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1. Introduction 
 

The scientists have found this fact that the behavior of 

materials in very small scales leads to important changes in 

fundamental governing equations and need more 

considerations. These changes for different analyses such as 

free vibration, wave propagation, extension and other 

analyses presents different behaviors. To capture the effect 

of various parameters in micro- and nano-scale, some new 

theories have been developed. Eringen (1983) developed 

nonlocal elasticity for nano-scale problems and Wang et al. 

(2010) developed strain gradient theory for micro-scale 

problems. Studying the behavior of a micro-sandwich beam 

can present important issues for researchers. A literature 

review on micro-scale problems can be presented as follows. 

Wang (2010) used Timoshenko's beam theory to study 

the effect of transverse shear deformation on the deflection 

and stress resultants of single-span Timoshenko's beams, 

with general loading and boundary conditions. A modified 

couple stress theory has been developed by Park and Gao 

(2006) to study bending analysis of a Bernoulli–Euler beam 

using principle of minimum total potential energy. They 

investigated the influence of material length scale 

parameters on the results. It was concluded that employing 

the new model for micro-scale problems leads to a more 

rigid structure rather than classical models. Aydogdu (2009)  
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presented axial vibration analysis of nanorods with 

clamped-clamped and clamped–free boundary conditions. 

He investigated that considering the nonlocal parameter 

leads to increase in natural frequencies of nanorods. 

The wave propagating in 1D nano-structures with initial 

axial stress has been investigated by Song et al. (2010). 

They used a nonlocal elastic model incorporating with 

strain gradient theory. Buckling nonlocal analysis of a 

micro- or nano-rods/tubes was studied by Ghannadpour and 

Mohammadi (2010) using the Eringen’s nonlocal elasticity 

theory based on the Timoshenko beam theory. Shooshtari 

and Rafiee (2011) studied nonlinear forced vibration 

analysis of a FG beam using Euler–Bernoulli beam theory. 

The nonlinearity was assumed based on von Kármán 

relations. Both exponentially and power law distributions 

have been used for gradation of material properties along 

the thickness direction. Firstly, Galerkin method was used 

to obtain a second-order nonlinear ordinary equation with 

cubic nonlinear term and finally multiple time scale 

solutions were developed. Pradhan and Chakraverty (2013) 

presented free vibration analysis of functionally graded 

beams subjected to various types of boundary conditions 

based on classical and first order shear deformation beam 

theories. The influence of some important parameters such 

as constituent volume fractions, slenderness ratios and the 

beam theories has been studied on the vibration 

characteristics of the problem. Sahmani and Ansari (2013) 

studied vibration responses of functionally graded 

microplates. Mori–Tanaka homogenization technique was 

used for description of gradation of material properties. The 
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governing equations of motion and constitutive relations 

have been derived using strain gradient elasticity theory 

with three material length scale parameters for accounting 

the size dependencies. They were concluded that by 

approaching the thickness of microplates to the value of 

internal material length scale parameter, the natural 

frequency increases significantly. The one dimensional 

wave propagation in a nanobar has been presented by 

Güven (2014). The local and nonlocal solutions were 

evaluated for wave velocity. 

Size-dependent analysis of nano-structures was studied 

by many researchers (Belkorissat et al. 2015, Larbi Chaht et 

al. 2015, Ahouel et al. 2016, Bouafia et al. 2017). They 

examined the influence of various shear deformation theory 

on the nonlocal analysis of nanobeams and plates. 

Sandwich structures can be used in various situations to 

perform a defined operation and withstand against various 

loads. Analysis of sandwich structures needs more 

consideration rather than single layered structures. 

Application of higher-order shear deformation theory for 

sandwich structures was performed by various researchers 

(Tounsi et al. 2013, Bouderba et al. 2016). The effect of 

temperature rising and temperature dependencies was 

studied on the vibration and bending results of functionally 

graded structures based on various higher-order shear 

deformation theory (Attia et al. 2015, Bourada et al. 2015, 

Houari et al. 2016, Bousahla et al. 2016, Beldjelili et al. 

2016). Some applications of sandwich structure and 

analysis of them were investigated by Mahi et al. (2015), 

Ait Amar Meziane et al. (2014),Menasria et al. (2017), 

Bennoun et al. (2016), Hamidi et al. (2015), Abdelaziz et al. 

(2017), El-Haina et al. (2017), Abualnour et al. (2018). In 

addition, the comprehensive analysis of nano and micro 

structures was reported by Zemri et al. (2015), Bounouara 

et al. (2016), Besseghier et al. (2017), Al-Basyouni et al. 

(2015), Khetir et al. (2017), Mouffoki et al. (2017), Bellifa 

et al. (2017), Larbi Chaht et al. (2015). Arefi et al. (2011) 

studied the influence of magnetic field on the responses of a 

smart cylindrical shell. Some application of piezoelectric 

materials as sensor and actuator can be observed in 

literature (Arefi and Rahimi 2011a,b, 2012a,b,c, 2014a,b, 

Arefi et al. 2012, Arefi 2014, 2015, Arefi and Allam 2015, 

Rahimi et al. 2012, Arefi et al. 2016a,b,c, Arefi 2018a,b, 

Khoshgoftar et al. 2013). 

Farokhi and Ghayesh (2015) developed the nonlinear 

equations of motion for micro-arches under axial loads 

using the modified couple stress theory. Sourki and Hoseini 

(2016) developed modified couple stress theory to a Euler–

Bernoulli beam for vibration analysis of a cracked 

microbeam. The cracked beam was modeled by dividing the 

beam into two segments connected by a rotational spring 

located at the cracked section. Some useful works on the 

influence of magnetic and electric loads on the transient and 

bending responses of small scale structures were performed 

by Arefi and Zenkour (2016a,b,c, 2017a,b,c,d,e,f,j) and 

Arefi et al. (2017). Zhen (2016) studied vibration and 

instability analysis of a double-carbon nanotube system 

including fluid-conveying using nonlocal elasticity theory 

and Euler-Bernoulli beam theory. The influence of nonlocal 

parameter was discussed on the in-phase and out-of-phase 

vibration characteristics of structure. Farajpour et al. (2016) 

studied local and nonlocal analysis of large amplitude 

vibration of a piezo-magnetic nanoplate subjected to 

applied electric and magnetic potentials. The influence of 

initial electric and magnetic potentials was studied on the 

responses of nanoplate. Arefi and Zenkour (2017c) studied 

two-variable sinusoidal shear deformation theory to 

investigate nonlocal electro-elastic analysis of a sandwich 

nanoplate including Kelvin-Voigt core and face-sheets. 

Arefi and Zenkour (2017e) studied piezo-magnetic analysis 

of a Timoshenko nanobeam using nonlocal magneto-

electro-elastic relations. Zhang et al. (2017) studied size 

dependencies, surface and bulk effects in modeling a 

nanobeam based on Bernoulli-Euler and Timoshenko beam 

theories. They investigated that employing current model 

leads to significant differences in various responses such as 

deflection, rotation, and natural frequency. Arefi (2016a,b) 

studied wave propagation analysis of nanorods made from 

piezoelectric and magneto-electro-elastic materials 

respectively. Zenkour and Arefi (2017) studied the influence 

of applied voltage and nonlocal parameter on the free 

vibration and wave propagation of nanoplate and nanorods 

respectively. 
Based on above literature review, one can conclude that 

there is no comprehensive work on the electro-elastic 

dynamic analysis of sandwich nanobeam subjected to 

applied electric potential using higher-order shear 

deformation theory. In this paper, we develop electro-elastic 

relations for a sandwich piezoelectric microbeam resting on 

Pasternak's foundation subjected to transverse loads and 

applied voltage. Higher-order sinusoidal shear deformation 

theory and strain gradient theory are used to derive the 

governing equations of motion. The problem is solved using 

analytical approach for a simply-supported microbeam. The 

influence of important parameters such as material length 

scale parameters, two parameters of Pasternak's foundation 

and applied voltage is studied on the vibration and dynamic 

characteristics. This paper is a comprehensive extension of 

previous work (Arefi and Zenkour 2017a) on magneto-

electro-elastic analysis of sandwich nanobeam to sandwich 

microbeam using strain gradient theory and higher-order 

sinusoidal shear deformation theory. The previous paper 

(Arefi and Zenkour 2017a) employed first order shear 

deformation theory for free vibration and bending analysis 

of microbeam. In this work we develop the governing 

equations based on an advanced theory to enrich previous 

numerical results and conclusion. The numerical results in 

this paper and comparison with previous papers indicate that 

this work has sufficient novelty for presentation as a new 

work. The considered model can be used as sensor or 

actuator in micro- or nano-electro mechanical systems. 

