of two material phases, for example a 

ceramic and a metal. An advantage of FGMs over laminated 

structures is that they eliminate the delamination mode of 

failure encountered in laminated structures. In addition, the 

physical and thermal properties of FGMs can be tailored to 

different applications and working environments. This 

makes FGMs preferable in many structural applications 

such as nuclear reactors, aerospace, mechanical, automotive, 

and civil engineering (Eltaher et al. 2013, Ait Amar 

Meziane et al. 2014, Ait Atmane et al. 2015, Kar et al. 2016, 

Janghorban 2016, Ahouel et al. 2016, Fahsi et al. 2017, 

Abdelaziz et al. 2017, Sekkal et al. 2017a).  

Since the shear deformation influences are considerable 

in advanced composites like FGMs, shear deformation 

models such as first-order shear deformation theory (FSDT) 

and higher-order shear deformation theories (HSDTs) 

should be employed. The FSDT (Nguyen et al. 2008, Zhao 

et al. 2009, Hosseini-Hashemi et al. 2010, 2011, Irschik 

1993, Nosier and Fallah 2008, Yang et al. 2009, Meksi et al. 

2015, Bouderba et al. 2016, Bellifa et al. 2016, Youcef et al. 

2018) provides acceptable results, but requires a shear  
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correction coefficient that is difficult to determine out 

consistently due to dependent on many parameters 

considering geometry, boundary conditions, and loading  

conditions. To avoid the use of the shear correction 

coefficient and find a better prediction of the transverse 

shear deformation and normal strains in FG structures, 

HSDTs have been developed. In general, HSDTs can be 

constructed based on nonlinear variations of the in-plane 

displacements (Reddy 2000, Ferreira et al. 2005, Ait 

Atmane et al. 2010, Benyoucef et al. 2010, Mantari et al. 

2012, Xiang et al. 2011, Xiang and Kang 2013, Thai and 

Kim 2013, Sobhy 2013, Bouderba et al. 2013, Ahmed 2014, 

Ait Yahia et al. 2015, Belkorissat et al. 2015, Al-Basyouni 

et al. 2015, Boukhari et al. 2016, Bounouara et al. 2016, 

Baseri et al. 2016, Raminnea et al. 2016, Bousahla et al. 

2016, Beldjelili et al. 2016, Janghorban 2016, Aldousari 

2017, Bellifa et al. 2017a, b, El-Haina et al. 2017, Chikh et 

al. 2017, Besseghier et al. 2017, Benadouda et al. 2017, 

Rahmani et al. 2017, Menasria et al. 2017, Attia et al. 2018, 

Meksi et al. 2018, Bakhadda et al. 2018, Yazid et al. 2018) 

or both in-plane and transverse displacements (Chen et al. 

2009, Fares et al. 2009, Talha and Singh 2010, Ferreira et al. 

2011, Reddy 2011, Natarajan and Manickam 2012, Neves et 

al. 2012a, b, Neves et al. 2013, Jha et al. 2013, 

Swaminathan and Naveenkumar 2014, Bousahla et al. 2014, 

Hebali et al. 2014, Belabed et al. 2014, Fekrar et al. 2014, 

Bourada et al. 2015, Hamidi et al. 2015, Draiche et al. 2016, 

Akavci 2016, Bennoun et al. 2016, Bouafia et al. 2017, 

Sekkal et al. 2017b, Abualnour et al. 2018, Bouhadra et al. 

2018, Benchohra et al. 2018) (i.e., quasi-3D theories). 

However, HSDTs are highly computational cost due to 
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involving in many variables (e.g., theories by Neves et al. 

(2012a, b and 2013) with nine variables, Reddy (2011) with 

eleven variables, Jha et al. (2013) with twelve unknowns, 

Talha and Singh (2010) and Natarajan and Manickam (2012) 

with thirteen variables). Thus, needs exist for the 

development of quasi-3D HSDTs which are simple to use. 

The proposed quasi-3D HSDT in this work, accounts for 

both the transverse shear deformation and thickness-

stretching effects through the use of the integral term into 

the in-plane displacements. The present quasi-3D HSDT 

contains the same five variables as in the FSDT, but 

respects the traction-free boundary conditions on the upper 

and lower surfaces of the plate without requiring any shear 

correction coefficient. Equations of motion are obtained 

from Hamilton's principle. Analytical solutions of simply 

supported FG plates are presented. The computed results 

are compared with the existing solutions to verify the 

accuracy of proposed theory in predicting the dynamic 

response of FG plates. 

