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1. Introduction 
 

Structural Health Monitoring (SHM) is necessary for 

various aerospace, mechanical, and civil engineering 

applications to evaluate the status of the structure for 

performing its authorized tasks. Bridges have limited 

lifetime and start to degrade as soon as they are under 

service. Processes such as corrosion, fatigue, erosion, 

abrasion and overloads degrade them until they aren't fit for 

their intended use. 

Damage detection is the most important application of 

SHM. In general, all existing methods can be divided into 

two groups: local and global approaches. Local monitoring 

methods locate and identify small defects in accessible and 

small inspection zones via ultrasonic testing (Staszewski 

2003, Ostachowicz et al. 2009) or statistical classification 

techniques (Silva et al. 2008, Nair et al. 2006). These 

methods do not require structural modeling and are outside 

the scope of this paper.  

Vibration characteristics of the bridge are related to the 

occurring of damage in the structural elements. This theory 

is based on the fact that changes in the stiffness and mass 

properties of the bridges can result in the changes of  
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dynamic characteristics of bridges. 

The developments in the field of damage detection by 

using the vibration data of civil engineering structures have 

been recently reviewed by several authors. 

Doebling et al. (1998) provided a comprehensive review 

on the damage detection methods by examining changes in 

the dynamic properties of a structure. Zou et al. (2000) 

summarized the methods on vibration-based damage 

detection and health monitoring for composite structures 

especially in delamination modeling techniques and 

delamination detection. 

Damage detection usually requires a mathematical 

model on the structure in conjunction with experimental 

parameters of the structure. The identification approaches 

are mainly based on the change in the natural frequencies 

(Cawley and Adams 1979, Friswell et al. 1994, Narkis 

1994), mode shapes (Pandey et al.1991, Ratcliffe 1997, 

Rizos et al.1990) or measured modal flexibility (Pandey 

and Biswas 1994, Doebling et al. 1996, Lim 1991, Wu and 

Law 2004).  

The performance of damage detection procedures based 

on vibration data depends on that the in-built analytical 

procedures to be accurate enough to discern even small 

changes in responses due to damages in the structure. That 

is mean the analytical models employed here need to be 

more accurate than when are used in a routine response 

analysis. It should be noted that the bridge–vehicle system 

is a time-varying system. Consequently, frequency domain 

parameters of bridge structure such as natural frequencies, 

mode shapes, modal damping and frequency response 

function can't use to detect damages in such systems 

directly. Of course, if the vehicle-bridge interaction will be 
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ignored and treats the moving vehicle as a moving load, the 

system will be time invariant in nature and frequency 

domain parameters could be used for damage detection 

purposes. In this case, the errors due to ignoring the vehicle 

-bridge interaction would also introduce unknown errors 

into damage detection procedures. In fact, it is not clear on 

how the frequency domain parameters of bridge structure 

could be extracted from vibration which is induced by 

vehicular traffic if one includes vehicle–bridge interaction 

effects into the analysis. The focus of the present study is 

developing a time-domain approach to detect damages in 

bridge structure by analyzing the combined system of 

bridge and vehicle. 

For moving masses, the analysis is most often 

performed in the time domain via a direct comparison of the 

simulated responses with measured responses. 

Majumder and Manohar (2003, 2004) propose a method 

for damage identification of linear and non-linear beams 

excited by a moving oscillator; the beam and the oscillator 

are treated together as a single coupled and time-varying 

system. Sieniawska et al. (2009) use a static substitute of 

the equation of motion for identifying the structural linear 

parameters from the dynamic response of the structure 

under a moving load with a determined constant magnitude. 

Identification of moving loads is important not only for 

assessment of pavements or bridges but also in traffic 

studies, in design code calibration, for traffic control, etc. 

Several techniques have been developed which solve one of 

these identification problems separately: either they identify 

the damage while assuming load characteristics to be 

known or they identify the moving load while the structure 

is assumed to be undamaged. 

Identification of moving loads has been studied 

extensively in the past two decades (Yu and Chan 2007). A 

direct measurement of the dynamic axle loads of vehicles is 

expensive, difficult and subject to bias. Therefore the 

techniques of indirect identification from measured 

responses have been studied, as they can be performed 

easier and at lower costs. Chan, Law et al. have proposed 

four general methods for indirect identification which are 

the time-domain method (TDM) (Law et al. 1997), the 

frequency-time domain method (FTDM) (Law et al. 1999), 

Interpretive Method I (IMI) (Chan and O‘Connor 1990) and 

Interpretive Method II (IMII) (Chan et al. 1999). All of 

them require the parameters of the bridge model to be 

known in advance. Each method has its advantages and 

limitations which are compared in Chan et al. (2001). The 

numerical ill-conditioning of the problem seems to be the 

main factor that decreases the accuracy of the identification 

results. To improve the accuracy, techniques based on the 

Singular Value Decomposition (SVD) have been 

investigated and adopted for the inverse computation (Yu 

and Chan 2003). Some regularization methods of SVD have 

been used e.g., Law et al. (2001), Zhu and Law (2006) use 

the Tikhonov regularization, while Law and Fang (2001), 

González et al. (2008) couple it with the dynamic 

programming approach. In general, all these methods 

require a model of the structure in order to build the 

equation of the motion, even if some of them allow to be 

used for identification of parameters besides the moving 

load such as the prestressing force (Law et al. 2008) or 

parameters of the vehicle model (Jiang et al. 2004). 

In real applications unknown damages and unknown 

moving loads can be coexisted and influence the response 

of the system together; it seems that their simultaneous 

identification is a relatively unexplored field. In the case of 

unknown excitations and unknown structural damages, the 

related identification problems are inherently coupled so 

both factors together influence the structural response and 

cannot be identified separately. Hoshiya and Maruyama 

(1987) apply a weighted global iteration procedure and the 

extended Kalman filter for simultaneous identification of a 

moving load and modal parameters of a simply supported 

beam. Lu and Law (2007) identify damage and parameters 

of non-moving impulsive or sinusoidal force excitations in a 

two-step identification process using a limited number of 

measurements. Zhang et al. (2009) present a method for 

simultaneous identification of structural physical 

parameters and an unknown support excitation. Zhu and 

Law (2007) propose a method for simultaneous 

identification of moving loads and damages using a two-

step approach that separately adjusts the loads and the 

damage factors in each iteration of the optimization process; 

the number of sensors is one less than the number of the 

beam elements. 

Zhang et al. (2010) addressed simultaneous 

identification of damages and nonmoving excitation forces 

in truss structures; a moving force could be identified only 

by a simultaneous identification of all load-time histories in 

all involved degrees of freedom (DOFs). 

In this paper, a novel simultaneous sensitivity-based 

damage detection method referred to as ―Adjoint variable 

method‖, is developed. The sensitivities of dynamic 

response with respect to the structural physical parameters 

and the input excitation mass are calculated simultaneously 

in this study. Perturbations in the structural parameters are 

identified together with the input excitation masses using an 

iterative algorithm. 

The outline of the work is as follows: Inverse problems 

along with model updating are briefly introduced in 

section2. The basic theory of sensitivity analysis is 

addressed in section3 and the proposed algorithm will be 

presented in section4. Numerical simulations are presented 

in section 5 with studies on the effect of different factors 

which may affect the accuracy of the proposed analysis in 

practice. Conclusion will be drawn in the last section. 

 

 

2. Finite element model updating and inverse 
problem 

 
Since many algorithms of damage detection are based 

on the difference between modified model before 

occurrence of damage and after that, problems such as 

parameter identification and damage detection are closely 

related to model updating. Discrepancy between two 

models is used for detecting and quantifying of damage in 

the structure. 

