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1. Introduction 
 

Condition monitoring is the process of detecting damage 

in rotating machinery. It usually measures vibration signals 

to assess the parameters of machine condition, which allows 

users to reduce maintenance costs and prevent catastrophic 

failures. Current practice of condition monitoring identifies 

feature changes in the time, frequency, and time-frequency 

domain and applies statistical models to diagnose structural 

anomaly. In addition, machine learning algorithms, 

including neural networks and support vector machines are 

increasingly used in condition monitoring to overcome the 

uncertainty and non-linearity problems of measured signal 

parameters. Literatures in this area are vast and well-

summarized in Carden and Fanning (2004), Peng and Chu 

(2004), Samuel and Pines (2005), Jardine et al. (2006) and 

Tchakoua et al. (2014). 

In order to accurately diagnose rotating systems, a 

number of sensors are usually deployed, measuring the 

vibration signals at a high sampling frequency. A significant 

data handling problem is encountered in such cases (Hakim 

and Abdul Razak 2014, Jung and Koh 2014). We are trying 

to address this issues by introducing compressive sensing 

into the condition monitoring practice.         

Donoho (2006) proposed a compressive sensing 

technique as a new data sampling method. Compressive 

sensing involves the measuring and recovering of a signal 

the length of which is significantly shorter than that of the  
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original signal. Because this method measures only a small 

number of data from the data acquisition stage, signal 

processing efficiency can be improved. Compressive 

sensing was applied in various fields such as image 

processing and structural health monitoring. Mascarenas et 

al. (2013) developed compressive sensing data acquisition 

devices using a microcontroller and applied the 

compressive measurements to structural damage detection.  

Höglund et al. (2014) performed damage detection of 

bridges by recovering the compressive sensing data, while 

Bao et al. (2010) compared the performance of the 

compressive sensing technique and other data compression 

techniques. Jayawardhana et al. (2017) compared the 

performance wavelet compression and compressive sensing 

techniques, and damage detection was executed using 

reconstructed data. Park et al. (2014) conducted modal 

analysis using compressed data without reconstructing the 

original measurements.  

In the present study, compressive sensing, which has 

been applied in many other fields, is applied to condition 

monitoring. Various damage sensitive features were 

extracted from the measured data by compressive sensing, 

and damage detection and classification were carried out 

using several statistical parameters and a machine learning 

algorithm, referred to as variance considered machine. 

 

 

2. Theory of compressive sensing 
 

Currently, the signal measurements are based on the 

Nyquist sampling theory, which specifies that the sampling 

rates need to be at least two times the signal bandwidths to 

preserve all the information in the signals. For condition 
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monitoring applications, data are generally collected using a 

distributed sensor network with a high sampling frequency, 

which creates a number of problems, including a lack of 

storage space and an increase in the signal processing effort.  

Compressive sampling was introduced by Donoho 

(2006), proposing that compressive sensing can recover 

signals without the need to measure the signals above a 

certain level in the Nyquist sampling frequency under a 

certain condition.  

The theory of compressive sensing states that sampling 

rates depend on the sparsity of signals. Natural signals are 

normally not sparse by themselves. However, they are 

typically sparse when expressed in the Ψ basis, if one 

choose the discrete Fourier transform (DFT) as the sparsity 

basis.  

s=Ψ−1𝑥 (1) 

where x∈ 𝐑 𝑛 is the signal in the temporal domain and and 

s is the sparse coefficient sequence of x in the Ψ basis. As 

shown in Fig. 1, typical time domain signals are represented 

as a sparse signal in the frequency domain, which contains 

only a few dominant frequency component. Therefore, Ψ−1 

is the inverse discrete Fourier transform. 

The process of compressive sensing can be represented 

by Eq (2) 

y = Φx (2) 

where x refers to the original signal with the length of N, Φ 

is the matrix of the compressed measurement with the size 

of MxN, and y is the compressively sampled signal of 

length M. In this case, the compression ratio is M/N. 

The matrix Φ shall satisfy the restricted isometry 

property (RIP) condition, which is represented by Eq. (3), 

 (3) 

Where  represents the RIP condition parameter. If 

the value of  approaches to zero, the left and the right 

side of Eq(3) becomes approximately the same and the 

matrix Φ is said to satisfy the requirement for compressive 

sensing. 