 

 

2. Analytical modeling 
 

The plate is graded from aluminum (lower surface) to 

alumina (upper surface) as presented in Fig. 1. The 

dimensions of the plates are hba  , where the length is

""a , ""b is width and ""h is thickness of the plate. The 

gradation of material characteristics is in the thickness 

direction with metal and ceramic being the typical 

constituents. Aluminum/Alumina )/( 32OAlAl , and 

Aluminum /Zirconia )/( 2ZrOAl  are the examples of the 

FG plate.  

 

2.1 Material variation laws 
 

The constituent elements of FG plate are changing in 

thickness direction from bottom, where it is metal rich to 

the top, where the surface is ceramic rich. Macroscopically 

the plate is supposed homogenous and isotropic. This 

distribution is achieved by varying the volume fraction of 

the constituent elements. The volume fraction and hence 

material characteristics vary according to power law. 

Assume that, except constant Poisson’s ratio, the Young’s 

 

 

 

Fig. 1 Geometry of functionally graded plate 
 

 

modulus E and the mass density  obey the power-law 

variation, namely (Tounsi et al. 2013, Zidi et al. 2014, Mahi 

et al. 2015, Taibi et al. 2015, Meradjah et al. 2015, Zemri  

et al. 2015, Mouffoki et al. 2017) 
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Where ),( ccE  and ),( mmE  are the corresponding 

properties of the ceramic and metal, respectively, and
21  , pp

are constants. Poisson’s ratio is taken as 3.0
throughout the analyses. The value of p ),( 21 pp equal to 

zero represents a fully ceramic plate and infinite p , a fully 

metallic plate. The distribution of the composition of 

ceramics and metal is linear for 1p  . Typical values for 

metal and ceramics used in the FG plate are listed in Table 

1. 

 

2.2 Displacement base field 
 
In this article, further simplifying considerations are 

made to the conventional HSDTs with thickness stretching 

effect so that the number of unknowns is reduced. The 

displacement field of the classical HSDTs with thickness 

stretching effect is defined by 
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(2a) 

 

(2b) 

 

(2c) 

Where 0u ; 
0v ; 

0w , 
x , 

y , and z  are six 

unknown displacements of the mid-plane of the plate, and 

)(zf  represents shape function defining the variation of 

the transverse shear strains and stresses across the thickness. 

 

 

Table 1 Material properties used in the FG plate 

Properties 

Metal Ceramic 

Aluminum 

(Al) 

Alumina 

(Al.2O3) 

Zirconia 

(ZrO2) 

E  (GPa) 70 380 200 

  0.3 0.3 0.3 

  (kg/m3) 2702 3800 5700 
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In this article a novel displacement field with 5 unknowns is 

proposed, by considering that  dxyxx ),(  and

 dyyxy ),( , the displacement field of the present 

theory can be written in a simpler form as 
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(3c) 

The coefficients 1k  and 2k  depends on the geometry 

and expressed as follows 

2
1 k , 2

2 k  (4) 

In this article, the present original HSDT is obtained by 

setting 
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The linear strain relations obtained from the displacement 

model of Eqs. (3(a)-3(c)), are as follows 
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Where 
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The integrals used in the above equations shall be 

resolved by a Navier type solution. The following relations 

can be obtained 

yx
Adx

y 












2

' ,   
yx

Bdy
x 












2

' ,  

x
Adx






 ' , 

y
Bdy






 '  

(8) 

Where the coefficients 'A  and 'B  are adopted according 

to the type of solution employed, in this case by using 

Navier. Therefore, 'A  and 'B  are expressed as follows 
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Where   and   are defined in expression (24). 

For the FG plates, the stress–strain relation-ships for 

plane-stress state can be written as 
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(10) 

Where ),,,,,( xzyzxyzyx  and ),,,,,( xzyzxyzyx 

are the stress and strain components respectively. The 
ijC  

expressions in terms of engineering constants are given 

below: 

If 0z , then ijC are the plane stress-reduced elastic 

constants 
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follows 
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Where )(z and )(z are the Lamé’s coefficients. 

The modulus )(zE  and the elastic coefficients )(zCij
 

vary through the thickness, according to Eq. (1). 