A key step in model-based damage identification is the 

updating of the finite element model of the structure in such 
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a way that the measured responses can be reproduced by the 

FE-model. A general flowchart of this operation is given in 

Fig. 1. The identification procedure presented in this paper 

is a sensitivity based model updating routine. Sensitivity 

coefficients are the derivatives of the system responses with 

respect to the physical parameters or input excitation mass, 

and are needed in the cost function of the flowchart of Fig. 

1. 

 
2.1 Finite element modeling of bridge vibration under 

moving mass 

 

The moving load model is the simplest model that can 

be supposed that has been frequently adopted by researchers 

in studying the vehicle-bridge interaction. With this model, 

the fundamental dynamic specifications of the bridge 

caused by the moving action of the vehicle can be captured 

with an adequate degree of accuracy. 

However, the effect of interaction between the bridge 

and the moving vehicle was just ignored. For this reason, 

the moving load model is good only for the case where the 

mass of the vehicle is small relative to that of the bridge and 

only when the vehicle response is not of interest. 

For cases where the inertia of the vehicle cannot be 

ignored, a moving mass model should be adopted instead. 

For a general finite element model of a linear elastic time-

invariant structure, the equation of motion is given by 

,M-{z,tt} + ,C-{z,t} + ,K-*z+ = ,B-*F+   (1) 

Where ,M- = ,Mb- + ,Mv- is the total mass matrix of 

the system in which ,Mb- and ,Mv-  are mass matrix of 

bridge and vehicle respectively and ,Mv- = ,BB-*M+ 
where {M} is a vector of applied masses with matrix [BB] 

mapping these masses to the associated DOF of the 

structure.  [K] and [C] are stiffness and damping matrices.  

z,tt  and z,t  and z  are acceleration, velocity and 

displacement vectors respectively for the whole structure 

and the force vector can be defined as {F}={M}g which is 

mapping by matrix [B] to the associated DOF of the 

structure. Rayleigh damping in which the damping matrix is 

proportional to the combination of the mass and stiffness 

matrices, is used. 

 

 

 

Fig. 1 General flowchart of a FEM-updating 

 

,C- = a0,Mb- + a1,K-   (2) 

Where a0 and a1 are constant to be determined from two 

modal damping ratios. If a more accurate estimation of the 

actual damping is required, a more general form of 

Rayleigh damping, the Caughey damping model can be 

adopted. 

As equation 1 shows, moving masses in a bridge-vehicle 

system not only excite the supporting structure via their 

gravities but also modify its inertial properties so the 

differential equation of motion is time-varying. In order to 

solve this equation, the numerical integration of the 

equation of motion is repeated as well as updating the mass 

matrix in each time step. 

 

2.2 Objective functions 
 
The approach minimizes the difference between 

response quantities (acceleration response) of the measured 

data and model predictions. This problem may be expressed 

as the minimization of J, where 
J(θ) = ‖zm − z(α)‖2 = ϵTϵ         

ϵ = zm − z(α) 
(3) 

Here zm and z(α) are the measured and computed 

response vectors, α is a vector of all unknown parameters, 

and ϵ is the response residual vector. 

 

2.3 Nonlinear model updating for damage detection 
 
When the parameters of a model are unknown, they 

must be estimated using measured data. Since the 

relationship between the acceleration responses z,tt and the 

fractional stiffness parameter α is nonlinear, a nonlinear 

model updating technique like the Gauss-Newton method is 

required. This kind of method has the advantage that the 

second derivatives which can be challenging to compute are 

not required. The Gauss-Newton method in the damage 

detection procedure can be described in terms of the 

acceleration response at the i
th

 DOF of the structure as 

follows 

z,tt−dl(αd) = z,tt−ul(α
0) + S(α0) × ∆α1 + S(α0 + ∆α1) × ∆α2 + ⋯ (4) 

The superscript 0, 1, 2 denote the iteration numbers. 

Index u denotes the initial state while index d denotes the 

final damage state. z,tt−dl  and z,tt−ul  are vectors of the 

acceleration response at the i
th

 DOF of the damaged and 

intact states, respectively. The damage identification 

equation for (k + 1)th iteration is 

Δz,tt
k = Sk × Δαk+1    (5) 

Where Sk and Δz,tt
k are obtained from the k

th
 iteration. 

The iteration in Eq. (5) starts with an initial value α0 

leading to ∆z,tt
0 = z,tt−dl − z,tt−ul(α

0)  and S0 = S(α0) . 

The parameter vector is updated as αk = α0 + ∑ ∆αik
i=1 . 

Sensitivity matrix Sk = S(αk)  and the residual vector  

∆z,tt
k = z,tt−dl − z,tt−ul(α

0) − ∑ Si∆αi+1k−1
i=0  , (k = 1,2, … )  of 

the next iteration are then computed from results in the 

previous iterations. 
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The acceleration response vector z,tt−ul  from the 

physical intact structure is computed from the associated 

analytical model via dynamic analysis. z,tt−dl  is the 

acceleration response of the damaged structure model. In 

general, the measured acceleration responses (including 

measurement errors) from the damaged structure are 

obtained as  z,tt−dl . 

The iteration is terminated when a pre-selected 

convergence condition is met. The final identified damaged 

vector becomes (Ratcliffe 1997) 

∆α = ∆α1 + ∆α2 + ⋯+ ∆αn (6) 

 

2.4 Regularization 
 
Like many other inverse problems, Eq. (5) is ill-

conditioned and regularization techniques are needed to 

provide bounds to the solution. The aim of regularization in 

the inverse analysis is to promote certain regions of 

parameter space where the model realization must be 

existed. The two most widely used regularization methods 

are Tikhonov regularization (Friswell and Penny 1994) and 

truncated singular value decomposition (Friswell and 

Mottershead 1995, Ricles and Kosmatka 1992). In the 

Tikhonov regularization, the new cost function is defined as 

J(∆αk+1, λ) = ‖Sk. Δαk+1 − Δz,tt
k ‖

2

2
+ λ2‖Δαk+1‖

2

2
   (7) 

The regularization parameter λ ≥ 0 controls the extent 

of two errors contribution in the cost function of Eq. (7) and 

the fractional change stiffness ∆αk+1  is obtained by 

minimizing the cost function in Eq. (7)  

The regularized solution can be written in the following 

form by minimizing the function in Eq. (7) 

:Δαk+1 = ((Sk)
T
Sk + λ2I)−1(Sk)TΔz,tt

k       (8) 

To express the contribution of the singular values, the 

corresponding vectors in the solution clearly and the role 

which regularization parameter plays as a filter factor, the 

sensitivity matrix is decomposed on the other handthe 

singular value decomposition (SVD) applies to the 

sensitivity matrix Sk to obtain 

Sk = 𝑈ΣVT (9) 

Where U ∈ Rnt×nt  and V ∈ Rm×m  are orthogonal 

matrices satisfying UTU = Int andVTV = Im, and matrix ∑ 

has the size of nt × m with the singular values σi(i =
1, 2, … ,m) on the diagonal arranged in a decreasing order 

such that σ1 ≥ σ2 ≥ ⋯ ≥ σm ≥ 0 and zeros elsewhere. 

The regularized solution in Eq. (8) can be written as 

Δαk+1 = ∑ fi
Ui

TΔz,tt
k

σi
Vi

m

i=1
 (10) 

Where fi = σi
2 (σi

2 + λ2)⁄  (i = 1, 2, … ,m) are defined 

as filter factors. So, the solution norm ‖Δαk+1‖
2

2
 and the 

residual norm ‖Sk. Δαk+1 − Δz,tt
k ‖

2

2
 can be expressed as 

follows 

η2 = ‖Δαk+1‖
2

2
= ∑(

σi
2

σi
2 + λ2

Ui
TΔz,tt

k

σi
)2

m

i=1

 (11) 

 

ρ2 = ‖Sk. Δαk+1 − Δz,tt
k ‖

2

2
= ∑(

λ2

σi
2 + λ2

Ui
TΔz,tt

k )2
m

i=1

 (12) 

These two equations should be balanced by choosing an 

appropriate regularization parameter. 

