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1. Introduction 
 
Digital input and output (digital I/O) modules are widely 

used to connect digital sensors and actuators to automation 

systems. Digital I/O modules provide flexible connectivity 

extension to numerous sensors and actuators. Furthermore, 

digital I/O modules protect measurement and control 

systems from high voltages and currents by isolation 

(National Instruments, 2015). Under the growing 

automation system complexity, the number of digital I/O 

modules is rapidly increasing along with the number of 

sensors and actuators. Typical sensors include proximity, 

flow, pressure, and temperature sensors. Actuators can be 

solenoid valves, motors, and pumps. Fig. 1 shows an 

example of digital I/O module connection in a measurement 

and control system. 

Digital I/O modules typically consist of resistors, 

electrolytic capacitors, optocouplers , and protocol 

processors for transmitting digital signals. The components 

are inevitably affected by operating and environmental 

stress conditions, such as high voltage, high current, high 

temperature, and temperature cycling. Stress conditions 

may cause performance degradation of the components, and 

eventually lead to failures of digital I/O modules. Because  
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digital I/O modules transmit signals or isolate the systems 

from unexpected voltage and current transients, their 

failures may result in signal transmission failures and 

damages to sensitive circuitry leading to system 

malfunction. Reliability assessment and lifetime prediction 

of digital I/O modules is required to protect modules from 

unexpected failures resulting in automation system 

downtime. 

Reliability of digital systems, inclusive of digital I/O 

modules, has been studied by many researchers in a view of 

dynamic interaction between electronic components. Digital 

system malfunctions are critical in the nuclear industry 

because failures of a digital system could lead to 

catastrophic disasters, as well as damage to nuclear power 

plants, Thus, many researchers have focused on evaluating 

the reliability of digital systems in nuclear power plants. 

The U.S. nuclear regulatory commission (Chu et al. 2008) 

proposed a conventional probabilistic safety assessment 

(PSA) method to model the common causes of failure 

related to digital system components. PSA methods were 

applied to model the reliability of digital systems for 

feedwater control (Chu et al. 2009) and nuclear safety-

related digital instrumentation and control systems (Authen 

and Holmberg 2012, Chu et al. 2008, Lee et al. 2016). In 

addition to the traditional reliability modeling approaches, it 

has emerged to assess the reliability by predicting the 

lifetime for predictive maintenance. Predictive maintenance 

prevents system failures through estimating the remaining 

useful life based on system health monitoring and failure 
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prognosis, thereby reducing unexpected system downtime 

and downtime costs.  

One method for predictive maintenance is to identify the 

critical components at high risk of failures, and to predict 

the critical component lifetime. A digital I/O module 

consists of approximately 60 components in charge of 

power conversion, signal isolation, signal transformation, 

and communication protocol processing. According to IEEE 

Standard 650 (IEEE Standards Association, 2006), 

communication protocol processors, electrolytic capacitors, 

optocouplers, and surge killers often experience wear out 

failures in a digital I/O module. Their potential failure 

mechanisms of the critical components were surveyed as 

shown in Table 1. A dominant failure mechanism of digital 

I/O modules in use condition is distortion and signal loss in 

optocouplers due to high temperature and high current 

(Slama et al. 2008, Shi et al. 2014). High temperature and 

high current induce electromigration in light emitting 

diodes (LEDs) used as a light source. Electromigration 

continuously reduces the LED light intensity. Intensity 

reduction of an LED light causes signal distortion and 

reduction. The performance of an optocoupler degrades 

over time due to LED wear-out damage, which can 

eventually cause digital I/O module failure.  

The purpose of this paper is to predict the lifetime of 

optocouplers using Bayesian tracking approaches by 

monitoring the performance degradation of optocouplers. 

This study performs accelerated degradation tests (ADTs) 

of optocouplers to obtain degradation data for predicting the 

lifetime of optocouplers. The lifetime of optocouplers is 

predicted using Bayesian tracking algorithms, EKF and PF, 

which are representative algorithms applicable to nonlinear 

system models. Finally, the prognostic performance of each 

algorithm was evaluated by accuracy and robustness-based 

performance metrics. 

 

 

2. Bayesian tracking approaches 
 

Bayesian tracking approaches have widely been used to 

predict the evolution of system damage.  