Designer can use this model to measure loads or deflections 

and control the stresses or deformations using a feedback 

system based on two piezoelectric layers. 

 

 

2. Basic relations 
 

In this paper, we consider a sandwich microbeam with 

length 𝐿 including a core and two piezoelectric face-sheets 
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with thicknessℎ, ℎ𝑝 , respectively. The piezoelectric face-

sheets are subjected to applied voltage𝑉0. Based on the 

sinusoidal shear deformation theory, the displacement field 

components are derived as (Arefi and Zenkour 2016b) 

𝑢1(𝑥1, 𝑥3, 𝑡) = 𝑢(𝑥1, 𝑡) − 𝑥3ϑ(𝑥1, 𝑡) + 𝜒(𝑥3)Г(𝑥1, 𝑡),

𝑢3(𝑥1, 𝑥3, 𝑡) = 𝑤(𝑥1, 𝑡)
 (1) 

in which (𝑢1, 𝑢3) are displacement components along the 

longitudinal and transverse directions, respectively (Fig. 1). 

In addition, Г corresponding terms of higher-order shear 

deformation theory and 𝜒(𝑥3) is a function that describes 

the displacement field along the thickness direction. In this 

study, based on the sinusoidal shear deformation theory, 

𝜒(𝑥3) is selected as (Fig. 1) 

𝜒(𝑥3) =
ℎ

𝜋
sin .

𝜋𝑥3

ℎ
/ (2) 

Referring to assumed displacement field in Eq. (1), the 

nonzero strain components are derived as 

𝜀11 =
𝑑𝑢

𝑑𝑥1

− 𝑥3

𝑑ϑ

𝑑𝑥1

+ 𝜒
𝑑Г

𝑑𝑥1

,

𝜀13 =
1

2
(

𝑑𝑤

𝑑𝑥1

− ϑ +
𝑑𝜒

𝑑𝑥3

Г)

 (3) 

Hooke's law using Young’s 𝐸 and shear 𝐺 moduli yields 

stress-strain relations for micro-core as 

𝜍11 = 𝐸 (
𝑑𝑢

𝑑𝑥1

− 𝑥3

𝑑ϑ

𝑑𝑥1

+ 𝜒
𝑑Г

𝑑𝑥1

) ,

𝜍13 = 𝐺 (
𝑑𝑤

𝑑𝑥1

− ϑ +
𝑑𝜒

𝑑𝑥3

Г)

 (4) 

The constitutive relations for piezoelectric micro-face-

sheets are derived as 

𝜍11 = 𝐶1111𝜀11 − 𝑒113𝐸3,
 𝜍13 = 𝐶1313𝜀13 − 𝑒131𝐸1

 (5) 

in which 𝐶𝑖𝑗𝑘𝑙  are stiffness coefficients, 𝑒𝑖𝑗𝑘  are 

piezoelectric constants and 𝐸𝑘  is electric field. By 

considering the electric potential, the constitutive relations 

can be completed. A two-dimensional electric potential with 

an applied voltage is employed as following format (Arefi 

and Zenkour 2017a, b) 

𝜓̃(𝑥1, 𝑥3) = 2𝑉0

𝑥̃3

ℎ𝑝

− 𝜓(𝑥1) cos 4
𝜋𝑥̃3

ℎ𝑝

5 (6) 

 

 

 

 

Fig. 1 The schematic of a sandwich microbeam subjected to 

applied voltage 
 

 

where 𝑉0  is applied voltage at top of the plate and 

𝑥̃3 = 𝑥3 ±
ℎ

2
±

ℎ𝑝

2
. For above electric potential, two electric 

potential fields are derived as 

𝐸1 = −
𝜕𝜓̃

𝜕𝑥1

=
𝑑𝜓

𝑑𝑥1

cos 4
𝜋𝑥̃3

ℎ𝑝

5 ,

𝐸3 = −
𝜕𝜓̃

𝜕𝑥3

= −
2𝑉0

ℎ𝑝

−
𝜋

ℎ𝑝

𝜓 sin 4
𝜋𝑥̃3

ℎ𝑝

5

 (7) 

Substitution of electric potential components into stress 

relations yields following relations 

𝜍11 = 𝐶1111 (
𝑑𝑢

𝑑𝑥1

− 𝑥3

𝑑ϑ

𝑑𝑥1

+ 𝜒
𝑑Г

𝑑𝑥1

) + 𝑒113 6
2𝑉0

ℎ𝑝

+
𝜋

ℎ𝑝

𝜓 sin 4
𝜋𝑥̃3

ℎ𝑝

57 ,

 𝜍13 = 𝐶1313 (
𝑑𝑤

𝑑𝑥1

− ϑ +
𝑑𝜒

𝑑𝑥3

Г) − 𝑒131

𝑑𝜓

𝑑𝑥1

cos 4
𝜋𝑥̃3

ℎ𝑝

5

 (8) 

For an electromechanical system, electric displacements 

𝐷𝑖 = 𝑒𝑖𝑗𝑘𝜀𝑗𝑘 + 𝜂𝑖𝑘𝐸𝑘 can be defined as 

𝐷1 = 𝑒113 (
𝑑𝑤

𝑑𝑥1

− 𝜑) + 𝜂11

𝑑𝜓

𝑑𝑥1

cos 4
𝜋𝑥̃3

ℎ𝑝

5 ,

𝐷3 = 𝑒311 (
𝑑𝑢

𝑑𝑥1

− 𝑥3

𝑑𝜑

𝑑𝑥1

) − 𝜂33 6
2𝑉0

ℎ𝑝

+
𝜋

ℎ𝑝

𝜓 sin 4
𝜋𝑥̃3

ℎ𝑝

57

 (9) 

In this stage, the basic relations for strain gradient 

theory are expressed. The mentioned relations for this 

purpose are defined as (Wang et al. 2010) 

𝑝𝑖 = 2𝜇𝑙0
2𝛾𝑖 , 𝜏𝑖𝑗𝑘 = 2𝜇𝑙1

2𝜂𝑖𝑗𝑘 , 𝑚𝑖𝑗 = 2𝜇𝑙2
2𝜒𝑖𝑗  (10) 

in which 𝑝𝑖  are stress couples, 𝜏𝑖𝑗𝑘 and 𝑚𝑖𝑗 are higher-

order stress tensors, 𝜂𝑖𝑗𝑘  and 𝜒𝑖𝑗  are deviatoric stretch 

gradient tensor and symmetric gradient rotation tensor and 

𝛾𝑖 is dilatation gradient tensor. In addition, 𝜇 is the bulk 

shear modulus and 𝑙0 , 𝑙1  and 𝑙2  are micro-length-scale 

parameters. In Eq. (10), the deviatoric stretch gradient 

tensor, symmetric gradient rotation tensor and 

corresponding dilatation are defined as (Wang et al. 2010) 

𝛾𝑖 =
𝜕𝜀𝑘𝑘

𝜕𝑥𝑖

,

𝜂𝑖𝑗𝑘 = 𝜂𝑖𝑗𝑘
𝑠 −

1

5
(𝛿𝑖𝑗𝜂𝑚𝑚𝑘

𝑠 + 𝛿𝑗𝑘𝜂𝑚𝑚𝑖
𝑠 + 𝛿𝑘𝑖𝜂𝑚𝑚𝑗

𝑠 ),

𝜒𝑖𝑗 =
1

4
4𝜖𝑖𝑝𝑞

𝜕𝜀𝑞𝑗

𝜕𝑥𝑝

+ 𝜖𝑗𝑝𝑞

𝜕𝜀𝑞𝑖

𝜕𝑥𝑝

5

 (11) 

in which 𝜂𝑖𝑗𝑘
𝑠 =

1

3
(

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
+

𝜕2𝑢𝑗

𝜕𝑥𝑘𝜕𝑥𝑖
+

𝜕2𝑢𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
)  and 𝜖𝑖𝑗𝑘  is 

the permutation symbol. By using the displacement field 

defined in Eq. (1), the nonzero higher-order strains 𝜂𝑖𝑗𝑘
𝑠

 

and consequently 𝜂𝑚𝑚𝑘
𝑠  can be derived as 

𝜂111
𝑠 =

𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
2 ,      𝜂133

𝑠 =
1

3
𝜒"Г,

𝜂113
𝑠 = 𝜂131

𝑠 = 𝜂311
𝑠 =

1

3
4−2

𝑑ϑ

𝑑𝑥1

+ 2𝜒
𝑑Г

𝑑𝑥1

+
𝑑2𝑤

𝑑𝑥1
2 5 ,

𝜂𝑚𝑚1
𝑠 = 𝜂111

𝑠 + 𝜂221
𝑠 + 𝜂331

𝑠 =
𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
2 ,

𝜂𝑚𝑚3
𝑠 = 𝜂113

𝑠 + 𝜂223
𝑠 + 𝜂333

𝑠 =
1

3
4−2

𝑑ϑ

𝑑𝑥1

+ 2𝜒
𝑑Г

𝑑𝑥1

+
𝑑2𝑤

𝑑𝑥1
2 5

 (12) 
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After derivation of higher-order strains, we will get 𝜂𝑖𝑗𝑘, 