 

2.5 Element damage index 
 
In damage detection inverse problem, it is assumed that 

the stiffness matrix of whole elements decrease uniformly 

by damages, and the flexural rigidity, EIi  of i
th 

beam 

element becomes βiEIi  when there is damage. The 

fractional change in stiffness of an element can be 

expressed as follows (Zhu and Hao 2007). 

ΔKbi = (Kbi − K̃bi) = (1 − βi)Kbi (13) 

Where Kbi  and K̃bi  are the i
th

 element stiffness 

matrices in undamaged and damaged state of the beam, 

respectively. ΔKbi  is the stiffness reduction of the i
th 

element. A positive value of β
i
∈ ,0,1-  will indicate 

reduction in the element stiffness. When β
i
= 1 the i

th
 

element is undamaged and when β
i
= 0 the i

th
 element is 

completely damaged.  

The stiffness matrix of the damaged structure is 

obtained by assembling the entire element stiffness matrix 

K̃bi of the structure. 

Kb = ∑Ai
TK̃biAi = ∑ β

i

N

i=1

Ai
TKbiAi

N

i=1

 (14) 

Where Ai is the extended matrix of element nodal 

displacement which facilitates forming the global stiffness 

matrix by assembling the local constituent element stiffness 

matrix. 

 

2.6 Input mass identification 
 
The sensitivity-based analysis method without 

considering the second and higher order effects is adopted 

in this study. Based on Gauss-Newton method will have the 

follow equation 

{δz,tt} = ,Sm-*δM+     (15) 

The physical parameters of the intact structure are used 

as an approximation to calculate the sensitivity matrix ,Sm- 
as we are not certain about the true state of the damage 

structure. ,Sm- is the sensitivity matrix which is the change 

of acceleration response with respect to the change of mass 

in time domain such that*δM+ is the vector of perturbation 

in mass. The Eq. (15) can be solved by Tikhonov method as 

follows 

δM = ((SM)TSM + λ2I)−1(SM)Tδz,tt (16) 
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2.7 Damage identification 
 
The forces which is obtained by previous sections can 

use for local damage detection. So by using Gauss-Newton 

method will have follow equation 

{δz,tt} = ,𝑆𝑆-*𝛿𝛼+     (17) 

,𝑆𝑆-  is the sensitivity matrix which is the change of 

acceleration response with respect to the physical parameter 

in time domain,  *𝛿𝛼+ is the vector of physical parameter 

perturbation. The physical parameter can also be obtained 

by using the Tikhonov regularization method as follows 

δα = ((𝑆𝑆)
𝑇𝑆𝑆 + 𝜆2𝐼)−1(𝑆𝑆)

𝑇δz,tt (18) 

 

 

3. Sensitivity analysis of transient dynamic response 
 
The purpose of sensitivity analysis is to quantify the 

effects of parameter variations on calculated results. Terms 

such as influence, importance, ranking by importance, and 

dominance are all related to sensitivity analysis. 

The most important difficulty in sensitivity base damage 

detection methods is calculation of sensitivity matrix. 

Calculation of this massive matrix is repeated in each 

iteration and according to its dimensions, is so time-

consuming so has a significant effect on the efficiency of 

damage detection method. 

 
3.1 Methods of structural sensitivity analysis 
 
When the parameter variations are small, the traditional 

way can be used to assess their effects on calculated 

responses by using the perturbation theory, either directly or 

indirectly, via variational principles. The basic aim of 

perturbation theory is to predict the effects of small 

parameter variations without actually calculating the 

perturbed configuration but rather by using solely  

 

 

unperturbed quantities.  

Various methods employed in sensitivity analysis are 

listed in Fig. 2. In general, three approaches are used to 

obtain the sensitivity matrix: the approximation, discrete, 

and continuum approaches. 

In the approximation approach, sensitivity matrix is 

obtained by either the forward finite difference or the 

central finite difference method. 

In the discrete method, sensitivity matrix is obtained by 

design parameter derivatives of the discrete governing 

equation. For this process, it is necessary to take the 

derivative of the stiffness matrix. If this derivative is 

obtained analytically using the explicit expression of the 

stiffness matrix with respect to the variable, it is an 

analytical method, since the analytical expressions of 

stiffness matrix are used. However, if the derivative is 

obtained using a finite difference method, the method is 

called a semi analytical method. The design parameter 

represents a structural parameter that can affect the results 

of the analysis.  

The design parameter sensitivity information can be 

computed either with the direct differentiation method or 

with the adjoint variable method.  

In the continuum approach, the design parameter 

derivative of the variational equation is taken before it is 

discretized. If the structural problem and sensitivity 

equations are solved as a continuum problem, then it is 

called the continuum-continuum method. The continuum 

sensitivity equation is solved by discretization in the same 

way that structural problems are solved. Since 

differentiation is taken at the continuum domain and is then 

followed by discretization, this method is called the 

continuum-discrete method. 

Major disadvantage of the finite difference method is 

the accuracy of its sensitivity results. Depending on 

perturbation size, sensitivity results are quite different. The 

continuum-continuum approach is so limited and is not 

applicable for complex engineering structures because the 

 

Fig. 2 Different Approaches for sensitivity analysis 

Sensitivity methods 

Approximation 

Approach 

Forward Finite 

Difference 

Centeral Finite 

Difference 

Discrete Approach 

Analytical discrete 

approach 

semi-analytical 

discrete approach 

Continuum Approach 

Continuum-Discrete 

Method 

Continuum-

Continuum Method 
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simple and classical problems can be just solved 

analytically. The discrete and continuum-discrete methods 

are equivalent in frame elements. (Choi  and Kim 2005). In 

this paper two different analytical discrete methods, 

including Direct Differential Method (DDM) and Adjoint 

Variable Method (AVM) are presented and efficiency of 

proposed method is investigated with compared with DDM 

method. 

 

3.2 Direct dfferentiation method 
 
The direct differentiation method (DDM) is a general, 

accurate and efficient method to compute Finite element 

response sensitivities to the model parameters. This method 

directly solves for the design dependency of a state variable, 

and then computes performance sensitivity using the chain 

rule of differentiation. This method clearly shows the 

implicit dependence on the design parameter so a very 

simple sensitivity expression can be obtained. Consider a 

structure in which the generalized stiffness and mass 

matrices have been reduced by considering the boundary 

conditions. By applying the differentiation to the both sides 

of Eq. (1) with respect to the i
th

 excitation mass,𝑀𝑖, the 

equation will be changed as follows 

,𝑀- {
𝜕𝑧,𝑡𝑡

𝜕𝑀𝑖
} + ,𝐶- {

𝜕𝑧,𝑡

𝜕𝑀𝑖
} + ,𝐾- {

𝜕𝑧

𝜕𝑀𝑖
} = 𝑔,𝐵- − ,𝐵𝐵-{𝑧,𝑡𝑡}   (19) 

By applying the differentiation to the both sides of Eq. 

