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1. Introduction 
 

Structural health monitoring (SHM) is a methodology to 

ensure a safe operation of mechanical structures and to 

reduce life cycle cost by replacing schedule-driven 

inspections by Condition-Based Maintenance (CBM). One 

major task of SHM systems is the detection and 

identification of damage in an early stage of structural 

damage evolution. For vibration-based SHM an integrated 

sensor network is required to measure the structural 

vibrations excited either by an artificial or a natural source, 

e.g. wind and traffic loads. By means of the integrated 

sensor system the effect of the damage on the structural 

vibration response can be measured. Now, SHM systems 

need smart data processing algorithms in order to draw 

conclusions about the exact cause for the measured effect. 

Thus, vibration-based damage identification can be seen as 

the inversion of the principle of cause and effect. This leads 

to a mathematical inverse problem. 

If there are many causes which will lead to the same 

measurable effect, the inverse problem is additionally ill- 
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posed. Ill-posedness means that either the existence, the 

uniqueness or the stability of the solution is violated. 

In the last decades many methods have been developed 

and a considerable amount of literature has been published 

on the inverse problem of structural damage identification, 

an overview on this topic can be found for example in 

(Sohn et al. 2003) and (Balageas et al. 2006). Damage 

identification techniques can be classified as frequency or 

time domain or time-frequency domain methods. Classical 

frequency domain approaches consider the changes of the 

natural frequencies, modal damping and mode shapes due 

to damage. As these quantities provide information on a 

global level, they are often insensitive to small local 

structural damage. Especially if only lower structural modes 

are used. In the medium or higher frequency range 

problems may occur to identify these modes since this 

requires a very dense sensor network. Time domain 

approaches seem to be comfortable, as raw time data can be 

used directly. 

Several time domain approaches have already been 

proposed, such as least-squares estimation methods (Smyth 

et al. 1999, Yang and Lin 2005) or methods using particular 

filters (Wu and Wang 2014, Wan et al. 2013, Ching et al. 

2006, Sato and Qi 1998). For the latter the Extended 

Kalman filter (EKF) is the most well-known system 

parameter estimation method (Ding and Guo 2016, Lei et 

al. 2015, Corigliano and Mariani 2004, Liu et al. 2009, Lei 

et al. 2013). EKF-based system parameter identification 

belongs to the class of model-based approaches. Here, a 

reference model of the undamaged structure is tested 
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against the actual system in each filter step. In the filter 

process the state vector of the Kalman Filter equations is 

typically augmented (Liu et al. 2009) or sometimes even 

replaced (Ebrahimian et al. 2015) by the system parameter 

to be estimated. By making use of the input-output signal an 

estimation of the system parameters is obtained in each 

filter step. Even so the original Kalman Filter is known as 

optimal linear filter, EKF-based damage identification is 

still facing some challenges, e.g. high computational effort 

for complex structures and intrinsic ill-posedness of the 

inverse problem (Zhang et al. 2016). To overcome ill-

posedness usually the damage parameter space is reduced 

by considering only damage hot spots or by a drastic 

increase of the sensor number. In order to perform damage 

monitoring on the whole structure and to keep the required 

number of sensors low, a sparsity-constrained Extended 

Kalman Filter concept is proposed. 

Therefore, a priori information about the damage 

properties is used to solve the inverse problem and to obtain 

meaningful solutions. For example, cracks can be 

interpreted as spatial singularities, which cause only a very 

local structural stiffness reduction. Thus, a system 

parameter vector which describes the change in structural 

stiffness has only a few non-zeros elements corresponding 

to the actual damage location. Such a vector is called 

sparse. In many fields of applied mathematics, L1-

regularizing techniques have been proven to promote such 

kind of sparse solutions (e.g., Compressive Sensing (Candès 

and Wakin 2008, Donoho and Huo 2006)). The proposed 

damage identification method links the concept of L1-

regularization with the Extended Kalman Filter by 

expanding the measurement equation by an additional 

nonlinear L1-minimizing observation. 

The paper is structured as follows: Section 2 describes 

the L1-minimizing sparse solution strategy for inverse 

problems. The problem of damage parameter estimation 

using a non-linear state-space description is formulated in 

section 3. In section 4 the concept of sparse solution is 

incorporated in the Extended Kalman Filter concept. 