𝜒𝑖𝑗  (deviatoric stretch gradient tensor and symmetric 

gradient rotation tensor) and 𝛾𝑖 (dilatation gradient tensor) 

as 

𝛾1 =
𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
2 , 𝛾3 = −

𝑑ϑ

𝑑𝑥1
+ 𝜒′

𝑑Г

𝑑𝑥1
 (13a) 

 

𝜂111 = 𝜂111
𝑠 −

3

5
𝜂𝑚𝑚1

𝑠 =
2

5
4

𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
25 ,

𝜂333 = 𝜂333
𝑠 −

3

5
𝜂𝑚𝑚3

𝑠 = −
1

5
4−2

𝑑ϑ

𝑑𝑥1
+ 2𝜒

𝑑Г

𝑑𝑥1
+

𝑑2𝑤

𝑑𝑥1
2 5 ,

𝜂122 = 𝜂212 = 𝜂221 = −
1

5
4

𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
25 ,

𝜂133 = 𝜂313 = 𝜂331 =
1

3
𝜒"Г −

1

5
4

𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
25 ,

𝜂113 = 𝜂131 = 𝜂311 =
4

15
4−2

𝑑ϑ

𝑑𝑥1
+ 2𝜒

𝑑Г

𝑑𝑥1
+

𝑑2𝑤

𝑑𝑥1
2 5 ,

𝜂322 = 𝜂223 = 𝜂232 = −
1

15
4−2

𝑑ϑ

𝑑𝑥1
+ 2𝜒

𝑑Г

𝑑𝑥1
+

𝑑2𝑤

𝑑𝑥1
2 5

 (13b) 

 

𝜒12 =
1

4
(

𝜕𝜀11

𝜕𝑥3
−

𝜕𝜀31

𝜕𝑥1
) =

1

8
4−

𝑑ϑ

𝑑𝑥1
+ 𝜒′

𝑑Г

𝑑𝑥1
−

𝑑2𝑤

𝑑𝑥1
2 5 (13c) 

After derivation of required terms for 𝛾𝑖, 𝜒𝑖𝑗  and 𝜂𝑖𝑗𝑘, 

the corresponding stress components 𝑝𝑖 , 𝑚𝑖𝑗 and 𝜏𝑖𝑗𝑘 can 

be derived as 

𝑝1 = 2𝜇𝑙0
2 4

𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
25,      

𝑝3 = 2𝜇𝑙0
2(−

𝑑ϑ

𝑑𝑥1

+ 𝜒′
𝑑Г

𝑑𝑥1

) 

(14s) 

 

𝜏111 =
4

5
𝜇𝑙1

2 4
𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
25 ,

𝜏333 = −
2

5
𝜇𝑙1

2 4−2
𝑑ϑ

𝑑𝑥1

+ 2𝜒
𝑑Г

𝑑𝑥1

+
𝑑2𝑤

𝑑𝑥1
2 5 ,

𝜏122 = 𝜏212 = 𝜏221 = −
2

5
𝜇𝑙1

2 4
𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
25 ,

𝜏133 = 𝜏313 = 𝜏331 = 2𝜇𝑙1
2 6

1

3
𝜒"Г −

1

5
4

𝑑2𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2ϑ

𝑑𝑥1
2 + 𝜒

𝑑2Г

𝑑𝑥1
257 ,

𝜏113 = 𝜏131 = 𝜏311 =
8

15
𝜇𝑙1

2 4−2
𝑑ϑ

𝑑𝑥1

+ 2𝜒
𝑑Г

𝑑𝑥1

+
𝑑2𝑤

𝑑𝑥1
2 5 ,

𝜏223 = 𝜏232 = 𝜏322 = −
2

15
𝜇𝑙1

2 4−2
𝑑ϑ

𝑑𝑥1

+ 2𝜒
𝑑Г

𝑑𝑥1

+
𝑑2𝑤

𝑑𝑥1
2 5

 (14b) 

 

𝑚12 =
1

4
𝜇𝑙2

2 4−
𝑑ϑ

𝑑𝑥1

+ 𝜒′
𝑑Г

𝑑𝑥1

−
𝑑2𝑤

𝑑𝑥1
2 5 (14c) 

After derivation of the required expressions for stresses, 

electric displacements and higher-order stresses 

corresponding to strain gradient theory, equations of motion 

can be derived using Hamilton's principle 𝛿 ∫(𝑇 − 𝑈 +
𝑊)𝑑𝑡 = 0, in which 

 

 

𝛿𝑇 = ∫ 𝜌𝑢̇𝑖𝛿𝑢̇𝑖𝑑𝑉 ,     ,

𝛿𝑈 = ∫(𝑝𝑖𝛿𝛾𝑖 + 𝜍𝑖𝑗𝛿𝜀𝑖𝑗 + 𝜏𝑖𝑗𝑘𝛿𝜂𝑖𝑗𝑘 + 𝑚𝑖𝑗𝛿𝜒𝑖𝑗 − 𝐷𝑖𝛿𝐸𝑖)𝑑𝑉

𝛿𝑊 = ∫ 𝑏(𝑞𝛿𝑢3|𝑥3<ℎ/2 − 𝑅𝑓𝛿𝑢3|𝑥3<;ℎ/2)𝑑𝑥1 , 𝑢3,

𝑅𝑓 = 𝐾1𝑤 − 𝐾2𝛻2𝑤 + 𝐾3

𝑑𝑤

𝑑𝑡

 (15) 

where 𝐾 is kinetic energy of structure, 𝑈 is strain energy 

and 𝑊 is the work performed by external works. 

Kinetic energy of sandwich microbeam is expressed as 

𝑇 =
1

2
∫ 𝜌𝑢̇𝑖

2𝑑𝑉 = ∫ 8
1

2
𝐽1 6(

𝑑𝑢

𝑑𝑡
)

2

+ (
𝑑𝑤

𝑑𝑡
)

2

7 − 𝐽2 (
𝑑𝑢

𝑑𝑡
) (

𝑑ϑ

𝑑𝑡
)

+
1

2
𝐽3 (

𝑑ϑ

𝑑𝑡
)

2

+
1

2
𝜒2 (

𝑑Г

𝑑𝑡
)

2

+ 𝐽5 (
𝑑𝑢

𝑑𝑡
) (

𝑑Г

𝑑𝑡
) − 𝐽6 (

𝑑ϑ

𝑑𝑡
) (

𝑑Г

𝑑𝑡
)} 𝑑𝑥1 

(16) 

in which the integration constants are expressed as 

𝐽𝑖 = ∫   𝜌𝑥3
𝑖;1𝑑𝑥3

ℎ

2

;
ℎ

2

, (𝑖 = 1,2,3), 

 𝐽4 = ∫   𝜌𝜒2𝑑𝑥3

ℎ/2

;ℎ/2

, 𝐽5 = ∫   𝜌𝜒𝑑𝑥3

ℎ/2

;ℎ/2

, 

𝐽6 = ∫   𝜌𝑥3𝜒𝑑𝑥3

ℎ/2

;ℎ/2

. 

(17) 

Variation of kinetic energy and energy due to external 

works are derived as 

𝛿𝑇 = ∫ 2𝐽1 0.
𝑑𝑢

𝑑𝑡
/ .

𝑑𝛿𝑢

𝑑𝑡
/ + .

𝑑𝑤

𝑑𝑡
/ .

𝑑𝛿𝑤

𝑑𝑡
/1 − 𝐽2 .

𝑑𝑢

𝑑𝑡
/ .

𝑑𝛿ϑ

𝑑𝑡
/ −

𝐽2 .
𝑑ϑ

𝑑𝑡
/ .

𝑑𝛿𝑢

𝑑𝑡
/ + 𝐽3 .

𝑑ϑ

𝑑𝑡
/ .

𝑑𝛿ϑ

𝑑𝑡
/  

 +𝐽4 .
𝑑Г

𝑑𝑡
/ .

𝑑𝛿Г

𝑑𝑡
/ + 𝐽5 .

𝑑𝑢

𝑑𝑡
/ .

𝑑𝛿Г

𝑑𝑡
/ + 𝐽5 .

𝑑Г

𝑑𝑡
/ .

𝑑𝛿𝑢

𝑑𝑡
/ −

𝐽6 .
𝑑ϑ

𝑑𝑡
/ .

𝑑𝛿Г

𝑑𝑡
/ − 𝐽6 .