(1) again with respect to the j
th

 physical parameter, 𝛼𝑗, of 

the j
th

 element, and assuming Rayleigh damping formula in 

calculation, the equation will be changed as follows 

,𝑀- 8
𝜕𝑧,𝑡𝑡

𝜕𝛼𝑗

9 + ,𝐶- 8
𝜕𝑧,𝑡

𝜕𝛼𝑗

9 + ,𝐾- 8
𝜕𝑧

𝜕𝛼𝑗

9 = −
𝜕,𝐾-

𝜕𝛼𝑗

*𝑧+ − 𝑎1

𝜕,𝐾-

𝜕𝛼𝑗

{𝑧,𝑡}     (20) 

Where a1 is the coefficient for Rayleigh damping. Note 

that Eqs. (19) and (20) have the same form as Eq. (1). The 

response sensitivities can also be obtained by Newmark 

method. The initial values of the dynamic responses and the 

sensitivities can be taken equal to zero. 

 

3.3 Adjoint variable method  
 
Sensitivity analysis can be performed very efficiently by 

usingdeterministic methods based on adjoint functions. The 

use of adjoint functionsfor analyzing the effects of small 

perturbations in a linear system was introducedby Wigner 

(1945). 

This method, constructs an adjoint problem that solves 

for the adjoint variable, which contains all implicitly 

dependent terms. 

For the dynamic response of structure, the following 

form of a general performance measure will be considered 

ψ = g(z(T), b) + ∫ G(z, b)dt      
T

0

 (21) 

where the final time T is determined by a condition in the 

form 

Ω(z(T), z,t(T), b) = 0 (22) 

It is presumed that Eq. (22), uniquely determines T, at 

least locally. This requires that the time derivative of Ω is 

nonzero at T, as 

Ω,t =
∂Ω

∂z
z,t(T) +

∂Ω

∂z
z,tt(T) ≠ 0 (23) 

When final time T is prescribed before the response 

analysis, the relation in Eq.(22), need not be considered. 

To obtain the design sensitivity of ψ, define a design 

variation in the form 

bτ = b + τδb     (24) 

Design b is perturbed in the direction of δb with the 

parameter τ. Substituting bτ into Eq. (21), the derivative of 

Eq. (21), can be evaluated with respect to τ at τ = 0. 

Leibnitz‘s rule of differentiation of an integral may be used 

to obtain the following expression 

ψ′ =
∂g

∂b
δb +

∂g

∂z
[z′(T) + z,t(T)T′] + G(z(T), b)T′

+ ∫ [
∂G

∂z
z′ +

∂G

∂b
δb] dt

T

0

   
(25) 

Where 

𝑧′ = 𝑧′(𝑏, 𝛿𝑏) ≡
𝑑

𝑑𝜏
𝑧(𝑡, 𝑏 + 𝜏𝛿𝑏)|𝜏=0 =

𝑑

𝑑𝑏
,𝑧(𝑡, 𝑏)-𝛿𝑏 

𝑇 ′ = 𝑇 ′(𝑏, 𝛿𝑏) ≡
𝑑

𝑑𝜏
𝑇(𝑏 + 𝜏𝛿𝑏)|

𝜏=0
=

𝑑𝑇

𝑑𝑏
𝛿𝑏 

 

Note that since the expression in Eq. (21), that 

determines T depends on the design, T will also depend on 

the design. Thus, terms arise in Eq. (25), that involve the 

derivative of T with respect to the design. In order to 

eliminate these terms, differentiate Eq. (22), with respect to 

τ and evaluate it at τ = 0 in order to obtain: 

∂Ω

∂z
[z′(T) + z,t(T)T ′] +

∂Ω

∂z,t

[z′
,t(T) + z,tt(T)T′] +

∂Ω

∂b
δb = 0    (26) 

This equation may also be written as 

Ω,tT
′ = 6

∂Ω

∂z
z,t(T) +

∂Ω

∂z,t

z,tt(T)7 T ′

= −4
∂Ω

∂z
z′(T) +

∂Ω

∂z,t

z′
,t(T) +

∂Ω

∂b
δb5 

(27) 

Since it is presumed by Eq. (21), that Ω
,t

≠ 0 , then 

T ′ = −
1

Ω,t

4
∂Ω

∂z
z′(T) +

∂Ω

∂z,t

z′
,t(T) +

∂Ω

∂b
δb5 (28) 

Substituting the result of Eq. (28), into Eq. (25), the 

following is obtained 

ψ
′
= ,

∂g

∂z
− 4

∂g

∂z
z,t(T) + G(z(T), b)

1

Ω,t

∂Ω

∂z
7 z′(T)

− [
∂g

∂z
z,t(T) + G(z(T), b)]

1

Ω,t

∂Ω

∂z,t

z′,t(T)

+ ∫ [
∂G

∂z
z′ +

∂G

∂b
δb] dt +

∂g

∂b
δb

T

0

− [
∂g

∂z
z,t(T) + G(z(T), b)]

1

Ω,t

∂Ω

∂b
δb          

(29) 

Note that ψ
′
 depends on z′ and z′,t at T, as well as on 

z′ within the integration. 
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In order to write ψ
′
 in Eq. (26), explicitly in terms of a 

design variation, the adjoint variable technique can be used. 

In the case of a dynamic system, all terms in Eq. (1), can be 

multiplied by λ
T
(t) and integrated over the interval [0,T], to 

obtain the following equation which is expressed by λ 

∫ λ
T[M(b, t)z,tt + C(b)z,t + K(b)z − F(t, b)]dt = 0     

T

0

 (30) 

Since this equation must hold for arbitrary λ, which is 

now taken to be independent of the design, substitute bτ into 

Eq. (30), and differentiate it with respect to τ in order to 

obtain the following relationship 

∫ [λTM(b, t)z′,tt + λ
TC(b)z′,t + λ

TK(b)z′ −
∂R

∂b
δb] dt = 0

T

0

 (31) 

Where 

𝑅 = �̃�𝑇𝐹(𝑡, 𝑏) − �̃�𝑇𝑀(𝑏, 𝑡)�̃�,𝑡𝑡 − �̃�𝑇𝐶(𝑏)�̃�,𝑡 − �̃�𝑇𝐾(𝑏)�̃�   (32) 

With the superposed tilde (~) denoting variables that are 

held constant during the differentiation with respect to the 

design in Eq. (31). 

Since Eq. (31), contains the time derivatives of z′ , 

integrate the first two integrands separately in order to 

move the time derivatives to λ, as 

λTM(b, T)z′
,t(T) − λ,t

T(T)M(b,T)z′(T) − λT(T)M,t(b, T)z′(T)

+ λT(T)C(b)z′(T)

+ ∫ {[λ,tt
T M(b, t) − λ,t

T(C(b) − 2M,t(b, t))
T

0

+ λT(K(b) + M,tt(b, t))]z′ −
∂R

∂b
δb} dt

= 0           

(33) 

The adjoint variable method expresses the unknown 

terms in Eq. (29), in terms of the adjoint variable (λ). Since 

Eq. (33), must hold for arbitrary functions λ(t), λ may be 

chosen so that the coefficients of terms involving z′(T), 

z,t
′(T) and z′ in Eqs. (29), and (33), are equal. If such a 

function λ(t) can be found, then the unwanted terms in Eq. 