 

 

2. Equation of motion 
 

Hamilton’s principle is used herein for the free vibration 

problem of FG plate. The principle can be stated in 

analytical form as (Attia et al. 2015, Larbi Chaht et al. 

2015, Hachemi et al. 2017, Khetir et al. 2017, Klouche et 

al. 2017, Zidi et al. 2017, Kaci et al. 2018, Belabed et al. 

2018, Zine et al. 2018) 

 

t
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(13) 

Where U   is the virtual strain energy and K   is the

variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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Where A  is the top surface and the stress resultants

)  ,( SandMN  are given by 
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The variation of kinetic energy of the plate can be written as 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t; and )(z  

is the mass density given by Eq. (1); and (
iI ,

iJ , s

iJ iK
s

iK, ) 

are mass inertias expressed by 
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Substituting Eq. (7) into Eq. (10) and the subsequent results 

into Eq. (15), the stress resultants can be expressed in terms 

of generalized displacements ( 0u , 0v , 0w , , z ) as 
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By employing the generalized displacement–strain 

expressions (Eqs. (6) and (7)) and stress–strain expressions 

(Eq. (10)), and integrating by parts and applying the 

fundamental lemma of variational calculus and collecting 

the coefficients of
0 u ,

0 v , 
0 w ,   , and 

z   in Eq. 

(13), the governing equations are determined as 
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(20) 

Substituting Eq. (18) into Eq. (20), the governing equations 

of the present quasi-3D hyperbolic shear deformation 

theory can be expressed in terms of displacements ( 0u , 0v ,

0w ,  , z ) as 
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Where
ijd , 

ijld  and 
ijlmd  are the following differential 

operators 
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3. Solution procedure 
 

Consider a simply supported rectangular plate with 

length a  and width b  .The Navier solution procedure is 

employed to determine the analytical solutions for which 

the displacement variables satisfying the above boundary 

conditions and can be written in the following Fourier series 
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Where (U ,V ,W , X , ) are unknown functions to be 

determined,   is the frequency of free vibration of the 

plate, 1i  the imaginary unit.  

Where 

/ a   and / b   (24) 

Substituting Eq. (23) into Eq. (21), the following problem is 

obtained 
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4. Numerical results and discussion 
 

In this part the accuracy of the present quasi 3D type 

HSDT with only five unknowns is evaluated, the free 

vibration analysis for simply supported functionally graded 

plate is studied. The theory is formulated in such way that 

the thickness stretching influence is considered. Various 

numerical examples for functionally graded and 

homogeneous plate with different values of the power 

indices, geometry ratios and aspects ratios for two types of 

functionally graded plate
32/ OAlAl  and 2/ ZrOAl . 

 

Table 2 shows the fundamental frequencies parameters 

cc Eh   of the simply supported square 

aluminum/alumina plates in function of the thickness to 

length ratios 20) and 10 , 5/( ha  for different values of 

power law index p )  and  10 ,  4 , 1 , 5.0 , 0( 21  ppp . The 

present results are compared with solutions based on the 

both FSDT and 2D HSDT developed by Matsunaga (2008), 

FSDT obtained by Zhao et al. (2009) and Hosseini-Hashemi 

et al. (2010) and RPT proposed by Benachour et al. (2011). 

The results shows that the present theory, which taking into 

account transverse normal deformation )0( z , predicts 

the non-dimensional fundamental frequencies slightly large 

than the results obtained by other theories (Matsunaga 

2008, Zhao et al. 2009, Hosseini-Hashemi et al. 2010, 

Benachour et al. 2011), which neglect the thickness 

stretching effect )0( z , where the latter underestimate 

frequency parameter compared to the present theory.    

  

Table 3 present the comparison of present frequency 

parameter hEa cc /2  with those given with FSDT    

(Zhao et al. 2009 and Hosseini-Hashemi et al. 2010) and 

with the theory based on HSDT developed by Benachour et 

al. (2011) for the both FGM 

)/ :II  FGM and /: ( 232 ZrOAlOAlAlIFGM squares plates with 

thickness ratio ) 10/( ha for the different values of material 

index )10 a, 8 5, , 2 , 1 , 5.0 , 0( ndp   , Results are in good 

agreement with the published of Benachour et al. (2011). As 

is indicated in the above section, the small difference noted 

between the results obtained by the present theory and 

Benachour et al. (2011) is due to the effect of thickness 

stretching which is omitted this latter (Benachour et al. 