𝑑Г

𝑑𝑡
/ .

𝑑𝛿ϑ

𝑑𝑡
/3 𝑑𝑥1, 

(18a) 

 

𝛿𝑊 = ∫(𝑞0 − 𝑅𝑓)𝛿𝑤𝑑𝑥1,      

𝑅𝑓 = 𝐾1𝑤 − 𝐾2𝛻2𝑤 + 𝐾3

𝑑𝑤

𝑑𝑡
 

(18b) 

By using Eq. (15) and integration along the thickness 

direction, the variation of strain energy after integration by 

parts is derived as 

𝛿𝑇 = ∫ 2𝐽1 0− .
𝑑2𝑢

𝑑𝑡2
/ 𝛿𝑢 − .

𝑑2𝑤

𝑑𝑡2
/ 𝛿𝑤1 + 𝐽2 .

𝑑2𝑢

𝑑𝑡2
/ 𝛿ϑ + 𝐽2 .

𝑑2ϑ

𝑑𝑡2
/ 𝛿𝑢  

 −𝐽3 .
𝑑2ϑ

𝑑𝑡2
/ 𝛿ϑ − 𝐽4 .

𝑑2Г

𝑑𝑡2
/ 𝛿Г − 𝐽5 .

𝑑2𝑢

𝑑𝑡2
/ 𝛿Г − 𝐽5 .

𝑑2Г

𝑑𝑡2
/ 𝛿𝑢 +

𝐽6 .
𝑑2ϑ

𝑑𝑡2
/ 𝛿Г + 𝐽6 .

𝑑2Г

𝑑𝑡2
/ 𝛿ϑ3 𝑑𝑥1 

(19) 

Substitution of variation of strains 𝛿𝜀𝑖𝑗 , dilatation 

gradient tensor 𝛿𝛾𝑖, deviatoric stretch gradient tensor 𝛿𝜂𝑖𝑗𝑘, 

symmetric rotation gradient tensor 𝛿𝜒𝑖𝑗  and electric field 

𝛿𝐸𝑖  into variation form of energy equation and integration 

by part on the derived equation yields 
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𝛿𝑈 = ∫ 8𝑝1 4
𝑑2𝛿𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2𝛿ϑ

𝑑𝑥1
2 + 𝜒

𝑑2𝛿Г

𝑑𝑥1
2 5 + 𝑝3 (−

𝑑𝛿ϑ

𝑑𝑥1

+ 𝜒′
𝑑𝛿Г

𝑑𝑥1

)

+ 𝜍11 (
𝑑𝛿𝑢

𝑑𝑥1

− 𝑥3

𝑑𝛿ϑ

𝑑𝑥1

+ 𝜒
𝑑𝛿Г

𝑑𝑥1

) 

 +𝜍13 .
𝑑𝛿𝑤

𝑑𝑥1
− 𝛿ϑ + 𝜒′𝛿Г/ +

2

5
𝜏111 .

𝑑2𝛿𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2𝛿ϑ

𝑑𝑥1
2 + 𝜒

𝑑2𝛿Г

𝑑𝑥1
2 / −

1

5
𝜏333 .−2

𝑑𝛿ϑ

𝑑𝑥1
+ 2𝜒

𝑑𝛿Г

𝑑𝑥1
+

𝑑2𝛿𝑤

𝑑𝑥1
2 / 

 −
3

5
𝜏122 .

𝑑2𝛿𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2𝛿ϑ

𝑑𝑥1
2 + 𝜒

𝑑2𝛿Г

𝑑𝑥1
2 / + 3𝜏133 0

1

3
𝜒"𝛿Г −

1

5
.

𝑑2𝛿𝑢

𝑑𝑥1
2 − 𝑥3

𝑑2𝛿ϑ

𝑑𝑥1
2 + 𝜒

𝑑2𝛿Г

𝑑𝑥1
2 /1 

 +
12

15
𝜏113 .−2

𝑑𝛿ϑ

𝑑𝑥1
+ 2𝜒

𝑑𝛿Г

𝑑𝑥1
+

𝑑2𝛿𝑤

𝑑𝑥1
2 /  −

1

5
𝜏223 .−2

𝑑𝛿ϑ

𝑑𝑥1
+ 2𝜒

𝑑𝛿Г

𝑑𝑥1
+

𝑑2𝛿𝑤

𝑑𝑥1
2 / 

 +2
1

8
𝑚12 .−

𝑑𝛿ϑ

𝑑𝑥1
+ 𝜒′

𝑑𝛿Г

𝑑𝑥1
−

𝑑2𝛿𝑤

𝑑𝑥1
2 / − 𝐷1 cos (

𝜋𝑥̃3

ℎ𝑝
)

𝑑𝛿𝜓

𝑑𝑥1
+

𝐷3
𝜋

ℎ𝑝
sin (

𝜋𝑥̃3

ℎ𝑝
) 𝛿𝜓} 𝑑𝑉 

(20) 

By substitution of 𝛿𝜀𝑖𝑗 , 𝛿𝛾𝑖 , 𝛿𝜒𝑖𝑗 , 𝛿𝜂𝑖𝑗𝑘  and 𝛿𝐸𝑖  

into Eq. (15), the variation of strain energy is derived as 

 𝛿𝑈 = ∫ 2.
𝑑2𝑃1

𝑑𝑥1
2 +

2

5

𝑑2𝑁111

𝑑𝑥1
2 −

3

5

𝑑2𝑁133

𝑑𝑥1
2 −

𝑑𝑁11

𝑑𝑥1
−

3

5

𝑑2𝑁122

𝑑𝑥1
2 / 𝛿𝑢 −

.
𝑑2𝑀1

𝑑𝑥1
2 +

2

5

𝑑2𝑀111

𝑑𝑥1
2 −

𝑑𝑃3

𝑑𝑥1
 

 −
𝑑𝑀11

𝑑𝑥1
+

2

5

𝑑𝑁333

𝑑𝑥1
+ 𝑁13 −

3

5

𝑑2𝑀122

𝑑𝑥1
2 −

8

5

𝑑𝑁113

𝑑𝑥1
+

2

5

𝑑𝑁223

𝑑𝑥1
−

1

4

𝑑𝑁12
𝜒

𝑑𝑥1
−

3

5

𝑑2𝑀133

𝑑𝑥1
2 / 𝛿ϑ 

 + .−
𝑑𝑁13

𝑑𝑥1
−

1

5

𝑑2𝑁333

𝑑𝑥1
2 +

4

5

𝑑2𝑁113

𝑑𝑥1
2 −

1

5

𝑑2𝑁223

𝑑𝑥1
2 −

1

4

𝑑2𝑁12
𝜒

𝑑𝑥1
2 / 𝛿𝑤 

 + .
𝑑2𝑆1

𝑑𝑥1
2 −

𝑑𝑅3

𝑑𝑥1
−

𝑑𝑆11

𝑑𝑥1
+

2

5

𝑑2𝑆111

𝑑𝑥1
2 +

2

5

𝑑𝑆333

𝑑𝑥1
+ 𝑅13 −

3

5

𝑑2𝑆122

𝑑𝑥1
2 +

𝐺133 −
3

5

𝑑2𝑆133

𝑑𝑥1
2 −

8

5

𝑑𝑆113

𝑑𝑥1
 

 +
2

5

𝑑𝑆223

𝑑𝑥1
−

1

4

𝑑𝑅12
𝜒

𝑑𝑥1
)𝛿Г + .