(29), involving z′(T), z,t
′(T) and z′ can be replaced by 

terms that explicitly depend on δb in Eq. (33), To be more 

specific, choose a λ(t) that satisfies the following 

M(T)λ(T) = − [
∂g

∂z
z,t(T) + G(z(T), b)]

1

Ω,t

∂ΩT

∂z,t
 (34) 

 

M(b, T)λ,t(T) = (CT(b) − M,t
T(T))λ(T) −

∂gT

∂z

+ [
∂g

∂z
z,t(T) + G(z(T), b)]

1

Ω,t

∂ΩT

∂z
 

(35) 

 

M(t)λ,tt − C̅T(b, t)λ,t + K̅(b, t)λ =
∂GT

∂z
,        0 ≤ t ≤ T   (36) 

In which 
C̅(b, t) = C(b) − 2M,t(t) 
K̅(b, t) = K(b) + M,tt(t) 

Note that once the dynamic equation of Eqs. (1) and 

(22), are used to determine T, then z(T), z,t(T), 
∂Ω

∂z
, 

∂Ω

∂z,t
 

and Ω
,t
 may be evaluated. Eq. (23), can then be solved for 

λ(T) since the mass matrix M(T) is nonsingular. Having 

determined λ(T), all terms on the right of Eq. (35), can be 

evaluated, and the equation can be solved for λ,t(T). Thus, 

a set of terminal conditions on λ has been determined. Since 

M(b) is nonsingular, Eq. (36), may then be integrated from 

T to 0, yielding the unique solution λ(t). Taken as a whole, 

Eq. (34), through Eq. (36), may be thought of as a terminal 

value problem. 

Since the terms involving a variation in the state 

variable in Eqs. (29), and (33), are identical, substitute Eq. 

(33), into Eq. (29), to obtain 

𝜓′ =
𝜕𝑔

𝜕𝑏
𝛿𝑏 + ∫ [

𝜕𝐺

𝜕𝑏
+

𝜕𝑅

𝜕𝑏
] 𝑑𝑡𝛿𝑏 − ,

𝜕𝑔

𝜕𝑧
𝑧,𝑡(𝑇)

𝑇

0

+ 𝐺(𝑧(𝑇), 𝑏)-
1

Ω,𝑡

𝜕Ω

𝜕𝑏
𝛿𝑏 ≡

𝜕𝜓

𝜕𝑏
𝛿𝑏 

(37) 

Every term in this equation can now be calculated. The 

terms  
𝜕𝑔

𝜕𝑏
 , 

𝜕𝐺

𝜕𝑏
 and 

𝜕Ω

𝜕𝑏
represent explicit partial derivatives 

with respect to the design. The term 
𝜕𝑅

𝜕𝑏
, however, must be 

evaluated from Eq. (32), thus requiring λ(t). Note also that 

since design variation δb does not depend on time, it is 

taken outside the integral in Eq. (37). 

Since Eq. (37), must hold for all δb, the design 

derivative vector of ψ is 

dψ

db
=

∂g

∂b
(z(T), b) + ∫ ,

∂G

∂b
(z, b)

T

0

+
∂R

∂b
(λ(t), z(t), z,t(t), z,tt(t), b)-dt

−
1

Ω,t
[
∂g

∂z
z,t(T) + G(z(T), b)]

∂Ω

∂b
  

(38) 

 

 

4. Proposed method 
 

C.E Inglis proposed an approximation solution for 

considering the effects of vehicles moving over large-span 

bridges. He introduced an assumption according to which 

the gravitational effects of the load may be separated from 

the inertial ones. In the calculation, the force is considered 

as moving load along the beam while the mass of the 

vehicle acts at a definite, constant point x0. Using this 

method, one can reduce system time dependent matrices to 

𝑀(𝑡) ≈ 𝑀(
𝑇

2
) C̅(b, t) ≈ C(b) − 2M,t (

T

2
) K̅(b, t) ≈ K(b) + M,tt (

T

2
) 

So, Eq. (36) can be rewritten as 

𝑀(
𝑇

2
)λ,tt − C̅T (b,

T

2
) λ,t + K̅ (b,

T

2
) λ = 0,        0 ≤ t ≤ T (39) 

That is a linear equation. 

While structural vibration responses are used for 

damage detection, by assuming G=0, Eq. (39), is a free 

vibration of beam with terminal conditions. Solving Eq. 
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(39), for a single degree of freedom system is as follow 

mλ,tt − cλ,t + kλ = 0  with terminal conditions: λ(T), λ̇(T) 

λT(t) = eξω(t−T)(A1sin(ωDt) + B1cos(ωDt))        
(40) 

 

{
 
 

 
 A1 = (

λ,t(T)

ωD
−

ξ

√1 − ξ2
λ(T))cos(ωDT) + λ(T) sin(ωDT)

B1 =
λ(T)

cos(ωDt)
− A1 tan(ωDT)

 (41) 

In which 

ξ = c
2mω⁄ = c

ccr⁄ < 1   andωD = ω√1 − ξ2  

When time T is known, the coefficients of the 

characteristic equation of T' and thereupon Ω will be zero, 

so the terminal conditions are as follow 

𝜆(𝑇) = 0   (42) 

 

𝜆,𝑡(𝑇) = 𝑀−1(𝑏) × 4−
𝜕𝑔𝑇

𝜕𝑧
5 (43) 

Substitute Eqs. (42) and (43), into Eq. (41), to obtain 

{
 

 𝐴1 =
𝜆,𝑡(𝑇)

𝜔𝐷
𝑐𝑜𝑠 (𝜔𝐷𝑇)

𝐵1 = −
𝜆,𝑡(𝑇)

𝜔𝐷
𝑠𝑖𝑛 (𝜔𝐷𝑇)

 (44) 

Note that 
∂g

∂z
  like A1 and B1 is depend on time T, so 

terminal values for different amounts of T are not similar 

and adjoint equation should be calculated for all amounts of 

T separately. So 

𝜆𝑇(𝑡) = 𝑒𝜉𝜔(𝑡−𝑇) 4
𝜆,𝑡(𝑇)

𝜔𝐷
𝑐𝑜𝑠(𝜔𝐷𝑇) 𝑠𝑖𝑛(𝜔𝐷𝑡)

−
𝜆,𝑡(𝑇)

𝜔𝐷
𝑠𝑖𝑛(𝜔𝐷𝑇) 𝑐𝑜𝑠(𝜔𝐷𝑡)5

= 𝑃𝑇𝑓(𝑡) + 𝑄𝑇𝑔(𝑡)    

(45) 

In which: 𝑃𝑇 = 𝑒−𝜉𝜔𝑇 𝜆,𝑡(𝑇)

𝜔𝐷
𝑐𝑜𝑠(𝜔𝐷𝑇)𝑓(𝑡) = 𝑒𝜉𝜔𝑡𝑠𝑖 𝑛(𝜔𝐷𝑡)𝑄𝑇 =

−𝑒−𝜉𝜔𝑇 𝜆,𝑡(𝑇)

𝜔𝐷
𝑠𝑖𝑛(𝜔𝐷𝑇)𝑔(𝑡) = 𝑒𝜉𝜔𝑡𝑐𝑜𝑠 (𝜔𝐷𝑡) 

 
4.1 Sensitivity matrix for physical parameter 
 
By using the Eq. (38), assuming T is known and G=0 

because of using structural vibration data, the Eq. (46), can 

be obtained as follows 

𝑑𝜓

𝑑𝑏
= ∫

𝜕𝑅

𝜕𝑏
𝑑𝑡     

𝑇

0

 (46) 

In this equation: 

𝑅 = �̃�𝑇𝐹(𝑡) − �̃�𝑇𝑀�̃�,𝑡𝑡 − �̃�𝑇𝐶(𝑏)�̃�,𝑡 − �̃�𝑇𝐾(𝑏)�̃�  And 

𝐶 = 𝑎0𝐾(𝑏) + 𝑎1𝑀 is Rayleigh damping matrix, so 

𝜕𝑅

𝜕𝑏
= −𝜆�̃�𝑎0

𝜕𝐾

𝜕𝑏
𝑧,�̃� − 𝜆�̃�

𝜕𝐾

𝜕𝑏
�̃�   (47) 

And finally, the component of sensitivity matrix in time 

T is 

𝑑𝜓

𝑑𝑏
(𝑇) = ∫ (−𝜆�̃�𝑎0

𝜕𝐾

𝜕𝑏
𝑧,�̃� − 𝜆�̃�

𝜕𝐾

𝜕𝑏
�̃�

𝑇

0

)𝑑𝑡     (48) 

Solving the above equations directly is not possible in a 

multi degree of freedom problem. So, for this purpose, the 

variables should be changed as follows 

*𝜆+ = ,𝜙-*𝑌+    (49) 

In this equation, matrix [φ] denotes the vibration modes 

(modal matrix). 