 

 

 

Fig. 1 Signal in the time and frequency domain 

 

Fig. 2 Mathematical model of compressive sensing 

 

 

In summary, an RIP condition refers that matrix Φ projects 

signal x with uniform energy, and the signal projected with 

constant energy can be reliably compressed and recovered 

(Tropp and Gilbert 2007). For a compressive measurement 

matrix that satisfies the above condition, Gaussian or 

binary matrices with independent and identical 

distributions are mainly used.  

The compressively sampled signal can be recovered to 

the original signal by applying the inverse process of Eq(2). 

This process usually imposes an underdetermined problems, 

which could be solved by the application of the L1 

minimization algorithm or Greed algorithm (Tropp 2004, 

Tropp and Gilbert 2007, Needell and Tropp 2009). Fig. 2 

shows the compressive sensing process. 

A problem of incomplete recovery can occur while 

recovering the original signal from the compressed signal. 

The characteristics of the original signal and the 

compressive ratio should be carefully examined for such 

cases. A more comprehensive overview of compressive 

sensing could be found in Donoho (2006) and 

Jayawardhana et al. (2017).  

In this study, damage sensitive features were extracted 

from the signals measured by compressive sensing without 

incorporating the reconstruction process.  

 

 

3. Experimental setup and procedure 
 

For experiments, the RK4 equipment of Bently Nevada 

was employed, as shown in Fig. 3. At both ends of the 

structure, a journal bearing supports the shaft on which two 

0.8 kg disks are mounted. This system allows several 

typical structural damage to be readily and repeatedly 

introduced for condition monitoring tests. 

Three accelerometers (PCB 357A08) were attached at 

both ends and at the center of the system to measure the 

vibration signals at the sampling frequency of 5 kHz with a 

dynamic signal analyzer (NI-4431). First, the measurements 

are taken for 1,080 second under the normal condition. 

After then, two simulated damage conditions were imposed; 

misalignment and bearing damage. For the bearing damage, 

a normal bearing was replaced with a damaged bearing, and 

for misalignments, a mass (0.01 kg) was attached to the disk 

mounted to the rotating body. At each condition, the 

responses are again measured for 1,080 second. The 

measured signals are then segmented into a 1 second 
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interval, constructing 1,080 independent data sets for each 

condition. 

After the measurement, compressed signals were 

acquired using the compressive operation matrix to simulate 

the compressive sensing technique. This procedure was 

taken because the authors do not have a hardware to directly 

measure compressively sampled data. A binary matrix was 

used as the compressive measurement matrix Φ for this 

study. The hardware implementation of compressive 

sensing in the structural dynamics field was first attempted 

by Mascarenas et al. (2013), in which the authors uses a 

microcontroller to measure the compressive data, while the 

other areas, such as camera image processing, utilizes 

hardware that directly measures the compressive data. 

After the compressive sampled data are obtained, the 

original signals are reconstructed to analyze the data. Figure 

4 shows the comparison between the original and the 

reconstructed signals from the compressed data with the 

compression ratios of 2, 4, and 10, respectively. In the case 

where the compression ratio was set to 2, the overall signals 

are very similar to the original signal as the signal could be 

reconstructed with only a slight distortion.  In cases where 

the compression ratios were set to 4 and 10, the signal could 

also be reconstructed with high accuracy, although the 

degree of distortion is increased. 

The correlation coefficients between the original and 

reconstructed signals are used to assess the performance of 

the reconstruction. The coefficient was 0.98 when the 

compressed signal of compression ratio of 2 is 

reconstructed. As the compression ratio increased, the 

signal reconstruction performance is decreased to 0.90 

(compression ratio: 4), and 0.86 (compression ratio: 10). 

Even with the high compression ratio, it still shows the high 

performance in reconstruction. 

 

 

 

Fig. 3 RK4 rotating system used for experiment 

 

 

It should be noted that the reconstruction performance 

of compressive sensing is not better than other signal 

compression techniques, such as wavelet transform. The 

wavelet transform usually perfectly reconstruct the original 

signal even with a very high compression ratio (Bao et al. 