𝑑𝐷̅1

𝑑𝑥1
+ 𝐷̅3/ 𝛿𝜓3 𝑑𝑉 

(21) 

in which the resultant components are expressed as 

𝑁11 = ∫ 𝜍11𝑑𝑥3 , 𝑀11 = ∫ 𝑥3𝜍11𝑑𝑥3 , 𝑃1 = ∫ 𝑝1𝑑𝑥3, 

𝑃3 = ∫ 𝑝3𝑑𝑥3,
 𝑀1 = ∫ 𝑥3𝑝1𝑑𝑥3 , 𝑆1 = ∫ 𝜒𝑝1𝑑𝑥3 , 𝑅3 = ∫ 𝑝3𝜒′𝑑𝑥3 , 𝑆11 = ∫ 𝜒𝜍11𝑑𝑥3,
 𝑅13 = ∫ 𝜍13𝜒′𝑑𝑥3 , 𝑁𝑖𝑗𝑘 = ∫ 𝜏𝑖𝑗𝑘𝑑𝑥3 , 𝑀𝑖𝑗𝑘 = ∫ 𝑥3𝜏𝑖𝑗𝑘𝑑𝑥3 , 𝑆𝑖𝑗𝑘 =

∫ 𝜒𝜏𝑖𝑗𝑘𝑑𝑥3, 

𝐺𝑖𝑗𝑘 = ∫ 𝜏𝑖𝑗𝑘𝜒"𝑑𝑥3, 𝑁12
𝜒

= ∫ 𝑁12𝑑𝑥3, 

𝑅12
𝜒

= ∫ 𝑁12𝜒′𝑑𝑥3 , 𝑀12
𝜒

= ∫ 𝑥3𝑚12𝑑𝑥3, 

 𝐷̅1 = ∫ 𝐷1 𝑐𝑜𝑠 (
𝜋𝑥̃3

ℎ𝑝
) 𝑑𝑥3 , 𝐷̅3 = ∫ 𝐷3

𝜋

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑥̃3

ℎ𝑝
) 𝑑𝑥3 

(22) 

In this stage and after completion of required terms of 

strain energy, kinetic energy and energy due to external 

works, the final governing equations of motion can be 

obtained by separation of coefficients of 𝛿𝑢, 𝛿𝑤, 𝛿𝜑 and 

𝛿𝜓 as follows 

𝛿𝑢:  
𝑑2𝑃1

𝑑𝑥1
2 +

2

5

𝑑2𝑁111

𝑑𝑥1
2 −

3

5

𝑑2𝑁133

𝑑𝑥1
2 −

𝑑𝑁11

𝑑𝑥1

−
3

5

𝑑2𝑁122

𝑑𝑥1
2  

= −𝐽1 4
𝑑2𝑢

𝑑𝑡2
5 + 𝐽2 4

𝑑2ϑ

𝑑𝑡2
5 − 𝐽5 4

𝑑2Г

𝑑𝑡2
5 

(23a) 

 

𝛿ϑ:  −
𝑑2𝑀1

𝑑𝑥1
2 −

2

5

𝑑2𝑀111

𝑑𝑥1
2 +

𝑑𝑃3

𝑑𝑥1
+

𝑑𝑀11

𝑑𝑥1
−

2

5

𝑑𝑁333

𝑑𝑥1
− 𝑁13 +

3

5

𝑑2𝑀122

𝑑𝑥1
2 +

8

5

𝑑𝑁113

𝑑𝑥1
−

2

5

𝑑𝑁223

𝑑𝑥1
 +

1

4

𝑑𝑁12
𝜒

𝑑𝑥1
+

3

5

𝑑2𝑀133

𝑑𝑥1
2 =

𝐽2 .
𝑑2𝑢

𝑑𝑡2
/ − 𝐽3 .

𝑑2ϑ

𝑑𝑡2
/ + 𝐽6 .

𝑑2Г

𝑑𝑡2
/ 

(23b) 

 

𝛿𝑤: −
𝑑𝑁13

𝑑𝑥1

−
1

5

𝑑2𝑁333

𝑑𝑥1
2 +

4

5

𝑑2𝑁113

𝑑𝑥1
2 −

1

5

𝑑2𝑁223

𝑑𝑥1
2 −

1

4

𝑑2𝑁12
𝜒

𝑑𝑥1
2

= −𝐽1 4
𝑑2𝑤

𝑑𝑡2
5 + 𝑞 − 𝐾1𝑤 + 𝐾2𝛻2𝑤 − 𝐾3

𝑑𝑤

𝑑𝑡
 
(23c) 

 

𝛿Г:   
𝑑2𝑆1

𝑑𝑥1
2 −

𝑑𝑅3

𝑑𝑥1

−
𝑑𝑆11

𝑑𝑥1

+
2

5

𝑑2𝑆111

𝑑𝑥1
2 +

2

5

𝑑𝑆333

𝑑𝑥1

+ 𝑅13 −
3

5

𝑑2𝑆122

𝑑𝑥1
2

+ 𝐺133 −
3

5

𝑑2𝑆133

𝑑𝑥1
2 −

8

5

𝑑𝑆113

𝑑𝑥1

+
2

5

𝑑𝑆223

𝑑𝑥1

−
1

4

𝑑𝑅12
𝜒

𝑑𝑥1

= −𝐽4 4
𝑑2Г

𝑑𝑡2
5 − 𝐽5 4

𝑑2𝑢

𝑑𝑡2
5 + 𝐽6 4

𝑑2ϑ

𝑑𝑡2
5 

(23d) 

 

𝛿𝜓:   
𝑑𝐷̅1

𝑑𝑥1

+ 𝐷̅3 = 0 (23e) 