The terminal conditions of above equations are as 

follows 

*𝑌(𝑇)+ = 𝑀−1,𝜙-𝑇,𝑚-*𝜆(𝑇)+     (50) 

 

{𝑌,𝑡(𝑇)} = 𝑀−1,𝜙-𝑇,𝑚-{𝜆,𝑡(𝑇)}     (51) 

By substituting Eq. (50) in Eq. (36) and multiplying 

,𝜙-𝑇 in both sides, the new equation in modal space is as 

follow 

,𝑀-{𝑌,𝑡𝑡} − ,𝐶-{𝑌,𝑡} + ,𝐾-*𝑌+ = *0+ (52) 

Each of ,𝑀-, ,𝐶-𝑎𝑛𝑑 ,𝐾- matrix is diagonal, so 

𝑀𝑖 2𝑌,𝑡𝑡𝑖
3 − 𝐶𝑖{𝑌,𝑡𝑖

} + 𝐾𝑖*𝑌𝑖+ = *0+        (53) 

 

𝑑𝜓

𝑑𝑏
(𝑇) = −∫ 〈𝑌〉 × ,𝜙-𝑇 × 𝑎0 [

𝜕𝑘

𝜕𝑏
] × {𝑧,𝑡}

𝑇

0

+ 〈𝑌〉 × ,𝜙-𝑇

× [
𝜕𝑘

𝜕𝑏
] × *𝑧+𝑑𝑡 

(54) 

Consider: ,𝜙-𝑇 × 𝑎0 0
𝜕𝑘

𝜕𝑏
1 × {𝑧,𝑡} = *𝑧𝑧,𝑡+ and ,𝜙-𝑇 ×

0
𝜕𝑘

𝜕𝑏
1 × *𝑧+ = *𝑧𝑧+ 

Eq. (54) can be expressed as Eq. (55) 

𝑑𝜓

𝑑𝑏
(𝑇) = −∫ 〈𝑌〉 × {𝑧𝑧,𝑡}

𝑇

0

+ 〈𝑌〉 × *𝑧𝑧+𝑑𝑡          (55) 

Variable Y in modal space can be written based on Eq. 

(45) as follows 

*𝑌+ = *𝑃(𝑇)+. *𝑓(𝑡)+ + *𝑄(𝑇)+. *𝑔(𝑡)+  (56) 

By substituting Eq. (56) in Eq. (55) a new expression is 

derived to calculate the sensitivity. 

𝑑𝜓

𝑑𝑏
(𝑇) = −∫ (*𝑃(𝑇)+. *𝑓(𝑡)+ + *𝑄(𝑇)+. *𝑔(𝑡)+)𝑇 × {𝑧𝑧,𝑡}

𝑇

0

+ (*𝑃(𝑇)+. *𝑓(𝑡)+ + *𝑄(𝑇)+. *𝑔(𝑡)+)𝑇

× *𝑧𝑧+𝑑𝑡 

(57) 

So Eq. (57) can be rewritten as follow 

𝑑𝜓

𝑑𝑏
(𝑇) = −∫ 〈𝑃(𝑇)〉 × (*𝑓(𝑡)+. {𝑧𝑧,𝑡}

𝑇

0

+ *𝑓(𝑡)+. *𝑧𝑧+)

+ 〈𝑄(𝑇)〉

× (*𝑔(𝑡)+. {𝑧𝑧,𝑡} + *𝑔(𝑡)+. *𝑧𝑧+)𝑑𝑡 
(58) 

Consider following parameters 
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A = ∫ *f(t)+. {zz,t}
T

0

dt     B = ∫ *g(t)+. {zz,t}
T

0

dt  C

= ∫ *f(t)+. *zz+
T

0

dt     D = ∫ *g(t)+. *zz+
T

0

d𝑡 

So, Eq. (58) is presented asfollows 

𝑑𝜓

𝑑𝑏
(𝑇) = −〈𝑃(𝑇)〉 × (*𝐴+ + *𝐶+) − 〈𝑄(𝑇)〉 × (*𝐵+ + *𝐶+)  (59) 

Solving Eq. (59) directly is too time consuming, because 

in each time step all terms in Eq. (59) should be recalculted. 

Therefore, an incremental solution is developed as follow 

*𝐴𝑇+∆𝑇+ = ∫ *𝑓(𝑡)+. {𝑧𝑧,𝑡}
𝑇+∆𝑇

0

𝑑𝑡

= ∫ *𝑓(𝑡)+. {𝑧𝑧,𝑡}
𝑇

0

𝑑𝑡

+ ∫ *𝑓(𝑡)+. {𝑧𝑧,𝑡}
𝑇+∆𝑇

𝑇

𝑑𝑡 

(60) 

 

*AT+∆T+ = *AT+ + *δA+  , *δA+ = ∫ *f(t)+. {zz,t}
T+∆T

T

dt

≅ {f (T +
∆T

2
)} . {zz,t (T +

∆T

2
)} 

(61) 

Similar to Eq. (61) for other parameters we have 

*δB+ = ∫ *g(t)+. {zz,t}
T+∆T

T

dt ≅ {g(T +
∆T

2
)} . {zz,t (T +

∆T

2
)} (62) 

 

*𝛿𝐶+ = ∫ *𝑓(𝑡)+. *𝑧𝑧+
𝑇+∆𝑇

𝑇

𝑑𝑡 ≅ {𝑓 (𝑇 +
∆𝑇

2
)} . {𝑧𝑧 (𝑇 +

∆𝑇

2
)}  (63) 

 

*𝛿𝐷+ = ∫ *𝑔(𝑡)+. *𝑧𝑧+
𝑇+∆𝑇

𝑇

𝑑𝑡 ≅ {𝑔 (𝑇 +
∆𝑇

2
)} . {𝑧𝑧 (𝑇 +

∆𝑇

2
)} (64) 

And finally, the sensitivity expression in time T + ∆T 

is as follow 

dψ

db
(T + ∆T) = −〈P(T + ∆T)〉 × (*AT+∆T+ + *CT+∆T+)

− 〈Q(T + ∆T)〉
× (*BT+∆T+ + *DT+∆T+)           

(65) 

 

4.2 Sensitivity matrix for excitation mass 
 
By deriving the Eq. (32) with respect to the parameters 

of the i
th

 excitation mass, the equation changes in to the 

follows 

𝜕𝑅

𝜕𝑏
=

𝜕𝑅

𝜕𝑀𝑖
= 𝑔𝜆�̃�𝐵   (66) 

And component of sensitivity matrix in time T is 

𝑑𝜓

𝑑𝑀𝑖
(𝑇) = 𝑔 ∫ 𝜆�̃�𝐵

𝑇

0

𝑑𝑡   (67) 

By using modal space and the Eq. (56) 

𝑑𝜓

𝑑𝑀𝑖

(𝑇) = 𝑔 ∫ 〈𝑌〉 × ,𝜙-𝑇 ×
𝑇

0

,𝐵-𝑑𝑡  (68) 

Consider: ,𝜙-𝑇 × ,𝐵- = *𝐵𝐵+ 
By subsituing the Eq. (56) into Eq. (68), a new 

expression is derived to calculate the sensitivity. 