 

Table 1 Failure modes and causes of main functional 

components in a digital I/O module 

Component Failure mode Failure cause 

Communication 

protocol processor, 

EtherCAT BGA  

(Chiu et al. 2004) 

Solder joint crack 
Temperature 

cycling 

Die crack 

Temperature 

cycling, 

vibration, 

bending 

Electrolytic capacitor 

(Kulkarni et al. 2009)  

Capacitance reduction 
High voltage, 

ripple 

current, high 

temperature Crack 

Optocoupler  

(Slama et al. 2008)  

Signal distortions and 

reductions 
High 

temperature, 

high current Signal velocity delay 

Surge protector 

(Brown 2004)  

Resistance increment High current 

Crack 
Temperature 

cycling, 

 

 

Fig. 1 And example of digital I/O module connection 
 

 

Bayesian tracking-based algorithms estimate the true states 

of a dynamic system under the Markov assumption by 

employing a state dynamic model and a measurement 

model. Extended Kalman Filter (EKF) and particle Filter 

(PF) are widely used recursive Bayesian estimation 

techniques for solving non-linear state estimation problems 

(Feng et al. 2011, Doucet et al. 2001, Yoshida and Akiyama 

2013, Ginsberg et al. 2018). 

These Bayesian algorithms incorporate observations into 

a priori state estimate by considering the likelihood of 

measured values based on Bayes theorem, as shown in Eq. 

(1). 

 (𝐻 𝐷)   (𝐷 𝐻) (𝐻) (1) 

where  (𝐻 𝐷) is the posterior probability of a hypothesis 

and  (𝐷 𝐻)  is the likelihood.  (𝐻)  is the prior 

probability of a hypothesis without any evidence from 

measurement data. Bayes theorem computes the probability 

of an output, 𝐻, given measurements, 𝐷. 
In non-linear state estimation problems, the evolution of 

the state 𝑥 is under investigation. The sequence of state 𝑥 

can be given by the following state model 

𝑥  𝑓𝑘(𝑥𝑘    𝑘  ) (2) 

where 𝑓  is a system model associated with the state, 𝑥 −1, 

process noise,   −1; and 𝑘 is the sequence. The state can be 

estimated and tracked by observations 𝑧 

𝑧    (𝑥  𝑛 ) (3) 

where    is a measurement model, and 𝑛  is a 

measurement noise. The tracking objective is to seek the 

estimates of the state 𝑥𝑘 based on Bayesian perspective. The 

maximum a posteriori estimator (MAP) finds the value of 

𝑥 which maximizes the posterior distribution. Recursive 

Bayesian estimation including EKF and PF is the extension 

of MAP to time sequence estimation based of observations 

at each time step with the Bayes theorem and conditional 

independence assumption of measurements.  

EKF estimates nonlinear system states using 

differentiable functions of state transition and measurement 

models. EKF expands the system model 𝑓  and the 

measurement model    in Taylor series, and approximates 

the posterior probability. EKF has been applied to fault 

prognosis of many systems because of the applicability to 

nonlinear state estimation. For example, EKF was used to 

track the evolution of bearing faults, and to predict the 

remaining useful life (RUL) of bearing faults under 
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different operating conditions (Singleton et al. 2015). 

Failure prognosis using EKF was also applied to estimate 

plastic strain of ball grid array (BGA) interconnects (Lall et 

al. 2011). EKF is to find the mean and covariance of the 

hidden states using all the observations at a given time. The 

recursive process of EKF estimation consists of prediction 

and update, using measurements and Kalman gain. More 

detailed process of the EKF algorithm is presented in 

Algorithm 1. 

 

 

Algorithm 1 The Extended Kalman filter algorithm 

1. Initialization  

Set initial state and covariance, 𝑥0 and  0 

2. Iteration: for t in 1 to T 

1) Prediction step 

Predict the estimate of state and covariance 

𝑥̂ 
−  𝑓(𝑥̂ −1) +   −1 

  
−  𝐹 −1  −1𝐹 −1

𝑇 + 𝑄 −1 

2) Kalman gain calculation 

𝐾    
−𝐻 

𝑇(𝐻   
−𝐻 

𝑇 + 𝑅 )
−1 

3) Data measurement, 𝑧  

4) Update step 

Update the estimate of state and covariance using 

the new measurement and the Kalman gain 

𝑥̂  𝑥̂ 
− + 𝐾 (𝑧  𝐻 𝑥̂ 

−) 
   (  𝐾 𝐻 )  

− 

3. Output  

𝑥̂  and    for 𝑡 ∈ *0 𝑇+ 
where 𝑥̂ 

−  and   
−  are the priori estimate of hidden 

state and covariance respectively, 𝐹 −1 is the Jacobian 

of partial derivatives of 𝑓 with respect to 𝑥, and 𝐻  is 

the Jacobian of partial derivatives of   with respect to x. 