2010). The difference between compressive sensing and 

other widely used signal compression technique, however, 

is that the compressive sensing measures and compresses 

the signals at the data acquisition stage. Other techniques, 

such as wavelet transform, need to take the full 

measurements and the compression should be made as an 

additional step. This characteristic certainly provides certain 

advantages in signal measurement and processing, 

including the requirements of much smaller data storage, 

energy, and computation.  

Fig. 5 shows the signals measured by the original 

Nyquist sampling frequency and those by compressive 

sensing under the normal condition. The compressive ration 

was set to 4, reducing the original data to one fourth the 

size. 

 

 

4. Compressive sensing to condition monitoring 
 

To apply the compressively sampled data for damage 

detection and classification, 20 signal features that can 

quantitatively represent the status of a rotating system was 

used. The selected signal features are widely used in 

condition monitoring, used in the study by Loutas et al. 

(2009). In table 1, N refers to the number of measured data 

samples and x(n) refers to a data value in each sample. 

As first, the changes in the original signals and the 

changes in the compressed signals with the introduced 

damage were analyzed to identify whether the 

characteristics of the original signal (20 features in Table 1) 

are preserved in the compressed signal. 

Table 1 Signal features in time domain 

Features Formula Features Formula 

P1 
∑ 𝑥(𝑛)𝑁

𝑛=1

𝑁
 P11 

∑ 𝑥(𝑛)4𝑁
𝑛=1

𝑁(𝑃24)
 

P2 √
∑ (𝑥(𝑛) − 𝑃1)2𝑁

𝑛=1

𝑁 − 1
 P12 max(x) +

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)

2(𝑁 − 1)
 

P3 max|𝑥(𝑛)| P13 min(x) +
𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)

2(𝑁 − 1)
 

P4 √
∑ (𝑥(𝑛))2𝑁

𝑛=1

𝑁
 P14 

𝑃4

𝑃1
 

P5 (
∑ √|𝑥(𝑛)|𝑁

𝑛=1

𝑁
)2 P15 

𝑃4

𝑚𝑎𝑥(𝑥(𝑛))
 

P6 
∑ (𝑥(𝑛) − 𝑃1)3𝑁

𝑛=1

(𝑁 − 1)𝑃23
 P16 − ∑ 𝑃(𝑥𝑖)𝑙𝑛𝑃(𝑥𝑖)

𝑁

𝑖=1

 

P7 
∑ (𝑥(𝑛) − 𝑃1)4𝑁

𝑛=1

(𝑁 − 1)𝑃24
 P17 

𝑃4

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 

P8 
𝑃42

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 P18 
𝑃5

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 

P9 
𝑃52

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 P19 
∑ (𝑥(𝑛) − 𝑃1)2𝑁

𝑛=1

𝑁 − 1
 

P10 
∑ 𝑥(𝑛)3𝑁

𝑛=1

𝑁(𝑃23)
 P20 

∑ |𝑥(𝑛)|𝑁
𝑛=1

𝑁
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(a) Compression ratio of 2 (time domain) 

 
(b) Compression ratio of 4 (time domain) 

 
(c) Compression ratio of 10 (time domain) 

Fig. 4 Comparison of the original and reconstructed signals 

with different compression ratios 

 

 
(a) Original data 

 
(b) Compressed data with compressive ratio of 4  

Fig. 5 Original and compressive time domain data 

 

 
(a) Original data 

 
(b) Compressed data with compressive ratio of 4  

Fig. 6 P5 feature changes with bearing damage 

 

 

Fig. 6 shows the comparison result of the P5 feature 

changes with the bearing damage. As can be seen, the 

difference in the signal feature values between the normal 

and bearing damage in the original data was approximately 

1.91 times, whereas the difference between the normal and 

bearing damage measured by compressive sensing (with 

compressive ratio of 4) was approximately 1.97 times, 

indicating a similar difference in the feature values between 

the original and the compressed data for the normal and 

bearing damage conditions.  

All other signal features showed the same characteristics 

as the feature values changed at a constant rate regardless of 

the type of damage introduced. For instance, the P2 feature 

showed about the 2.1 times changes with the bearing 

damage in both original and compressed data, while P3 

feature did not show any noticeable changes in both data 

with the introduced misalignment damage. 