𝑑𝜓

𝑑𝑀𝑖

(𝑇) = 𝑔∫ (*𝑃(𝑇)+. *𝑓(𝑡)+ + *𝑄(𝑇)+. *𝑔(𝑡)+)𝑇 × *𝐵𝐵+
𝑇

0

𝑑𝑡  (69) 

So the Eq. (69) can be rewritten as follow 

𝑑𝜓

𝑑𝑀𝑖

(𝑇) = 𝑔∫ 〈𝑃(𝑇)〉 × (*𝑓(𝑡)+. *𝐵𝐵+
𝑇

0

) + 〈𝑄(𝑇)〉

× (*𝑔(𝑡)+. *𝐵𝐵+)𝑑𝑡 
(70) 

Consider following parameters 

E = ∫ *f(t)+. *BB+
T

0

dt     F = ∫ *g(t)+. *BB+
T

0

dt 

So, the Eq. (70) is presented as 

𝑑𝜓

𝑑𝑀𝑖

(𝑇) = 𝑔(〈𝑃(𝑇)〉 × *𝐸+ + 〈𝑄(𝑇)〉 × *𝐹+)   (71) 

Using incremental solution is as follow 

*𝐸𝑇+∆𝑇+ = ∫ *𝑓(𝑡)+. *𝐵𝐵+
𝑇+∆𝑇

0

𝑑𝑡

= ∫ *𝑓(𝑡)+. *𝐵𝐵+
𝑇

0

𝑑𝑡

+ ∫ *𝑓(𝑡)+. *𝐵𝐵+
𝑇+∆𝑇

𝑇

𝑑𝑡 

(72) 

 

*ET+∆T+ = *ET+ + *δE+  , *δE+ = ∫ *f(t)+. *BB+
T+∆T

T

dt

≅ {f (T +
∆T

2
)} . {BB (T +

∆T

2
)} 

(73) 

Similar to Eq. (73) for other parameter we have 

*δF+ = ∫ *g(t)+. *BB+
T+∆T

T

dt

≅ {g (T +
∆T

2
)} . {BB (T +

∆T

2
)}    

(74) 

And finally the sensitivity expression in time T + ∆T is 

dψ

d𝑀𝑖

(T + ∆T) = g(〈P(T + ∆T)〉 × *ET+∆T+ + 〈Q(T + ∆T)〉

× *FT+∆T+)  
(75) 

 

4.3 Computational algorithm 
 
The computational algorithm that leads to the 

determination of sensitivity matrix for physical parameters 

and excitation mass is as below: 

 Step1: calculate 𝜆,𝑡(𝑇)  from Eq. (43) 

 Step2: calculate  𝜔,𝜔𝐷𝑎𝑛𝑑𝜙  and consider 

i=1 
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 Step3: Calculate the 
𝜕 

𝜕 𝑖
 and 𝑧𝑧,𝑡 , 𝑧𝑧  and 

consider j=1 for the i
th 

element  

 Step4: Calculate 𝜆,𝑡(𝑇) from step1 and 𝑌,𝑡(𝑇) 

from Eq. (51), 𝑇𝑛=Δt and 𝑇𝑜=0 for the j 
th
 

sensor and corresponding DOF 

 Step5: Consider A=B=C=D=E=F=0  

 Step6: Calculate  𝑇𝑚 = 𝑇0 +
 𝑡

2
 and 

𝑃(𝑇𝑛) − 𝑄(𝑇𝑛) − 𝑓(𝑇𝑚) − 𝑔(𝑇𝑚)  from Eq. 

(45)  

 Step7: Calculate 
*δA+, *δB+, *δC+, *δD+, *δE+ and *δF+ from Eq. 

(60-63 and 73-74) 

 Step8: Calculate
d 

d  
(Tn)  from Eq. (65) and 

d 

d 𝑖
  from Eq. (75) 

 Step9: If 𝑇𝑛 < 𝑇 𝑖𝑛 𝑙  consider 𝑇0 = 𝑇𝑛 , 

𝑇𝑛 = 𝑇𝑛 + Δ𝑡 and go to step5 otherwise go to 

next. 

 Step10: If  < 𝑛𝑢𝑚𝑏𝑒 𝑜𝑓𝑠𝑒𝑛𝑠𝑜 𝑠   consider 

j=j+1 and go to step 4 otherwise go to next step. 

 Step11: If 𝑖 < 𝑛𝑢𝑚𝑏𝑒 𝑜𝑓𝑒 𝑒𝑚𝑒𝑛𝑡𝑠  consider 

i=i+1 and go to step 3 otherwise finish. 

 

4.4 Procedure of iteration for mass identification and 
damage detection 

 
The proposed method requires measurement from two 

states of the structure. The first set of measurement from the 

undamaged structure serves to update the system 

parameters with a known set of mass input. While in the 

measurement on the second state of structure, both the 

excitation mass and the damaged structure are unknown, 

and the following iterative algorithm is used in the 

identification (Lu and Law 2007). The updated finite 

element model and excitation mass in i
th

 iteration step 

serves as the reference model in the subsequent comparison. 

(A) Iteration for excitation mass parameters 

Starting with an initial guess on the unknown mass 

parameter vector 𝑀0 and the set of physical parameters 𝛼0 

from the updated FE model of the structure, the procedure 

of iteration is given as: 

 Step 1: The Eq. (1) is solved at  = 𝑘 + 1 

iteration step with the initial force vector and the vector of 

the undamaged system by using the ß-Newmark method so 

the displacement vector *𝑧+, acceleration vector {𝑧,𝑡𝑡} and 

the error vector*𝛿𝑧,𝑡𝑡+ are calculated. 

 Step 2: The sensitivity matrix ,𝑆 -  of the 

response with respect to the mass is obtained from Eq. (77) 

and proposed algorithm for  = 𝑘 + 1 iteration step with 

the mass vector *𝑀𝑘+ obtained from a previous step. 

 Step 3: Calculate the*𝑀𝑘+1+ from Eq. (16). 

 Step 4: Repeat Steps 1~3 until the following 

convergence criteria is satisfied. 
‖Mk+1 − Mk‖

‖Mk+1‖
× 100% ≤ Tol1           (76) 

 Step 5: The final vector *𝑀𝑘+1+  obtained is 

taken as the modified set of force {M} for the second stage 

of iteration.  

(B) Iteration for the physical parameters of the 

structure 

By using the modified excitation mass parameter vector 
*M+ obtained from (A) iterative algorithm, a set of physical 

parameters is then obtained as below: 

 Step 6: The vector of physical parameters*𝛼 + 
from the updated finite element model of the structure is 

taken as a set of initial values. The Eq. (1) is solved at 

 = 𝑘 + 1 iteration stepby using the ß-Newmark method so 

the displacement vector*𝑧+, acceleration vector{𝑧,𝑡𝑡} and 

the error vector *𝛿𝑧,𝑡𝑡+ are calculated. 

 Step 7: The sensitivity matrix ,𝑆 -  of the 

response with respect to the different physical parameters of 

the structure is obtained from Eq. (65) and proposed method 

at  = 𝑘 + 1  iteration step with the initial physical 

parameter vector *𝛼𝑘+  obtained from a previous step. 

 Step 8: Find *𝛼𝑘+1+ from Eq. (18). 

 Step 9: Repeat Steps 6–8 until the following 

convergence condition are satisfied. 

‖αk+1 − αk‖

‖αk‖
× 100% ≤ Tol2   (77) 

 

‖Responsek+1 − Responsek‖

‖Responsek‖
× 100% ≤ Tol3      (78) 

 Step 10: The final obtained vector *𝛼𝑘+1+  is 

taken as the modified set of physical parameters *𝛼𝑘+ for 

the next loop of iteration for the force parameters. 