Various proof-of-concept simulation studies are carried out 

in section 5. Here the functionality of the proposed 

identification method is demonstrated by analyzing 

different damaged scenarios on a quadratic aluminum plate 

structure. A stochastic validation is performed by means of 

a Monte Carlo simulation and the capability of 

compensating modeling errors is also shown. Finally, 

concluding remarks are presented in section 6. 

 

 

2. Sparse solution of inverse problem 
 

Most ill-posed inverse problems can be formulated by a 

linear algebraic equation system of the form 

AHy   (1) 

or can be transformed into such a system. In Eq. (1) 
MRIy is a vector which contains all measurable output 

information and 
NRIA  is a vector containing all 

possible causes or inputs, respectively. The transition matrix 

NMRI H  describes the linear effect-causes relationship. 

If the dimension of y  is smaller than the dimension of 

)( NM  A the linear system of equation is 

underdetermined. In this case Eq. (1) has an infinite number 

of possible solutions, which means an infinite number of 

different causes will result in the same effect. The challenge 

of solving such an equation system is the determination of 

the actual one. 

In order to close the gap of information and to obtain a 

solution, additional constraints )(AΩ  need to be 

formulated, which regularize the problem. The most 

common regularization is the Tikhonov regularization 

(Tikhonov and Arsenin 1977) 

 2
2

2

2
minargˆ AAHyA

A

2 λ
NRI





 
(2) 

with the constraint )(AΩ  

2

2
(Ω AA )    and   

i
iA22

2
A  (3) 

Here, the solution of Eq. (1) is generated via an 

optimization problem. The constraint can be interpreted as 

additional information which regularize the inverse problem 

and forces the L2-norm (or Euclidian norm) of the solution 

vector 2Â  to be minimal. Furthermore, for Tikhonov 

regularization y  is not necessarily equal AH   so that 

the solution is stabilized if y  is polluted by noise. 

However, for most applications the choice of L2-

minimization as constraint is not suitable to close the gap of 

information and to obtain meaningful results. 

In recent years, new reconstruction strategies for solving 

underdetermined linear systems of equations have been 

proposed, pushed forward by the developments in the field 

of Compressive Sensing (CS) (Candès and Wakin 2008, 

Donoho and Huo 2006). For these reconstruction methods it 

is assumed that the solution vector has just a few nonzero 

elements or can be transformed to such a sparse vector by 

using some other coordinate spaces. This assumption holds 

for most vectors which describe some real-world 

phenomena (e.g., images, sounds, forces); the elements 

inside such vectors are not completely arbitrary and have 

some kind of internal structure. Such a structure is always 

used for compressing data, e.g., wavelet transformation of 

images or Fourier transformation of sounds. So the 

information carried by these vectors is mostly a lot smaller 

than the dimension of the vectors itself suggests. However, 

it is not known in advance which elements are nonzero, but 

the information that the solution vector is sparse can be 

included as additional information in the reconstruction 

strategy (Fritzen and Ginsberg 2017). 

The numbers of nonzero elements inside the vector A  

can be expressed by means of the L0-norm 

)(supp
0

AA s  (4) 
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where  0::)(supp  iAiA  denotes the support set of the 

vector A  and   the cardinality of this set. If the 

dimension N of the vector A  is much bigger than the 

number of nonzero elements s )( sN  , then A  is a 

sparse vector. 

The sparsest solution which agrees with the 

measurements y  could be obtained by minimizing the 

following expression 

0
minargˆ AA

A

0
NRI

    subject to   AHy   
(5) 

Unfortunately, solving Eq. (5) requires a combinatorial 

search, which makes it nearly impossible to solve 

computationally for larger values of N. Under the 

assumption of a sparse solution, e.g., in (Donoho and Huo 

2006) it is shown that by replacing the L0-norm by the L1-

norm almost the same solution can be obtained as solving 

Eq. (5) 

1
minargˆ AA

A

1
NRI

    subject to   AHy   
(6) 

The L1-norm is the sum of all absolute values of the 

vector entries Aj 


j

jA
1

A  
(7) 

Eq. (6) is now a convex optimization problem which can be 

solved by linear programming techniques. The reason why 

L1-regularization also delivers sparse solutions, is illustrated 

in Fig. 1. It can be seen that L2-regularization leads to a 

solution closest to the origin while L1-regularization finds a 

solution on the coordinate axes, with just a few non zero 

elements. 