 

 

PF provides a theoretical framework for dealing with 

non-linearities or non-Gaussian process observation noise 

(Orchard and Vachtsevanos 2009). The basic methodology 

approximates the conditional state probability distribution 

by a swarm of points called „particles‟ each with a 

corresponding weight. These particles contain samples from 

the state-space and a set of weights representing discrete 

probability masses. Particles can be recursively updated 

given a non-linear process model, a measurement model, 

and a set of measurements. PF has been also widely used to 

predict failure prognosis for many system applications. As 

an example, PF combined with support vector regression 

was used to monitor battery state-of health and to predict 

the RUL of batteries (Dong et al. 2014). Sequential 

importance resampling (SIR) involves importance 

resampling steps to reduce the degeneracy problems of a 

basic particle filter, sequential importance sampling 

algorithm. The resampling is to eliminate particles that have 

small weights and extract replacement particles having 

large weights. Multinomial resampling scheme that uses the 

inverse of the cumulative density function to map 

independent random numbers to the events was used in this 

study. The recursive process of SIR filter involves 

prediction, data measurement, update, resampling step. The 

process of the SIR algorithm is presented in Algorithm 2. 

Algorithm 2 The particle filter algorithm (SIR) 

1. Initialization 

1) Set initial sets of particles and associated 

weights for i in 1 to N, 𝑥0
𝑖~𝑝(𝑥0)  and 

𝑤̃0
𝑖~𝑝(𝑦0 𝑥0

𝑖) 

2) Normalize the importance weight, 𝑤0
𝑖  

𝑤̃0
𝑖

∑ 𝑤̃0
𝑗𝑁

𝑗=1

 

2. Iteration: for t in 1 to T 

1) Prediction step 

Predict the estimate of particles 

𝑥̂ 
−  𝑓(𝑥̂ −1) +   −1 

2) Data measurement, 𝑧  

3) Update step 

Update the importance weights by computing the 

likelihood of each priori estimates using the new 

measurement, 𝑤̃𝑡
𝑖~𝑝(𝑧𝑡 𝑥𝑡

𝑖) 

    Normalize the importance weight, 𝑤𝑡
𝑖  

𝑤̃𝑡
𝑖

∑ 𝑤̃𝑡
𝑗𝑁

𝑗=1

 

4) Resampling 

Resample with replacement N particles 𝑥𝑡
𝑖 

according to the importance weights, 𝑤𝑡
𝑖  

3. Output  

{𝑥𝑡
𝑖  𝑤𝑡

𝑖}
𝑖=1

𝑁
 for 𝑡 ∈ *0 𝑇+ 

 

 

3. Prognostic approach 
 

This section presents a methodology for optocoupler 

lifetime prediction using the EKF and PF algorithms. Fig. 2 

shows the overall prognosis process. In the first step, ADT 

was performed to collect performance degradation under 

accelerated stress conditions. In the second step, the EKF 

and PF algorithms were used to predict the lifetime of 

optocouplers. Finally, the performance of each prognostic 

algorithm was evaluated by the evaluation metrics based on 

accuracy and robustness. 

 

3.1 Accelerated degradation test 
 

Accelerated degradation test (ADT) is conducted to 

reduce the test time by modelling performance degradation 

physically or empirically (Meeker et al. 1999). ADT is 

widely used to estimate long-term performance of products 

and systems by understanding physical properties in 

degradation process. In this study, the lifetime of 

optocouplers was estimated before their failures by 

collecting the performance degradation data. ADT was 

performed through four stages; determination of stress 

conditions, determination of critical performance 

characteristics, experimental setup, and experiment and data 

collection. 
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Fig. 2 Prognostic approach for optocoupler lifetime 

prediction 

 

 

Stress conditions were identified based on the potential 

failure mechanisms of optocouplers as presented in the 

introduction. LED degradation in optocouplers was 

assumed to be the critical failure mechanism of digital I/O 

modules. The accepted model for electromigration time to 

failure (TTF) is a Black‟s equation associated with 

temperature and current density (Black 1969). Following 

Eq. (4) shows the Black‟s equation. 