2011), It can be observed also that there is a remarkable 

difference between the non dimensional frequencies of   

Zhao et al. (2009) and those of high shear deformable plate 

theory (Benachour et al. 2011) and the present model. A 

reason of this difference is due to the fact that Zhao et al. 

(2009) utilized a numerical solution to determine the natural 

frequencies of the FG plates. It should be also noted that the 

difference between the present results and those reported by 

Zhao et al. (2009) and Hosseini-Hashemi et al. (2010) is 

due to the used theory in these later references which is 

FSDT. However, FSDT and HSDT (Benachour et al. 2011) 

neglect the thickness stretching effect. It can be concluded 

from Table 3 that the observed the difference between the 

tabulated results is due to the thickness stretching effect 

which is more pronounced in thick plates ( / 0.1)h a  . Thus, 

the proposed theory is improved comparatively to the other 

theories FSDT (Zhao et al. 2009 and Hosseini-Hashemi et 

al. 2010) and HSDT (Benachour et al. 2011) because it 

considers the thickness stretching effect.  

 

Table 4 shows a comparison of fundamental frequencies

mm Eh  2 of simply supported Aluminum/Zirconia 

squares FG plates for 0.2) and 0.1  , 05.0/( ah  when 

1)p( 21 p  in the first part and )5  3 , 2p( 21 andpp   

when )2.0/( ah  
in the second part. The obtained results 

(quasi 3D) are compared with those given by the FSDT 

(Hosseini-Hashemi et al. 2010), 2D HSDT (Matsunaga 

2008) and HSDT of (Pradyumna and Bandyopadhyay 2008 

and Benachour et al. 2011). It can be seen that the present 

results are in good agreement with other theories. In 

addition, it should be indicated that the small difference 

observed is due to the effect of the transverse normal 

deformation included by the present theory. 
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Table 2 Comparison of fundamental frequency parameter 
cc Eh  simply supported 

32/ OAlAl square plates 

  a/h        Theories 
Power indices ( p ) 

0 0.5 1 4 10   

20 

Benachour et al. (2011) 0,01480 0,01254 0,01130 0,00980 0,00940 - 

Hosseini-Hashemi et al. (2010) 0,01480 0,01281 0,01150 0,01013 0,00963 - 

Zhao et al. (2009) 0,01464 0,01241 0,01118 0,00970 0,00931 - 

Present )0( z  0.01485 0.01267 0.01151 0.01005 0.00953 - 

10 

Benachour et al. (2011) 0,05769 0,04900 0,04417 0,03804 0,03635 0,02936 

Matsunaga (2008) 0,05777 0,04917 0,04427 0,03811 0,03642 0,02933 

Hosseini-Hashemi et al. (2010) 0,05769 0,04920 0,04454 0,03825 0,03627 0,02936 

Zhao et al. (2009) 0,05673 0,04818 0,04346 0,03757 0,03591 - 

Matsunaga (2008) 0,06382 0,05429 0,04889 0,04230 0,04047 - 

Present )0( z  0.05797 0.04953 0.04502 0.03901 0.03688 0.02950 

5 

Benachour et al. (2011) 0,2112 0,1806 0,1628 0,1375 0,1300 0,1075 

Matsunaga (2008) 0,2121 0,1819 0,1640 0,1383 0,1306 0,1077 

Hosseini-Hashemi et al. (2010) 0,2112 0,1806 0,1650 0,1371 0,1304 0,1075 

Zhao et al. (2009) 0,2055 0,1757 0,1587 0,1356 0,1284 - 

Matsunaga (2008) 0,2334 0,1997 0,1802 0,1543 0,1462 - 

Present )0( z  0.2130 0.1832 0.1665 0.1413 0.1321 0.1084 

Table 3 Comparison of fundamental frequency parameter ( 2 / /c ca E h   ) for simply supported square FG plates 

when / 0.1h a   

 FGMs Theories 
Power indices ( p )  