 

 

3. Problem statement 
 

In general, the dynamics of a nonlinear, time-varying  

 

 

structure can be described similar to Balageas et al.  

(2006) as 

    kkkkkk kgk uxxxxM k  ,,,,,    

 kkkk ,,,1 kxx    

 kkkk ,,, k
*

xxhy   

(8) 

The first line of Eq. (8) is the nonlinear equation of motion 

written for discrete time-steps tktk Δ , NIk . 

  mmRIM   is the mass matrix and   mRIg   the 

force vector of elastic and damping forces. These can 

depend on the nodal displacement mRIx , the nodal 

velocity mRIx  and the time step k. The damage 

parameter pRI  describes the change of structural 

integrity (loss of stiffness, increase of damping, loss of 

mass, etc.) by location and damage extent. For structural 

health monitoring this is the parameter which needs to be 

reconstructed. Moreover, the damage parameter   

usually has also influence on the equation of motion. 
mRIu  is the vector of external loads acting on the 

structure. The number of degrees of freedom (DOF) is m. 

The nonlinear function pRI  describes the evolution of 

the damage parameter in the second line of Eq. (8). 

Depending on the type of damage pRI  can also a 

function of displacement and velocity. For example cracks 

grow faster if the vibration amplitude is large. 

The third line of Eq. (8) is the measurement equation 

which links the model quantities (displacement, velocities 

and system parameters) with the output nRIy  of the 

measurement device by means of the function nRI)(*
h . 

The number of measurements equals n. 

If the structure can be assumed to be linear, the equation 

of motion becomes 

      kkkkkk uxKxCxM k     (9) 

 

Fig. 1 Comparison of L2- and L1-regularization of underdetermined equation systems 
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Here, the structural mass M , the structural stiffness K  

and the damping C  still depend on the damage 

parameter  . 

Mostly the evolution of the damage parameter   and 

the structural dynamic vibrations occur on two different 

time scales. Compared to the structural vibrations, the 

evolution of damage is a rather slow process. Thus, the 

damage parameter   seems to remain constant during a 

short time span of data acquisition (Balageas et al. 2006). 

Now, a state space model can be defined, in which the 

unknown damage parameter vector is the state vector. The 

evolution of it is modeled by a Gaussian Markov process, 

also called random walk process (Ebrahimian et al. 2015) 

kkk w  1  

   kk k vxxUhy kk  ,,,, 00  , 
(10) 

where p
k RIw  is zero-mean white process noise with 

covariance  kkk N QQ ,~, 0w . Here, the measurement 

equation in the second line is defined slightly different as 

above. Unlike Eq. (8), the output measurement data are 

obtained depending on the initial nodal displacement and 

velocity 0x  and 0x  and vector

   Tkk uuu ,...,, 21U , which describes the external 

load input sequence from the first up to the current time 

step k. In this way, the (non-linear or linear) equation of 

motion can be implicitly included in the nonlinear 

measurement equation nRI)(h . n
k RIv  represents 

the measurement noise with covariance 

 kkk N RR ,~, 0ν . For reasons of clarity and without loss 

of generality in the remainder of this paper it is assumed 

that 00x  and 00x . 

 

 

4. Extended L1-minimizing Kalman Filter 
  
In the following, the new concept of L1-minimizing 

sparse reconstruction is incorporated into an Extended 

Kalman Filter framework. Loffeld et al. (2016) were the 

first to propose an L1-minimizing Kalman Filter approach 

for solving underdetermined sparse problems. Here, this 

idea is adopted to stabilize the Extended Kalman Filter 

parameter estimation process for a large damage parameter 

space p and a low number of sensors n. 

Structural damages due to e.g., cracks can often be 

interpreted as spatial singularities, as they lead to a stiffness 

reduction in a very local area of the system rather than a 

global stiffness reduction. Thus, it can be assumed that the 

unknown damage parameter vector   is sparse. The 

sparsity will be considered as a constraint, which will be 

part of the state space model as an additional, nonlinear 

observation. It is promoted by the L1-norm of the state 

vector 
 

 





p

j
kjkk γ

1
,1

ˆ ky   (11) 

Starting from 
100 γ  the fictive measurement kγ  can 

now successively be decreased in each time step k by a 

scaling factor 1α  

11 kαγk    (12) 

The scalar Eq. (11) pushes down the L1-norm of the state 

vector and thus leads to a sparse estimation of  . The 

now obtained augmented observation vector ky~  reads as 

follows 
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RIωk  reflects the uncertainty of the additional L1-

minimizing observation equation. 