The results showed that the characteristics of the 

original signal are preserved in the compressed data. For 

this reason, the data measured by compressive sensing are 

directly used for condition monitoring without a 

reconstruction process in this study. 

Fig. 7 shows histograms of P9 features under the normal 

and damaged conditions of the original and the compressed 

data (with compression ratio of 4). 

When the normal conditions measured at the different 

time were compared, no difference in the distribution was 

observed between both data groups. When the misalignment 

damage condition was imposed, both the original and the 

compressed data showed a slight deviation from the normal 

condition. With the bearing damage, the P9 feature show 

the clear separation between the normal and damaged 

condition from both the original and compressed data.  

The area under the receiver operating characteristic curve 

(AUC) value of the original data was 0.91, and that 

measured by compressive sensing was 0.86. AUC ranges 

from 0.5 to 1, in which AUC of 1 represents a perfect 

separation between two data groups, and 0.5 represents no 

separation between two data groups. 
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(a) Normal-normal conditions 

  
(b) Normal-misalignment conditions 

  
 (c) Normal-bearing damage conditions 

Fig. 7 Comparison of P9 feature changes from the original 

and compressed data 

 

 

These results once again confirmed that the same 

damage detection performance could be achieved using 

only the compressed data without the reconstruction 

process. All the signal features from compressive sensing 

showed the comparable performance with the original data, 

demonstrating that the feature based condition monitoring 

can be performed using only the compressed data. 

The data measured at a higher sampling frequency show 

a better sensitivity to a minor defect in a structure because 

the sensitivity is directly related to the wavelength of the 

excitation. Fig. 8(a) shows the P13 feature changes from the 

data measured at the sampling frequency of 25 kHz. The 

misalignment damage (a 0.006 kg mass attached to the disk) 

was introduced to the system. As can be seen, there is a 

clear separation between the normal and the damaged 

condition.  The Fig. 8(b) shows the results of uniformly 

down-sampled the original data with the factor of 5, which 

reduced the size of the data to one fifth of the original data 

and effectively reduced the sampling frequency to 5 kHz. 

With the low-frequency sampled data, it was difficult to 

distinguish the damage as the figure illustrated. However, as 

can be seen in Fig. 8(c), the difference in the distribution of 

the signal features could be clearly identified for the 

compressed data with the same data length, as shown in Fig. 

8(c). When the data measured at high sampling frequency 

are compressed, the dynamic characteristics of the data are 

preserved and the data would have a much higher 

sensitivity to defects in a system compared to the same 

length of the data measured at a lower sampling frequency, 

as illustrated in this example. 

 

 

 

 
(a) Measured data at a sampling frequency of 25 kHz 

 
(b) Down-sampled data at a sampling frequency of 5 kHz 

 
(c) Compression ratio of 5 

Fig. 8 Comparison of the original and compressed data at 

the same size 

 
 
5. Compressive sensing with variance considered 
machine  

 

Support vector machine (SVM) has been one of the 

most widely used machine learning algorithms in condition 

monitoring. SVM finds the hyperplane that best separates 

two data groups. SVM predicts the hyperplane with the 

maximum margin between the two data groups and 

performs binary classification of the datasets based on the 

hyperplane.  

SVM considers only the maximum margin between the 

two data groups. Yeom et. al (2009) developed the Variance 

Considered Machine (VCM) algorithm, which improves the 

performance of SVM, by considering the variances, 

averages, and maximum margin between the data groups.  

If two data groups (denoted as R1 and R2) are classified 

into two classes (denoted as c1 and c2), according to Bayes’ 

theorem, posterior probability P(ck|x) is calculated by Eq. 

(4) using the class conditional probability density function 

P(x|ck) and prior probability P(ck). Here, P (x|ck) is the 

probability density function of x when the class is ck.  

P(ck|x)=
P(x|ck)P(ck)

𝑃(𝑥)
 (4) 
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Fig. 9 Variance of error probabilities according to the decision 

point x* 
 

 

The error probability can be calculated using Eq. (5) 

based on the Bayesian decision theory. 