𝑇𝑇𝐹  𝐴𝑗−𝑛𝑒𝑥𝑝 (
𝐸𝑎
𝐾𝑇
) (4) 

where TTF is the time to failure, A is a material dependent 

constant, 𝑗 is the current density, n is a model parameter of 

2 (Black 1974), 𝐸𝑎 is the activation energy of 0.43eV for 

aluminium gallium arsenide (AlGaAs) electromigration 

(Mooney et al. 1991), K is the Boltzmann‟s constant, and T 

is temperature in Kelvin. According to the stress factors in 

the Black‟s equation, the temperature and the current 

density were controlled for stress acceleration. Based on the 

specifications from the optocoupler manufacturer datasheet, 

the temperature and current were controlled to 110°C and 

50 mA, respectively, which were the operating margins of 

the optocoupler. 

Critical performance characteristics are needed to 

explain the dominant degradation process, and can be used 

to characterize product reliability (Yang, 2007). A dominant 

degradation phenomenon of optocouplers is current transfer 

ratio (CTR) reduction (Shi et al. 2014, Slama et al. 2008). 

CTR is a ratio of the collector current of the output side 

(photo sensor) to the forward current applied to the input 

side (LEDs) in percentage. Since CTR depends on the 

intensity of an LED, LED intensity reduction due to 

electromigration also results in CTR reduction over time. 

CTR is defined as shown in Eq. (5) 

𝐶𝑇𝑅  
𝐼𝐶
𝐼𝐹
×  00 (5) 

where 𝐼𝐶  is the collector current and 𝐼𝐹  is the input 

forward current. To collect CTR degradation data, the 

collector current and the input forward current were 

measured.  

Fig. 3 shows the schematic of the ADT that consists of 

test vehicles, a power supply, a data logger, a laptop, and a 

chamber. A test vehicle was composed of 16 optocouplers 

and 2 test vehicles (32 optocouplers) were used in the ADT. 

The power supply was controlled to supply 50 mA to 

optocoupler input in constant current mode, and 5 V to 

emitter. The inputs of all optocouplers were connected in 

series to drive the same input current conditions. The data 

logger was used to measure the input forward current and 

the collector current to calculate the CTR. The device under 

test (DUT) were Toshiba TLP291-4, which had 4 

transmission paths in a single chip, and the DUT were 

operating in the chamber to maintain the ambient 

temperature at 110°C 

According to (Slama et al. 2008), CTR barely changed 

at high currents, when the phototransistor in optocouplers 

was in saturation. It is required to identify an appropriate 

input forward current sensitive to CTR degradation. For 

CTR measurement, multiple input forward currents, ranging 

from 0.1 mA to 50 mA, were swept for 0.25 second every 4 

hour, and during the rest of the ADT, the input forward 

current was maintained at 50 mA. 

 

 

 

 

Fig. 3 Schematic of the accelerated degradation test 
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3.2 Lifetime prediction 
 

The lifetime prediction procedure included pre-

processing of the CTR, estimation of the CTR degradation, 

lifetime prediction of optocouplers using EKF and PF, and 

comparison of the prediction performance.  

Firstly, the CTR was normalized by dividing the CTR 

by the initial CTR at time zero. It was required to determine 

the failure of optocouplers, because a 50% degradation 

from the initial CTR is considered to failure. Siemens, for 

example, defined the end of life of optocouplers as when 

the CTR drops to 50%. The normalized CTR is defined as 

shown in Eq. (6) 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑇𝑅 (%)  
𝐶𝑇𝑅𝑡
𝐶𝑇𝑅0

×  00 (6) 

where 𝐶𝑇𝑅𝑡 is the CTR at time t and 𝐶𝑇𝑅0 is the initial 

CTR. 

Normalized degradation data from 32 optocouplers was 

divided into a training dataset a test dataset. The training 

dataset was a set of examples used to fit the parameters of 

the degradation model in the lifetime prediction, and the test 

dataset was used to assess the performance of the prediction 

algorithm specified using the training dataset. 16 

optocouplers were randomly selected to be the training 

dataset to determine the initial state, covariance, and noise 

through model fitting. The remaining 16 optocouplers were 

used as the test datasets to evaluate the lifetime prediction 

performance. 