For estimating the states of the now obtained nonlinear 

state space model an Extended Kalman Filter (EKF) is used. 

The EKF linearizes the nonlinear model in each time step 

around the a posteriori estimated state vector, using a first-

order Taylor series approximation. After linearization the 

traditional prediction-correction algorithm of the Kalman 

Filter can be applied. 

Starting from the initial conditions 0|0̂  and 0|0P , a 

forecast of the state is made in the prediction step 

1|11|
ˆˆ

  kkkk   

kkkkk QPP   1|11|   
(14) 

In the corrector step the current measurements ky  and the 

fictive measurements ky~  are considered and compared 

with the prediction. The residual ky~Δ  is weighted by a 

Kalman matrix kK  and added to the prediction 1|
ˆ

kk  

  kk ,,ˆ U1-|kkk hy   

  1

1|1|
~ 

  k
T
kkkk

T
kkk RHPHHPKk  

kkkkkk yK ~Δˆˆ
1||    

  1||  kkkkkk PHKP I  

(15) 

For the proposed damage parameter estimation strategy 

only the measurement equation is needs to be linearized 

  









































1|

1|

ˆ

1

ˆ

,,

kk

kk

k

kk

k

k











 Uh

Η  (16) 

 

744



 

Sparsity-constrained Extended Kalman Filter concept for damage localization… 

The derivative of the measurement equation  h  with 

respect to   can be either approximated by the finite 

difference method or determined exactly by using the 

system-output sensitivity for linear structures. A detailed 

description of the output-sensitivity calculation can be 

found e.g., in (Fritzen et al. 1996) and is beyond the scope 

of this work. However, both methods require the structural 

model of the undamaged system and the input time history 

to linearize the measurement equation around the predicted 

state 1|
ˆ

kk . 

The Jacobian matrix of the L1-minimizing constraint 
















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
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
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
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
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




1

2

1

1

11  (17) 

as second element of kH , can be obtained by 

 j 
j 

1 sign 








 (18) 

The determination of the partial derivative in each time 

step k is computationally very expensive. In order to save 

computing time, this can be performed just in every second 

or third step. This also helps to stabilize the filter process in 

the beginning. 

As usual structural damage has no direct impact on the 

measurements at the same specific time step k, it is 

advisable to extend the physical measurement ky  and to 

process a bloc of l physical measurements in each Kalman 

Filter step 

     l
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l
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k

vUh

y
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



lkk

l

k ,,,



Y  (19) 

By this en bloc processing, the filter is no longer operating 

in real time but with a time lag tltl Δ  in the past. En 

bloc processing also smoothes the predicted damage 

parameters. However, such an en bloc processing requires 

bigger measurement matrices, which leads to higher 

computational burden. The computational burden can limit 

the algorithm to offline monitoring. In the later simulation 

studies it has been shown that a moderate choice of l=50 is 

a good compromise between smoothing and computational 

burden. 

Fig. 2 summarizes the implemented algorithm in pseudo 

code formulation. 

 

 

5. Proof of concept 
 

In order to demonstrate the functionality of the proposed 

damage identification strategy a proof of concept simulation 

study is performed. The observed mechanical structure is a 

simple square aluminum plate of 1 m × 1 m edge length and 

2 mm thickness. It is clamped on all sides. The structural 

dynamics of the plate due to external forces are described 

by a finite element model. The plate is modeled by 121 

quadratic shell elements and 144 nodes (each with 6 

degrees of freedom), see Fig. 3. 

 

 

 

Fig. 3 Node numbering of the finite element plate model; 

node 31, 54, 63, 99 and 101 are acceleration 

measurement positions; node 67 is the excitation position 

 

Fig. 2 Pseudo code of sparsity-constrained Extended 

Kalman Filter concept 
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The employed structural responses are simulated 

acceleration measurements perpendicular to the plate plane. 