P(error)=P(x ∈ R2,c1)+P(x ∈ R1,c2) 

=∫ P(x|c1)P(c1)
 

R2
dx + ∫ P(x|c2)P(c2)

 

R1
dx 

(5) 

In Fig. 9, the area represented by the diagonal lines is 

the first integral part of the error probability equation, and 

the gray area is the second integral part of the equation, 

when the hyperplane is set at x* by SVM.  Fig. 9 clearly 

shows that the error probability changes depending on the 

position of x*. The error probability becomes minimal by 

reducing the error by as much as that of the reducible error 

(triangle) when x* moves to xB, which is the Bayesian 

optimal boundary that minimizes the error probability.  As 

shown, VCM applies the Bayesian decision theory to 

improve the performance of SVM. 

In this study, we extend the three-dimensional (3D) 

VCM by applying a kernel function to the two dimensional 

(2D) linear VCM developed by Yeom et al. (2009). The 

features used in this study are all directly extracted from the 

compressively sampled data without using the 

reconstruction process. First, the optimal signal features are 

selected which show a strong separation capability. The 

features are selected based on the Z-score method, and in 

this application, P5 and P13 are ranked the first and the 

second feature, respectively. Out of 1080 data sets, 700 data 

are used for training, and the remaining 380 data sets are 

used for the test. 

The flow of VCM is shown in Fig. 10. In Fig. 10(a), the 

x axis represents the P5 feature, the y axis represents the 

P13 feature, and each state is projected into a 2D space. The 

2D space is then expanded into a 3D space using Gaussian 

kernel function to increase the classification accuracy 

shown in Fig. 10(b). Figs. 10(c) and 10(d) shows the 

position of the hyperplane by SVM and VCM respectively. 

The hyper plane set by VCM is the Bayesian optimal 

boundary that minimizes the error probability.    

Table 2 lists the results of the classification using SVM 

and VCM for the normal state, bearing damage, and 

misalignment groups. When SVM was used, the accuracy 

rate of the normal group was 96%, that of the bearing group 

was 100%, and that of the misalignment group was 94%. 

However, the accuracy rate improved with the application 

of VCM. The accuracy rate of the normal group was 98%, 

that of the bearing group was 100%, and that of the 

misalignment group was 98%. 

 

 

 
(a) 2D projection of features 

 
(b) 3D projection of features 

 
(c) Hyperplane by SVM 

 
(d) Hyperplane by VCM 

Fig. 10 Flow of Variance Considered Machine 
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Table 2 3D damage classification performance 

 Normal state Bearing damage Misalignment 

SVM 96% 100% 94% 

VCM 98% 100% 98% 

 

 

It should be once again noted that this application of 

VCM was carried out by only using the features generated 

by compressively sampled data. The results confirm that 

compressive sensing could be used in condition monitoring 

with much smaller data sets, which could result in an 

improved data handling capability. 

It should be once again noted that this application of 

VCM was carried out by only using the features generated 

by compressively sampled data. The results confirm that 

compressive sensing could be used in condition monitoring 

with much smaller data sets, which could result in an 

improved data handling capability.   

 

 

6. Conclusions 
 

In this study, compressive sensing was applied to the 

condition monitoring of rotational systems. Compressive 

sensing is a novel sensing/sampling paradigm that handles 

much fewer data than traditional sampling methods, in 

which data compression and measurement are 

simultaneously performed. While compressive sensing has 

been applied to many other engineering field, this study is 

the first attempt, to the authors’ best knowledge, to apply 

the technique into the condition monitoring practice. For the 

experiments, a built-in rotating system was used.  Through 

compressive sensing, it is possible to reconstruct the 

original signal with a high accuracy. The feature extracted 

from the data by compressive sensing and those extracted 

from the original data were also compared and the results 

showed that the damage detection characteristics of the 

signal features from the original data are preserved in the 

compressively sampled data. In addition, a new machine 

learning algorithm, referred to as Variance Considered 

Machine (VCM), is applied to classify failure modes of 

rotating systems using the signal features from compressed 

data. When compared to the performance of Support Vector 

Machine, the VCM showed the superior capability in 

classifying damage. The experimental results showed that 

the proposed compressive sensing could effectively 

improve the data processing speed and accuracy of the 

condition monitoring of rotating systems. 
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