Next, the degradation of normalized CTR was estimated 

using EKF and PF to deal with the nonlinear degradation 

behaviour. The degradation trajectory of CTR was assumed 

to follow an exponential curve because CTR degradation is 

occurred from the LED lumen degradation. According to 

IES TM-21-11, long term lumen maintenance of LED light 

sources, LED aging behaviour is suggested to be described 

and extrapolated by using an exponential function. 

Accordingly, the measurement model is defined as shown in 

Eq. (7). 

𝑧  𝐴 × exp( 𝐵 × 𝑡 ) + 𝑛  (7) 

where 𝑧  is the normalized CTR, 𝐴  and 𝐵  are 

measurement model parameters, 𝑡  is time, 𝑛  is 

measurement noise, and 𝑘 is the measurement cycle.  

The parameters of the measurement model were 

determined to be the states of the nonlinear state-space 

model. The state model is defined as shown in Eqs. (8)-

(10). 

𝒙𝒌  [
𝑨𝒌
𝑩𝒌
] (8) 

 

𝐴  𝐴 −1 +   −1
𝐴      𝒗𝒌−𝟏

𝑨 ~𝑵(𝟎 𝑸𝒗
𝑨) (9) 

 

𝐵  𝐵 −1 +   −1
𝐵     𝒗𝒌−𝟏

𝑩 ~𝑵(𝟎 𝑸𝒗
𝑩) (10) 

where 𝑥  is the state vector,    is the state noise, and 𝑄  

is the covariance of state noise. 

To begin the lifetime prediction using EKF and PF 

algorithms, an initial state vector and noise of state model 

were needed. The initial state vector was determined by the 

exponential fitting using the training dataset. The 

covariance of the fitted model parameters was also used to 

determine the covariance of state noise. On the other hand, 

the measurement noise was assumed to be Gaussian and 

was determined based on the standard derivation of the 

training dataset measurements. In SIR filter, the likelihood 

function was normal distribution and the initial distribution 

of particles were assumed to be uniform. 

 

3.3 Performance evaluation 
 

The lifetime prediction performance was evaluated by 

prognostic horizon (PH) and cumulative relative accuracy 

(CRA) (Saxena et al. 2008). PH evaluates the difference 

between the first time of prediction and the end of life. The 

allowable performance boundary was determined to be 10% 

error bound of the initial true RUL around the true RUL. In 

PH evaluation, the longer PH implies the earlier 

convergence to the true RUL range. RA is defined as a 

measure of error in RUL prediction relative to the true RUL, 

described by Eq. (11). 

𝑅𝐴𝜆    
 𝑟∗(𝑖𝜆)  〈𝑟

𝑙(𝑖𝜆)〉 

𝑟∗(𝑖𝜆)
 (11) 

where λ is the time window modifier, 𝑙 is the index for 𝑙𝑡ℎ 

device under test, 𝑟∗(𝑖𝜆) is the truth RUL at time index 𝑖𝜆, 
and 〈𝑟𝑙(𝑖𝜆)〉  is an appropriate point estimate of the 

predicted RUL distribution at that time. CRA evaluates the 

relative accuracy of RUL prediction at multiple time 

instances to estimate the overall prediction performance, as 

shown in equation. 

𝐶𝑅𝐴𝜆  
 

 𝑙𝜆 
∑ 𝑤(𝑟(𝑖))

𝑖∈𝑙𝑖𝜆

𝑅𝐴𝜆  
(12) 

where 𝑤(𝑟(𝑖)) is a weight factor as a function of the RUL 

at all the time indices, 𝑙𝜆 is the set of all time indexes when 

a prediction was made. It is common to give more weight to 

RA evaluated at times closer to the end of life (EOL) since 

good performance close to the EOL is important for 

decision making. In this study, the RA closer to the EOL 

was exponentially weighted. 

 

 

4. Results 
 
The failure was defined to be the time at which CTR 

drops to 80% of the initial value due to the limited test time. 

The CTR degradation trajectory was analyzed to identify 

the most sensitive input forward current to CTR degradation. 

 

4.1 The input forward current condition for 
degradation data measurement 

 
The degradation rates of the normalized CTR varied 

according to each input forward current. Fig. 4 shows the 

normalized CTR trajectories over time with their standard 

deviations when the input forward current was from 0.1 mA 

to 50 mA. 
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Fig. 4 CTR degradation in different input forward current 

conditions 

 

 

 

The normalized CTR showed some fluctuations when the 

input forward current was 0.1 mA because of the resolution 

limit of the measuring equipment. The CTR of all the 

training samples was higher than 95% even after 500 hours 

of testing. It might be due to saturation mode operation of 

the optocoupler when the input forward current was over 10 

mA. When the input forward current is 5 mA, the CTR 

showed the highest degradation rate. 5 mA was consistent 

with the input forward current condition of the most 

sensitive CTR provided by the manufacturer of 

optocouplers. Thus, 5 mA was used for input forward 

current condition for lifetime prediction. 