The obtained simulated measurement signals are low-pass 

filtered by a cut-off frequency of 200 Hz. Thus, for damage 

detection only the low frequency content of the time signals 

is employed. White Gaussian noise, with a standard 

deviation of three percent of the maximum measurement 

value, is added to the simulated outputs to imitate real 

acceleration measurement data. Throughout all 

investigations shown in this paper, only five accelerometers 

are used. 

A widely used approach to introduce structural damage 

on a substructure or element level which represents the 

changes of the structural stiffness KΔ  compared to a 

reference model 0K  is 


j

jjKKΔ  
(20) 

where jK  is the jth substructure or element stiffness 

matrix, respectively. By determination of the unknown 

correction parameters  p  21  the 

damage can be localized and quantified. 

 

5.1 Single and multiple damage scenarios 
 

In a first simulation study the stiffness of element no. 81 

has been decreased by 20%. The plate structural vibration is 

excited by an impulse force load perpendicular to the plate 

surface at node no. 67 of known time history. Choosing the 

excitation node it is important that all modes of interest 

(here below 200 Hz) are excited. Beside this there are no 

other constrains concerning the number and placement of 

the active elements. The obtained simulated acceleration 

time data are now used for structural damage identification.  

Fig. 4 shows the identification result, where the 

evolution of the damage parameter corresponding to 

element no. 81 is plotted overtime. It can be seen that 

starting from initial conditions (all damage parameters zero) 

the parameter of the damage element tends to the true value 

of stiffness reduction. Fig. 5 shows that for all the other 

elements the corresponding damage parameters are close to 

zero. Thus, the damage is localized and quantified. 

Figs. 6 and 7 compare the damage parameter estimation 

results for the proposed Extended Kalman Filter method 

with and without additional L1-minimizing observation. It is 

obvious that no clear damage estimation result can be 

achieved without L1-minimizing observation. Even though 

the reconstructed damage parameter error for the damage 

element no. 81 is not too big, many more element stiffness 

changes (reduction and increase) are identified. On the 

other hand, it can be clearly distinguished between damaged 

and undamaged elements if the additional observation is 

used, as L1-minimization promotes this sparse solution. In a 

next step a multiple damage scenario is investigated. Here 

the plate structural damage is modeled by a stiffness 

reduction of various elements with different amount. Which 

means the damage parameter vector needs to be slightly 

dense than in the case of a single element stiffness change. 

 

 

Fig. 4 Damage identification result; evolution of damage 

parameter no. 81 

 

 

Fig. 5 Estimated stiffness reduction pattern at the end of 

simulation time 

 

 

Fig. 6 Kalman Filter estimation without additional L1-

observation 

 

 

Fig. 7 Estimation result with L1 -minimizing observation 

746



 

Sparsity-constrained Extended Kalman Filter concept for damage localization… 

 

 

Fig. 8 Multiple damage scenarios: three damaged 

elements 

 

 

 

Fig. 9 Damage identification result for larger damaged 

areas 

 

 

Fig. 8 shows the damage identification results at the end 

of simulation time for three damaged elements. In this case 

a clear damage identification, similar as before is obtained. 

In Fig. 9 a damage scenario is simulated and 

reconstructed in which a larger area is damaged by means 

of an element stiffness reduction. The element stiffness of 

element no. 63, 70, 81 and 82 is reduced. The identified 

damage pattern shown in Fig. 7 agrees with the true one. 

Beside the actual damage elements, only a few other 

elements show a negligible stiffness change. 

 

5.2 Monte Carlo simulation 
 

In section 5.1 some selected damage identification 

results have been shown. However, for a statistical 

validation a Monte Carlo simulation is performed. 5000 

trials with different damage scenarios are carried out. In 

each of the 5000 trials a single damage is introduced in the 

structure by reducing the stiffness of one element. The 

damage location is chosen randomly with uniform 

distribution over all elements. The damage extent is also a 

random parameter with Gaussian distribution (mean value: 

25% stiffness reduction; standard deviation: 5%). As before, 

white Gaussian noise, with a standard deviation of three 

percent of the maximum measurement value is added to the 

simulated outputs. 