By substitution of strain and electric field components 

into basic relations, the resultant components are derived as 

𝑁11 = 𝐽7

𝑑𝑢

𝑑𝑥1

− 𝐽8

𝑑ϑ

𝑑𝑥1

+ 𝐽9𝜓 + 𝐽23

𝑑Г

𝑑𝑥1

+ 𝑁𝜓,     

𝑁13 = 𝐽12 (
𝑑𝑤

𝑑𝑥1

− ϑ) − 𝐽13

𝑑𝜓

𝑑𝑥1

+ 𝐽24Г, 

 𝑀11 = 𝐽8
𝑑𝑢

𝑑𝑥1
− 𝐽10

𝑑ϑ

𝑑𝑥1
+ 𝐽11𝜓 + 𝐽27

𝑑Г

𝑑𝑥1
+ 𝑀𝜓, 

𝐷̅1 = 𝐽13 (
𝑑𝑤

𝑑𝑥1

− ϑ) + 𝐽25Г + 𝐽14

𝑑𝜓

𝑑𝑥1

,   

 𝐷̅3 = 𝐽9
𝑑𝑢

𝑑𝑥1
− 𝐽11

𝑑ϑ

𝑑𝑥1
+ 𝐽26

𝑑Г

𝑑𝑥1
− 𝐽15𝜓 − 𝐷𝜓,  

𝑃1 = 𝐽16

𝑑2𝑢

𝑑𝑥1
2 − 𝐽17

𝑑2ϑ

𝑑𝑥1
2 + 𝐽28

𝑑2Г

𝑑𝑥1
2, 

𝑃3 = −𝐽16

𝑑ϑ

𝑑𝑥1

+ 𝐽29

𝑑Г

𝑑𝑥1

, 

𝑀1 = 𝐽17

𝑑2𝑢

𝑑𝑥1
2 − 𝐽18

𝑑2ϑ

𝑑𝑥1
2 + 𝐽30

𝑑2Г

𝑑𝑥1
2, 

𝑆1 = +𝐽28

𝑑2𝑢

𝑑𝑥1
2 − 𝐽30

𝑑2ϑ

𝑑𝑥1
2 + 𝐽35

𝑑2Г

𝑑𝑥1
2, 

 𝑅3 = −𝐽29

𝑑ϑ

𝑑𝑥1

+ 𝐽36

𝑑Г

𝑑𝑥1

, 

𝑆11 = 𝐽23

𝑑𝑢

𝑑𝑥1

− 𝐽27

𝑑ϑ

𝑑𝑥1

+ 𝐽26𝜓 + 𝐽37

𝑑Г

𝑑𝑥1

+ 𝑆𝜓, 

𝑅13 = 𝐽24 (
𝑑𝑤

𝑑𝑥1

− ϑ) − 𝐽25

𝑑𝜓

𝑑𝑥1

+ 𝐽38Г, 

𝐺133 =
1

3
𝐽43Г −

1

5
4𝐽40

𝑑2𝑢

𝑑𝑥1
2 − 𝐽41

𝑑2ϑ

𝑑𝑥1
2 + 𝐽42

𝑑2Г

𝑑𝑥1
25, 

(24) 
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*𝑁111, 𝑁122+ =
1

5
*2, −1+ 4𝐽19

𝑑2𝑢

𝑑𝑥1
2 − 𝐽20

𝑑2ϑ

𝑑𝑥1
2 + 𝐽31

𝑑2Г

𝑑𝑥1
25, 

 *𝑁113, 𝑁223, 𝑁333+ =
1

15
*4, −1, −1+ .𝐽19

𝑑2𝑤

𝑑𝑥1
2 − 2𝐽19

𝑑ϑ

𝑑𝑥1
+ 2𝐽31

𝑑Г

𝑑𝑥1
/, 

 *𝑀111, 𝑀122+ =
1

5
*2, −1+ .𝐽20

𝑑2𝑢

𝑑𝑥1
2 − 𝐽21

𝑑2ϑ

𝑑𝑥1
2 + 𝐽32

𝑑2Г

𝑑𝑥1
2/, 

 *𝑆111, 𝑆122+ =
1

5
*2, −1+ .𝐽31

𝑑2𝑢

𝑑𝑥1
2 − 𝐽32

𝑑2ϑ

𝑑𝑥1
2 + 𝐽39

𝑑2Г

𝑑𝑥1
2/ 

*𝑆113, 𝑆223, 𝑆333+ =
1

15
*4, −1, −1+ 4𝐽31

𝑑2𝑤

𝑑𝑥1
2 − 2𝐽31

𝑑ϑ

𝑑𝑥1

+ 2𝐽39

𝑑Г

𝑑𝑥1

5, 

 𝑁133 =
1

3
𝐽40Г −

1

5
.𝐽19

𝑑2𝑢

𝑑𝑥1
2 − 𝐽20

𝑑2ϑ

𝑑𝑥1
2 + 𝐽31

𝑑2Г

𝑑𝑥1
2/, 

 𝑀133 =
1

3
𝐽41Г −

1

5
.𝐽20

𝑑2𝑢

𝑑𝑥1
2 − 𝐽21

𝑑2ϑ

𝑑𝑥1
2 + 𝐽32

𝑑2Г

𝑑𝑥1
2/ 

 𝑆133 =
1

3
𝐽42Г −

1

5
.𝐽31

𝑑2𝑢

𝑑𝑥1
2 − 𝐽32

𝑑2ϑ

𝑑𝑥1
2 + 𝐽39

𝑑2Г

𝑑𝑥1
2/ 

 𝑁12
𝜒

=
1

8
𝐽22 .−

𝑑ϑ

𝑑𝑥1
−

𝑑2𝑤

𝑑𝑥1
2 / +

1

8
𝐽33

𝑑Г

𝑑𝑥1
, 

𝑅12
𝜒

=
1

8
𝐽33 4−

𝑑ϑ

𝑑𝑥1

−
𝑑2𝑤

𝑑𝑥1
2 5 +

1

8
𝐽34

𝑑Г

𝑑𝑥1

 

 

in which the integration constants are expressed in 

Appendix. 

Substitution of resultant components into five equations 

of motion leads to 

𝛿𝑢:  (𝐽16 +
4

25
𝐽19 +

3

25
𝐽19 +

3

25
𝐽19)

𝑑4𝑢

𝑑𝑥1
4 − 𝐽7

𝑑2𝑢

𝑑𝑥1
2 

 − .
3

25
𝐽20 + 𝐽17 +

4

25
𝐽20 +

3

25
𝐽20/

𝑑4ϑ

𝑑𝑥1
4 + 𝐽8

𝑑2ϑ

𝑑𝑥1
2 +

.
3

25
𝐽31+𝐽28 +

4

25
𝐽31 +

3

25
𝐽31/

𝑑4Г

𝑑𝑥1
4 

 − .𝐽23 +
1

5
𝐽40/

𝑑2Г

𝑑𝑥1
2 − 𝐽9

𝑑𝜓

𝑑𝑥1
 =

𝑑𝑁𝜓

𝑑𝑥1
−

𝐽1
𝑑2𝑢

𝑑𝑡2 + 𝐽2
𝑑2ϑ

𝑑𝑡2 − 𝐽5
𝑑2Г

𝑑𝑡2, 

(25a) 

 

𝛿ϑ: − (𝐽17 +
3

25
𝐽20 +

4

25
𝐽20 +

3

25
𝐽20)

𝑑4𝑢

𝑑𝑥1
4 + 𝐽8

𝑑2𝑢

𝑑𝑥1
2 

+ (
3

25
𝐽21 +

3

25
𝐽21 + 𝐽18 +

4

25
𝐽21)

𝑑4ϑ

𝑑𝑥1
4 

− (
4

75
𝐽19 +

64

75
𝐽19 +

4

75
𝐽19 + 𝐽16 + 𝐽10 +

1

32
𝐽22)

𝑑2ϑ

𝑑𝑥1
2

+ 𝐽12ϑ 

+ (
32

75
𝐽19 +

2

75
𝐽19 +

2

75
𝐽19 −

1

32
𝐽22)

𝑑3𝑤

𝑑𝑥1
3 − 𝐽12

𝑑𝑤

𝑑𝑥1
 

− (𝐽30 +
4

25
𝐽32 +

3

25
𝐽32 +

3

25
𝐽32)

𝑑4Г

𝑑𝑥1
4 

 + .
64

75
𝐽31 + 𝐽29 + 𝐽27 +

4

75
𝐽31 +

4

75
𝐽31 +

1

32
𝐽33 +

1

5
𝐽41/

𝑑2Г

𝑑𝑥1
2 

−𝐽24Г + (𝐽13 + 𝐽11)
𝑑𝜓

𝑑𝑥1

= −
𝑑𝑀𝜓

𝑑𝑥1
+ 𝐽2

𝑑2𝑢

𝑑𝑡2 − 𝐽3

𝑑2ϑ

𝑑𝑡2 + 𝐽6

𝑑2Г

𝑑𝑡2 

(25b) 

 

 

 

 

𝛿𝑤:  (
1

32
𝐽22 −

32

75
𝐽19 −

2

75
𝐽19 −

2

75
𝐽19)

𝑑3ϑ

𝑑𝑥1
3 + 𝐽12

𝑑ϑ

𝑑𝑥1
 

 + .
1

32
𝐽22 +

16

75
𝐽19 +

1

75
𝐽19 +

1

75
𝐽19/

𝑑4𝑤

𝑑𝑥1
4 − 𝐽12

𝑑2𝑤

𝑑𝑥1
2  

 + .
2

75
𝐽31 +

32

75
𝐽31 +

2

75
𝐽31 −

1

32
𝐽33/

𝑑3Г

𝑑𝑥1
3 − 𝐽24

𝑑Г

𝑑𝑥1
+ 𝐽13

𝑑2𝜓

𝑑𝑥1
2 

 = −𝐽1
𝑑2𝑤

𝑑𝑡2 + 𝑞 − 𝐾1𝑤 + 𝐾2𝛻2𝑤 − 𝐾3
𝑑𝑤

𝑑𝑡
 

(25c) 

 

𝛿Г: (
3

25
𝐽31 + 𝐽28 +

4

25
𝐽31 +

3

25
𝐽31)

𝑑4𝑢

𝑑𝑥1
4 − (𝐽23 +

1

5
𝐽40)

𝑑2𝑢

𝑑𝑥1
2, 

− (
3

25
𝐽32 +

3

25
𝐽32 + 𝐽30 +

4

25
𝐽32)

𝑑4ϑ

𝑑𝑥1
4 − 𝐽24ϑ 

+ (𝐽29 +
4

75
𝐽31 +

1

5
𝐽41 +

1

32
𝐽33 +

64

75
𝐽31 +

4

75
𝐽31 + 𝐽27)

𝑑2ϑ

𝑑𝑥1
2 

+ (−
2

75
𝐽31 −

2

75
𝐽31 −

32

75
𝐽31 +

1

32
𝐽33)

𝑑3𝑤

𝑑𝑥1
3 + 𝐽24

𝑑𝑤

𝑑𝑥1

 

+ (
3

25
𝐽39 +

3

25
𝐽39 +

4

25
𝐽39 + 𝐽35)

𝑑4Г

𝑑𝑥1
4 

− (𝐽36 + 𝐽37 +
1

5
𝐽42 +

1

5
𝐽42 +

64

75
𝐽39 +

4

75
𝐽39 +

1

32
𝐽34

+
4

75
𝐽39)

𝑑2Г

𝑑𝑥1
2 

 + .𝐽38 +
1

3
𝐽43/ Г − (𝐽26 + 𝐽25)

𝑑𝜓

𝑑𝑥1
=

𝑑𝑆𝜓

𝑑𝑥1
− 𝐽4

𝑑2Г

𝑑𝑡2
−

𝐽5
𝑑2𝑢

𝑑𝑡2
+ 𝐽6

𝑑2ϑ

𝑑𝑡2
 

(25d) 

 

𝛿𝜓:  𝐽9

𝑑𝑢

𝑑𝑥1
− (𝐽13 + 𝐽11)

𝑑ϑ

𝑑𝑥1
+ 𝐽13

𝑑2𝑤

𝑑𝑥1
2 + (𝐽25 + 𝐽26)

𝑑Г

𝑑𝑥1

+ 𝐽14

𝑑2𝜓

𝑑𝑥1
2

− 𝐽15𝜓 = 𝐷𝜓 
(25e) 

 

 

3. Solution procedure 
 

For free vibration and dynamic analysis of sandwich 

microbeam with two axially movable ends fixed along the 

transverse direction and two short-circuited electric 

potential, the following solution may be supposed as 

{
(𝑢, ϑ, Г)

(𝑤, 𝜓)
} = ∑ {

(𝑈𝑛 , Θ𝑛 , 𝛦𝑛) cos(𝜆𝑛𝑥1)