0 0.5 1 2 5 8 10 

Al/Al₂O₃ 

Benachour et al. (2011) 5,7694 4,9000 4,4166 4,0057 3,7660 3,6831 3,6357 

Hosseini-Hashemi et al. (2010) 5,7693 4,9207 4,4545 4,0063 3,7837 3,6830 3,6277 

Zhao et al. (2009) 5,6763 4,8209 4,3474 3,9474 3,7218 3,6410 3,5923 

Present )0( z  5.7967 4.9532 4.5015 4.1147 3.8524 3.7458 3.6883 

Al/ZrO₂ 

Benachour et al. (2011) 5,7694 5,4380 5,3113 5,2923 5,3904 5,3950 5,3783 

Matsunaga (2008) 5,7769 - 5,3216 - - - - 

Hosseini-Hashemi et al. (2010) 5,7693 5,3176 5,2532 5,3084 5,2940 5,2312 5,1893 

Zhao et al. (2009) 5,6763 5,1105 4,8713 4,6977 4,5549 4,4741 4,4323 

Present )0( z  5.7967 5.4828 5.3761 5.3705 5.4520 5.4428 5.4208 
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The variation of the non dimensional fundamental 

frequency is shown in Figs. 2 and 3 for aluminum/alumina 

plate in function of geometry ratio )/( ha . The results 

illustrate that the frequency parameter increase with 

increasing )/( ha ratio when )20/( ha . It can be seen that 

the non-dimensional frequency found to be independent of 

the length thickness ratio )/( ha  when )20/( ha . As is 

indicated in the Figs. 2 and 3, the neglect of the transverse 

normal deformation underestimate the non-dimensional 

fundamental frequency.  
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Fig. 2 Variation of frequency parameter of 
32/ OAlAl  plate 

with ha /  ratio and 1p index. ( 5.0/ ba and 12 p ) 
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Fig. 3 Variation of frequency parameter of 
32/ OAlAl  plate 

with ha /  ratio and 
2p  index. ( 5.0/ ba and 11 p ) 
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Fig. 4 Variation of frequency parameter of 
32/ OAlAl  plate 

with ba /  ratio and 1p  index. ( 2/ ha and 12 p ) 
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Fig. 5 Variation of frequency parameter of 
32/ OAlAl  plate 

with ha /  ratio and 
1p  index. ( 2/ ha and 11 p ) 

 

 

It is illustrate from Figs. 2 and 3 that the effect of 1p is to 

make the plate stiffer when this gradient index is reduced. 

However, decreasing the second power law index 2p  , 

make the plate soften as presented in Fig. 3. 

The dynamic behavior of plate (
32/ OAlAl ) is shown in 

Figs. 4 and 5. It can be noted that the frequency parameter 

is in direct correlation relation with the aspect ratio )/( ba . 

Table 4 Comparison of fundamental frequency parameter mm Eh /2  for simply supported square FG plates 

Theories 
1p  2.0/ ah  

05.0/ ah  1.0/ ah  2.0/ ah  2p  3p  5p  

Benachour et al. (2011) 0,0158 0,0618 0,2270 0,2249 0,2255 0,2266 

Matsunaga (2008) 0,0158 0,0618 0,2285 0,2264 0,2270 0,2281 

Pradyumna and Bandyopadhyay (2008) 0,0157 0,0613 0,2257 0,2237 0,2243 0,2253 

Hosseini-Hashemi et al. (2010) 0,0158 0,0611 0,2270 0,2249 0,2254 0,2265 

Pradyumna and Bandyopadhyay (2008) 0,0162 0,0633 0,2323 0,2325 0,2334 0,2334 

Present )0( z  0.0160 0.0626 0.2309 0.2293 0.2298 0.2302 
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For scale reason, only curves with )10   5.0 , 0( 2 andp   are 

presented in Fig. 5. It should be noted that the non-

dimensional frequency decreases with increasing the first 

power index 1p (Fig. 4). However, it increases with 

increasing 2p  (Fig. 5). 

 

 

5. Conclusions 
 

This work present a free vibration analysis for simply 

supported functionally graded plate using an original quasi 

3D HSDT with only five unknowns. The theory accounts 

for the stretching and shear deformation effects without 

requiring a shear correction factor. The equations of motion 

are derived by using the Hamilton’s principle. These 

equations are solved via Navier’s procedure. The results 

where compared with solutions of several theories such as 

FSDT and HSDT. In conclusion, it can be said that the 

present theory is not only accurate but also efficient in 

predicting fundamental frequency of functionally graded 

plates. 
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