 

 

Fig. 10 Results of Monte Carlo simulation 

 

 

The obtained results by using the proposed algorithm 

are displayed in Fig. 10. For each element, Fig. 10 shows 

the mean value of the relative deviation for damage extent 

estimation. The results indicate clearly a bad performance 

of estimation a damage, which is introduced in a boundary 

element. As the plate is clamped on all sides, vibration-

based damage detection is very difficult for such elements 

placed at the clamped edges. Nevertheless, the damage 

extends estimation for the inner plate elements are very 

reliable. The mean estimation error is distinctly under 10%. 

Moreover, the damage location for an inner plate element 

stiffness reduction is always detected correctly. 

 

5.3 Model error compensation 

 

As the proposed damage identification strategy is a 

model-based approach, modeling errors will have an impact 

on the reconstruction results. For most practical applications 

there are some modeling parameters which are subject to 

uncertainties, e.g., the global modulus of elasticity, the mass 

density or the correct definition of the boundary conditions. 

In order to compensate possible modeling errors, such 

model parameters can also be integrated in the estimation 

process. This requires the explicit knowledge of model 

parameters, which are subject to deviations. Thus, the 

parameter vector   needs to be extended by these model 

parameters 

 m
n

m
p Θ,,Θ,Θ,,Θ,Θ 121 Θ  (21) 

The algorithm will fit the unknown model parameters to 

the measurement output data. Here the first p values are the 

damage parameters as previously defined. The last n 

parameters describe now the global model parameters.  

In the following simulation study the filter model used 

for the reconstruction process varies from the one, which is 

employed to create the measurement data, not only in terms 

of the structural damage but also in terms of a modulus of 

elasticity and mass density. Therefore, two additional 

parameters m
n  (n=2) needs to be estimate 

MMKK
mm
21 ΘandΘ   (22) 
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Fig. 11 Damage identification by using an incorrect 

structural model 

 

 

 

Fig. 12 Estimation of initially wrong model parameters 

(Young's modulus and mass density) 

 

 

Fig. 11 shows a damage reconstruction result by using 

an incorrect structural model. The deviation is 7% in mass 

density and 10% in modulus. However, a very clear 

estimation of the damage pattern can be obtained. The 

damage elements no. 41 and 85 are identified correctly and 

also the damage extend is reconstructed properly. 

Additionally, the model parameter mass density and 

modulus of elasticity have been identified, as shown in 

Fig. 12. 

 

 

6. Conclusions 
 

In this contribution a new time domain method for 

damage detection has been proposed. The local character of 

damage justifies the use of sparse reconstruction strategies 

for the ill-posed inverse problem. Sparsity of the estimated 

state vector of damage parameters is ensured within the 

Extended Kalman Filter by adding a fictive non-linear L1-

minimizing observation. 

The structural model description presented in section 3 

allows to analyze various types of structures. Therefore, the 

proposed approach is not limited to aluminum structures, as 

shown in section 5. Due to the required linearization 

process it is even possible to monitor structures with 

nonlinear behavior. Moreover, the approach can be 

extended to detected different types of damages (e.g., 

breathing cracks), if a corresponding damage model is 

integrated in the system description. 

It has been shown in this paper that the proposed 

reconstruction method is able to determine the damage due 

to local stiffness reductions by position and extent 

simultaneously. In contrast to the Extended Kalman Filter 

process without additional L1-observation a clear damage 

pattern is obtained. This was shown for single damage 

scenarios as well as for multiple damage events. A statistical 

validation has been performed by means of a Monte Carlo 

simulation. Considering the damage parameter space of size 

121 in the demonstrated study, the number of sensors using 

only five accelerometers is significantly lower than the 

parameter space. Moreover, modeling error can be 

compensated by including the model parameters, which are 

subject to uncertainties. Besides the unknown model 

parameter, this approach can also be used to reconstruct 

damage under changing environmental and operational 

conditions (EOC), if the EOC sensitive parameters are also 

included in the parameter vector. 

The sparsity-constrained Extended Kalman Filter 

concept is a promising approach for time domain structural 

damage identification as the required measurement 

information can be significantly reduced. However, to 

operate this methodology on a real structure several 

additional investigations needs to be carried out under real 

environmental conditions. Amongst other things the 

influence of environmental perturbations and unrecognized 

model errors must be analyzed in a long term study. 

A drawback of this method is clearly the fact, that the 

excitation signal time history needs to be known. Large 

additional excitations (e.g., environmental perturbations) 

may lead to deviations of the reconstruction results. 
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