(𝑊𝑛, Ψ𝑛) sin(𝜆𝑛𝑥1)
}

∞

𝑛<1

e𝑖𝜔𝑡 (26) 

where 𝜆𝑛 = 𝑛𝜋/𝐿 . Based on above solution and 

substitution into governing equations of motion, elements of 

stiffness, mass and force matrix can be obtained as 

,𝑘-*𝑋+ = ,𝑀-{𝑋̈} + ,𝐶-{𝑋̇} + *𝐹+ (27) 

in which *𝑋+ = *𝑈𝑛 , Θ𝑛 , 𝑊𝑛, 𝛦𝑛 , Ψ𝑛+𝑇  and the nonzero 

symmetric elements of stiffness 𝑘𝑖𝑗 and mass in this case 

can be obtained as 

𝑘11 = .𝐽16 +
2

5
𝐽19/ 𝜆𝑛

4 + 𝐽7𝜆𝑛
2 , 𝑘12 = − .𝐽17 +

2

5
𝐽20/ 𝜆𝑛

4 − 𝐽8𝜆𝑛
2 , 𝑘13 = 0, 𝑘14 = .𝐽28 +

2

5
𝐽31/ 𝜆𝑛

4 +

.𝐽23 +
1

5
𝐽40/ 𝜆𝑛

2 , 

(28) 
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𝑘15 = −𝐽9𝜆𝑛, 𝑀11 = −𝐽1, 𝑀12 = 𝐽2, 𝑀14 = −𝐽5, 

𝑘22 = (𝐽18 +
2

5
𝐽21) 𝜆𝑛

4 + (𝐽10 + 𝐽16 +
72

75
𝐽19 +

1

32
𝐽22) 𝜆𝑛

2

+ 𝐽12, 𝑘23

= − (
36

75
𝐽19 −

1

32
𝐽22) 𝜆𝑛

3 − 𝐽12𝜆𝑛, 

 𝑘24 = − .𝐽30 +
2

5
𝐽32/ 𝜆𝑛

4 − .𝐽27 + 𝐽29 +
72

75
𝐽31 +

1

32
𝐽33 +

1

5
𝐽41/ 𝜆𝑛

2 − 𝐽24𝜆𝑛 

𝑘25 = (𝐽13 + 𝐽11)𝜆𝑛, 𝑀22 = −𝐽3, 𝑀24 = 𝐽6, 

𝑘33 = (
1

32
𝐽22 +

18

75
𝐽19) 𝜆𝑛

4 + 𝐽12𝜆𝑛
2 + 𝐾1 + 𝐾2𝜆𝑛

2  

𝑘34 = .
36

75
𝐽31 −

1

32
𝐽33/ 𝜆𝑛

3 + 𝐽24𝜆𝑛, 𝑘35 = −𝐽13𝜆𝑛
2 , 𝑀33 = −𝐽1,

 𝑘44 = .𝐽35 +
2

5
𝐽39/ 𝜆𝑛

4 − .
1

32
𝐽34 + 𝐽36 + 𝐽37 +

2

5
𝐽42 +

72

75
𝐽39/ 𝜆𝑛

2 + .𝐽38 +
1

3
𝐽43/ , 𝑘45 = −(𝐽26 + 𝐽25)𝜆𝑛,

𝑘55 = −𝐽14𝜆𝑛
2 − 𝐽15, 𝑀41 = −𝐽5, 𝑀42 = 𝐽6, 𝑀44 = −𝐽4 

 

 

 

4. Results and discussion 
 

The numerical results of the problem including the 

natural frequencies and dynamic responses may be 

presented as function of input parameters of the problem. 

Before presentation of the numerical results, the material 

properties of core and piezoelectric face-sheets may be 

presented as (Arefi and Zenkour 2017a, b) 

𝐸 = 1 × 1012 (Pa), 𝜈 = 0.3, 𝜌 = 2300 (kg/m3), 
 𝑐1111 = 226 × 109 Pa, 𝑐1212 = 𝑐1313 = 44.2 × 109 Pa, 

𝑒113 = 𝑒131 = −2.2 (C/m2), 𝜌𝑝 = 5500 (kg/m3), 
𝜂11 = 5.64 × 10;9 (C/mV),  𝜂33 = 6.35 × 10;9 (C/mV) 

To investigate the effect of three micro-length-scale 

parameters ( 𝑙0, 𝑙1, 𝑙2 ) on the dynamic results of the 

sandwich microbeam, two-dimensionless parameters 

𝛼 = 𝑙1/𝑙0 and 𝛽 = 𝑙2/𝑙0 are employed. 

 

 

 

Fig. 2 Fundamental natural frequencies of sandwich 

microbeam in terms of two dimensionless parameters 

𝛼, 𝛽 

 

 

Fig. 3 Fundamental natural frequencies of sandwich 

microbeam in terms of two parameters of foundations 

𝐾1, 𝐾2 

 

 

 

Fig. 4 The non-dimensional displacement 𝑤̅  of 

sandwich microbeam in terms of excitation frequency 𝜔 

for various Winkler's parameters of foundations 𝐾1 

 

 

 

Fig. 5 The beam rotation Θ̃ of sandwich microbeam in 

terms of excitation frequency 𝜔 for various Winkler's 

parameters of foundations 𝐾1 
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Fig. 6 The beam higher-order rotation Ε̃ of sandwich 

microbeam in terms of excitation frequency ω  for 

various Winkler's parameters of foundation K1. 

 

 

 

Fig. 7 The maximum electric potential Ψ̃ through thickn

ess direction of sandwich microbeam in terms of excitati

on frequency 𝜔 for various Winkler's parameters of fou

ndation 𝐾1 

 

 

Fig. 2 shows fundamental natural frequencies of 

sandwich microbeam in terms of two dimensionless 

parameters 𝛼, 𝛽. It can be observed that with increase of 𝛼, 

all fundamental natural frequencies are decreased 

significantly. In addition, the values of natural frequencies 

are strongly depending on the values of 𝛽. The unique and 

general expression for change of natural frequencies in 

terms of 𝛽 cannot be mentioned. Figure 3 shows variation 

of fundamental natural frequencies of sandwich microbeam 

in terms of spring 𝐾1  and shear 𝐾2  parameters of 

foundation. One can conclude that fundamental natural 

frequencies are increased significantly with increase of both 

parameters. This is due increase of stiffness of foundation 

that leads to larger natural frequencies. 

The influence of Winkler's parameters of foundation 𝐾1 

on the dynamic responses of microbeam is presented here. 

Shown in Fig. 4 is non-dimensional displacement 

𝑤̅ = 103𝑊/𝐿  of sandwich microbeam in terms of 

excitation frequency 𝜔 for various Winkler's parameters of 

foundation 𝐾1. 

 

 

Fig. 8 The non-dimensional displacement 𝑤̅  of 

sandwich microbeam in terms of excitation frequency 𝜔 

for various first dimensionless material length scale 

parameters 𝛼 

 

 

 

Fig. 9 The beam rotation 𝛩̃ of sandwich microbeam in 

terms of excitation frequency 𝜔  for various first 

dimensionless material length scale parameters 𝛼 

 

 

 

Fig. 10 The beam higher-order rotation 𝛦̃ of sandwich 

microbeam in terms of excitation frequency 𝜔  for 

various first dimensionless material length scale 

parameters 𝛼 
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It is observed that with increase of spring parameters of 

foundation, the non-dimensional displacement 𝑤̅  is 

decreased significantly. Fig. 5 shows the beam rotation 

Θ̃ = 106Θ of sandwich microbeam in terms of excitation 

frequency 𝜔  for various Winkler's parameters of 

foundation 𝐾1 . One can conclude that with increase of 

Winkler's parameters of foundation 𝐾1 , the stiffness of 

foundation is increased and consequently deflection and 

rotation of microbeam are decreased. Shown in Figure 6 is 

beam higher-order rotation 𝛦̃ = 106𝐸  of sandwich 

microbeam in terms of excitation frequency 𝜔 for various 

Winkler's parameters of foundation 𝐾1. One can see that 

beam higher-order rotation 𝛦̃ of sandwich microbeam is 

negative and is decreased with increase of Winkler's 

parameters of foundation 𝐾1 . Fig. 7 shows maximum 

electric potential Ψ̃ = 106Ψ through thickness direction of 

sandwich microbeam in terms of excitation frequency 𝜔 

for various Winkler's parameters of foundation 𝐾1. 