 

4.2 Lifetime prediction 
 

The measurement data from 0 to 12 hours, during which 

the CTR was increasing, was used to obtain the initial states 

which were the parameters of degradation model by 

exponential model fitting. Starting from the initial states of 

degradation model, CTR degradation until 200 hours was 

estimated by recursive estimation using the measurement. Fig. 

5 shows the true normalized CTR degradation and the CTR 

estimated by EKF and PF of a sample, respectively. The 

estimation curve with PF followed the true normalized CTR 

during the entire estimation period. However, the estimation 

curve with EKF showed larger residuals than the result with 

PF in the early estimation period. The root mean square errors 

(RMSEs) of EKF and PF estimation of the sample were 

calculated to be 1.08 and 0.09, respectively. RMSE of EKF 

estimation for every test samples was higher than RMSE of 

PF estimation; and, the mean RMSEs of EKF and PF 

estimation were 1.16 and 0.1 respectively. 

The CTR degradation was predicted at 200 hours using 

EKF and PF. Fig. 6 shows the CTR degradation prediction. 

The predicted TTFs with EKF and PF were 384 and 368 

hours, respectively, which was earlier than the true TTF. The 

prediction error of EKF was lower than that of PF.  

Fig. 7 shows the results of EKF and PF prediction 

performance evaluation. Fig. 8 shows the evaluation results 

for all the test samples. As shown in Fig. 7(a), EKF exhibited 

a longer PH than PF. RUL prediction by EKF converged 

within the accuracy boundary 404 hours prior to the failure. 

On the other hand, time to convergence of PF algorithm was 

192 hours before the failure. Fig. 7(b) shows the PH results 

across all the test samples. The CRAs of EKF and PF were 

calculated to be 0.116 and 0.0113, respectively. 

 

4.3 Real lifetime prediction 

 

To compute the expected field lifetime from the 

accelerated degradation test, an acceleration factor was 

calculated based on the Black‟s equation. Acceleration factor 

(AF) can be calculated by referring to the ratio of the lifetime 

between use conditions and accelerated test conditions. Eq. 

(13) shows the AF calculation. 

𝐴𝐹  
𝑇𝑇𝐹   
𝑇𝑇𝐹𝑎  

 (
𝑗𝑎  
𝑗   

)
𝑛

𝑒𝑥𝑝 (
𝐸𝑎
𝐾
{
 

𝑇   
 

 

𝑇𝑎  
}) (13) 

where 𝑇𝑇𝐹    is the time to failure in use condition, 𝑇𝑇𝐹𝑎   
is the time to failure in accelerated test condition, 𝑗𝑎   is the 

current density in accelerated condition, 𝑗    is the current 

density in use condition, 𝑇    is the operating temperature in 

use condition, and 𝑇𝑎   is the operating temperature in 

accelerated condition. As an example, when an ambient 

temperature and an operating current are 59°C and 20 mA 

respectively, AF is calculated to be 184. 

 

 

5. Conclusions 
 

This paper presented a prognostic approach of digital I/O 

modules by identifying the critical components and predicting 

the RUL of the critical components using EKF and PF. 

Critical items in the digital I/O modules were identified to be 

optocouplers in terms of the risk of failures. During the 

lifetime, optocouplers deteriorated due to electromigration on 

LEDs resulting from thermal and electrical stress. As a result 

of experimental verification, both EKF and PF showed 

accurate and robust prediction of RUL.  

Our future works on this topic include continuing 

accelerated life tests of optocouplers to obtain long term 

CTR degradation data. In addition, the digital I/O modules 

will be under accelerated life tests to compare the lifetime 

of digital I/O modules and optocouplers. 
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(a) EKF (b) PF 

Fig. 5 The CTR degradation estimation by using EKF and PF 

 

  
(a) EKF (b) PF 

Fig. 6 The CTR degradation prediction by using EKF and PF 

 

 

 

(a) Prognostic horizon (b) performance comparison 

Fig. 7 The RUL prediction performance of EKF and PF 
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