 

 

 

Fig. 11 The maximum electric potential Ψ̃  through 

thickness direction of sandwich microbeam in terms of 

excitation frequency 𝜔 for various first dimensionless 

material length scale parameters 𝛼 

 

 

 

Fig. 12 The non-dimensional displacement 𝑤̅  of 

sandwich microbeam in terms of excitation frequency 𝜔 

for various second dimensionless material length scale 

parameters 𝛽 

Fig. 8 shows non-dimensional displacement 𝑤̅  of 

sandwich microbeam in terms of excitation frequency 𝜔 

for various first dimensionless material length scale 

parameter 𝛼. It can be concluded that with increase of first 

dimensionless material length scale parameter 𝛼 , the 

dimensionless deflection is decreased due to increase of 

stiffness of structure. The influence of first dimensionless 

material length scale parameter 𝛼 on the beam rotation Θ̃, 

beam higher-order rotation 𝛦̃  and maximum electric 

potential Ψ̃  through thickness direction of sandwich 

microbeam are presented in Figs. 9-11. 

Influence of second dimensionless material length scale 

parameter  𝛽 on the non-dimensional displacement 𝑤̅ of 

sandwich microbeam, beam rotation Θ̃, beam higher-order 

rotation 𝛦̃  and maximum electric potential Ψ̃  through 

thickness direction of sandwich microbeam in terms of 

excitation frequency 𝜔 are presented in Figs. 12-15. 

 

 

 

Fig. 13 The beam rotation 𝛩̃ of sandwich microbeam in 

terms of excitation frequency 𝜔  for various second 

dimensionless material length scale parameters 𝛽 

 

 

 

Fig. 14 The beam higher-order rotation 𝛦̃ of sandwich 

microbeam in terms of excitation frequency 𝜔  for 

various second dimensionless material length scale 

parameters 𝛽 

 

35



 

Mohammad Arefi, Elyas Mohammad-Rezaei Bidgoli and Ashraf M. Zenkour 

 

Fig. 15 The maximum electric potential 𝛹̃  through 

thickness direction of sandwich microbeam in terms of 

excitation frequency 𝜔  for various second 

dimensionless material length scale parameters 𝛽 

 

 

 

Fig. 16 Comparison of dimensionless deflection of 

microbeam between Timoshenko and higher-order 

sinusoidal shear deformation theories 

 

 

Fig. 16 shows comparison of dimensionless deflections 

of microbeam between Timoshenko and higher-order 

sinusoidal shear deformation theories in terms of Winkler's 

parameters of foundation. it is concluded that employing the 

higher-order sinusoidal shear deformation theory can 

improve accuracy of results. 

 

 

5. Conclusions 
 
In this research, free vibration dynamic response 

analyses of a sandwich microbeam were investigated. The 

sandwich microbeam was fabricated from a micro-core and 

two integrated piezoelectric face sheets. Strain gradient 

theory as well as higher sinusoidal shear deformation beam 

theory were employed to derive governing equations of 

motion. After derivation of appropriate terms for kinetic and 

strain energies and energy due to external works, the 

governing equations of motion were derived using 

Hamilton's principle. The important results to present the 

effect of significant parameters such as micro-length scale 

parameters, parameters of foundation and excitation 

frequency were presented. The main conclusions of this 

paper can be presented as follows: 

Our analytical results indicate that material length scale 

parameters have significant effect on the vibration and 

dynamic characteristics of sandwich microbeam. To 

investigate the effect of three micro-length scale parameters 

( 𝑙0, 𝑙1, 𝑙2 ) on the results, two dimensionless parameters 

𝛼 = 𝑙1/𝑙0  and 𝛽 = 𝑙2/𝑙0  were employed. The results 

show that fundamental frequencies are increased with 

increase of 𝛼 while with increase of 𝛽, they increased for 

𝛽 ≤ 0.5  and decreased for 𝛽 > 0.5 . In addition, with 

increase of two parameters of Pasternak's foundation, 

natural frequencies are increased significantly due to 

increase of stiffness. 

Maximum electric potential through thickness direction 

of microbeam are changed with change of two 

dimensionless parameters 𝛼, 𝛽. It is concluded that with 

increase of 𝛼, 𝛽 this component is decreased significantly. 

In addition, with increase of two parameters of foundation, 

maximum electric potential is decreased due to increase of 

stiffness of microbeam. The numerical results show that the 

beam higher-order rotation of microbeam is negative while 

the beam rotation is positive. Both components are 

decreased with increase of two parameters of Pasternak's 

foundation and two dimensionless material length scale 

parameters 𝛼, 𝛽. 
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Appendix 
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𝜋𝑥3

ℎ𝑝
)]

2

𝑑𝑥3

;
ℎ

2

;
ℎ

2
;ℎ𝑝

+ ∫ 𝜂11 [cos (
𝜋𝑥3

ℎ𝑝
)]

2

𝑑𝑥3

ℎ

2
:ℎ𝑝

ℎ

2

,  

𝐽15 = ∫ 𝜂33 6
𝜋

ℎ𝑝
sin 4

𝜋𝑥̌3

ℎ𝑝
57

2

𝑑𝑥3

;
ℎ

2

;
ℎ

2
;ℎ𝑝

+ ∫ 𝜂33 6
𝜋

ℎ𝑝
sin 4

𝜋𝑥̂3

ℎ𝑝
57

2

𝑑𝑥3

ℎ

2
:ℎ𝑝

ℎ

2

, 

*𝐽16, 𝐽17, 𝐽18, 𝐽28, 𝐽29, 𝐽30, 𝐽35, 𝐽36+

= ∫ 2𝜇𝑝𝑙0
2{1, 𝑥3, 𝑥3

2, 𝜒, 𝜒′, 𝜒𝑥3, 𝜒2, 𝜒′2
}𝑑𝑥3

;
ℎ

2

;
ℎ

2
;ℎ𝑝

 

 + ∫ 2𝜇𝑙0
2{1, 𝑥3, 𝑥3

2, 𝜒, 𝜒′, 𝜒𝑥3, 𝜒2, 𝜒′2
}𝑑𝑥3

ℎ

2

;
ℎ

2

+

∫ 2𝜇𝑝𝑙0
2{1, 𝑥3, 𝑥3

2, 𝜒, 𝜒′, 𝜒𝑥3, 𝜒2, 𝜒′2
}𝑑𝑥3

ℎ

2
:ℎ𝑝

ℎ

2

,   

 *𝐽19, 𝐽20, 𝐽21, 𝐽31, 𝐽32, 𝐽39, 𝐽40, 𝐽41, 𝐽42, 𝐽43+ = 

 = ∫ 2𝜇𝑝𝑙1
2*1, 𝑥3, 𝑥3

2, 𝜒, 𝜒𝑥3, 𝜒2, 𝜒", 𝜒"𝑥3, 𝜒"𝜒, 𝜒"2+𝑑𝑥3

;
ℎ

2

;
ℎ

2
;ℎ𝑝

 

 + ∫ 2𝜇𝑙1
2*1, 𝑥3, 𝑥3

2, 𝜒, 𝜒𝑥3, 𝜒2, 𝜒", 𝜒"𝑥3, 𝜒"𝜒, 𝜒"2+𝑑𝑥3

ℎ

2

;
ℎ

2

 

+ ∫ 2𝜇𝑝𝑙1
2*1, 𝑥3, 𝑥3

2, 𝜒, 𝜒𝑥3, 𝜒2, 𝜒", 𝜒"𝑥3, 𝜒"𝜒, 𝜒"2+𝑑𝑥3

ℎ

2
:ℎ𝑝

ℎ

2

, 

*𝐽22, 𝐽33, 𝐽34+ = ∫ 2𝜇𝑝𝑙2
2*1, 𝜒′, 𝜒′2+𝑑𝑥3

;
ℎ

2

;
ℎ

2
;ℎ𝑝

+ ∫ 2𝜇𝑙2
2*1, 𝜒′, 𝜒′2+𝑑𝑥3

ℎ

2

;
ℎ

2

+ ∫ 2𝜇𝑝𝑙2
2*1, 𝜒′, 𝜒′2+𝑑𝑥3

ℎ

2
:ℎ𝑝

ℎ

2

, 

 𝐷𝜓 =

∫ 2𝜂33
𝜋

ℎ𝑝
sin (

𝜋𝑥3

ℎ𝑝
)

𝑉0

ℎ𝑝
𝑑𝑥3

;
ℎ

2

;
ℎ

2
;ℎ𝑝

+ ∫ 2𝜂33
𝜋

ℎ𝑝
sin (

𝜋𝑥3

ℎ𝑝
)

𝑉0

ℎ𝑝
𝑑𝑥3

ℎ

2
:ℎ𝑝

ℎ

2

, 

 {𝑁𝜓, 𝑀𝜓, 𝑆𝜓} = ∫ 2𝑒113
𝑉0

ℎ𝑝

*1, 𝑥3, 𝜒+𝑑𝑥3

;
ℎ

2

;
ℎ

2
;ℎ𝑝

+

∫ 2𝑒113
𝑉0

ℎ𝑝

*1, 𝑥3, 𝜒+𝑑𝑥3

ℎ

2
:ℎ𝑝

ℎ

2
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