The identified excitation mass obtained in (A) should be 

further improved using the updated physical parameters 

obtained in (B) and repeating Steps 1–5 and the vector of 

physical parameters should also be further improved using 

the modified excitation mass and repeating Steps 6–10.  

This iteration procedure continuous until the following 

convergence condition criteria is satisfied. 

‖Mi+1 − Mi‖

‖Mi+1‖
× 100% ≤ Tol4     (79) 

 
‖αi+1 − αi‖

‖αi‖
× 100% ≤ Tol5  (80) 

The convergence of this computation strategy has been 

proved by Li and Chen (1999).  

All tolerances are set equal to 1×10
-6

 in this study except 

otherwise specified. 

 

 

5. Numerical results  
 
To illustrate the formulations presented in the previous 

sections, the system shown in Figs. 3 and 9 are considered, 

and capabilities of proposed method are investigated. 

The relative error percentage for physical parameter 

REPP and excitation mass REPPM based on the identified 

results are calculated from Eq. (81), where ‖. ‖ is the norm 

of matrix, EIdentified and ETrue are the identified and the 

true elasticity modulus respectively and MIdentified  and 

MTrue  are the identified and the true excitation mass, 

respectively. 

458



 

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method 

 

 

 

 

RPEP =
‖EIdentified − ETrue‖

‖ETrue‖
× 100%     &     

𝑅𝑃𝐸𝑀 =
‖MIdentified − MTrue‖

‖MTrue‖
× 100%       

(81) 

Since the true value of elasticity modulus is unknown, 

REPP and REPPM can just be used for investigating the 

efficiency of method. 

 

5.1. Multi span model 
 
A two-span bridge as shown in Fig. 3 is studied to 

illustrate the proposed method. It consists of 20 Euler–

Bernoulli beam elements with 21 nodes each with two 

DOFs. The mass per unit volume of material is 7.8×10
3
 

kg/m
3
 and the elasticity modulus of material is 2.1×107 N/ 

cm
2
. The total length of bridge is 20 m the height and width 

of the frame section are respectively 200 and 200 mm. The 

first five un-damped natural frequencies of the intact bridge 

are 29.3829, 45.8299, 117.3834, 148.1623 and 265.0938 Hz. 

Rayleigh damping model is adopted with the damping ratios 

of the first two modes taken equal to 0.05. The equivalent 

Rayleigh coefficients a0 and a1 are respectively 0.1 and 

4.6413×10
-6

. 

The transverse point load P has a constant velocity, 

V = L T⁄  , where T is the traveling time across the bridge 

and L is the total length of the bridge. 

The integration parameters β = 1 4⁄  and  = 1 2⁄  are 

used for ß-Newmark method which lead to calculate the 

approximate constant-average acceleration. Speed ratio is 

defined as follow 

α =
V

Vcr
   (82) 

 

 

 

 

In which Vcr  is critical speed ( Vcr =
 

l
√

 I

 
 ), V is 

moving load speed and ρ is mass per unit length of beam. 

 

5.1.1 Damage scenarios 
Three damage scenarios of single, multiple and random 

damages in the bridge without considering the noise effects 

are studied which are shown in Table1. 

Local damage is simulated with a reduction in the 

elasticity modulus of element material. The sampling rate is 

10000 Hz and 670 data of the acceleration response (degree 

of indeterminacy is 20) collected along the z-direction at 

nodes 2, 5, 8, 12, 15 and 18 which are used in the 

identification.  

Scenario 1 studies the single damage state. The iterative 

solution converges in all speed and mass ratio of moving 

vehicle to bridge ranges, but changes in relative error 

significantly increase by increasing in relative speed and 

mass of moving vehicle. 

As shown in Fig. 4 in both methods, the minimum error 

is related to the least relative mass and speed of moving 

vehicle. For AVM method, the relative percentage of error 

REP in this case is equal to 0.08 and it increases by 

increasing the speed ratio. As shown in this figure, for 

relative mass ratio of 0.15 the REP for speed parameter of 

0.95 is equal to 0.1. It‘s remarkable that the error ratio 

significantly increases by increasing the mass ratio. 

For mass ratio of 0.75 and relative speed equal to 0.15; 

the relative percentage of error is equal to 0.1% but in 

relative speed equal to 0.9 it reaches to 0.32% whereas the 

REP for relative speed of 0.9 and relative mass of 0.9 

significantly increases to 1.5%. 

 

 

 

Fig. 3 Multi span bridge model used in damage detection 

Table1 Damage scenarios for multi-span bridge 

Damage scenario Damage type Damage location Reduction in elastic modulus Noise 

M1-1 Single 14 20% Nil 

M1-2 Multi 3,7,11,15,18 2%,6%,5%,2%,8% Nil 

M1-3 Random All elements 
Random damage in all elements with 

an average of 5% 
Nil 

M1-4 
Estimation of 

undamaged state 
All elements 5% reduction in all elements Nil 
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(a) Scenario1-AVM method (b) Scenario2-AVM method 

  
(c) Scenario1-DDM method (d) Scenario2-DDM method 

Fig. 4 REP contours with respect to speed and mass ratio in model1 

 

Fig. 5 The extent and damage location in elements 3, 7, 11, 15,18 and the value of error percentage in different elements 

with AVM method 
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The REP changes for DDM method are more stable with 

respect to mass and speed ratio variation. For range of mass 

ratio less than or equal to 0.75, the error of two methods is 

almost identical but with increasing mass ratio to 0.9 and 

relative speed greater than 0.45, error of AVM method is 

significantly greater than DDM method. 

Scenario 2 studies the multiple damages with different 

amount of measured responses for the identification and 

Scenario 3 studies the random damages for damage 

detection. These scenarios also converge in all speed 

parameter ranges and their results are similar to the first 

scenario. One more scenario with model error is also 

included as Scenario 4. This scenario doesn‘t consist of any 

simulated damage in the structure, it has identical reduction 

of the initial elastic modulus of all elements as much 5% in 

the inverse identification. 

The extent and damage locations are detected correctly 

in all scenarios (Fig. 5) by using both described methods, 

including DDM and proposed method. The REP parameters 

are shown in Fig. 4 which is in acceptable range. 

Further studies on scenario 4 shows that both methods 

are sensitive to initial model error and for maximum 20% 

initial error can be converged and a relatively good finite 

element model is therefore needed for the damage detection 

procedure. 

 

5.1.2 Effect of noise 
To evaluate the sensitivity of results to the noise, noise-

polluted measurements are simulated by adding a noise 

vector to the correspondingacceleration vector whose root-

mean-square (RMS) value is equal to a certain percentage 

of the RMS value of the noise-free data vector. The 

components of all noise vectors which are obtained by 

Gaussian distribution are in the form of uncorrelated with a 

zero mean and unit standard deviation. Then on the basis of 

the noise-free acceleration 𝑧,𝑡𝑡𝑛𝑓
; the noise-polluted 

acceleration 𝑧,𝑡𝑡𝑛𝑝
 of the bridge at location x can be 

simulated by 

𝑧,𝑡𝑡𝑛𝑝
= 𝑧,𝑡𝑡𝑛𝑓

+ 𝑅𝑀𝑆 .𝑧,𝑡𝑡𝑛𝑓
/ × 𝑁𝑙𝑒𝑣𝑒𝑙 × 𝑁𝑢𝑛𝑖𝑡    (84) 

Where RMS (𝑧,𝑡𝑡𝑛𝑓
) is the r.m.s value of the noise-free 

acceleration vector 𝑧,𝑡𝑡𝑛𝑓
× 𝑁𝑙𝑒𝑣𝑒𝑙  is the noise level, and 

𝑁𝑢𝑛𝑖𝑡 is a randomly generated noise vector with zero mean 

and unit standard deviation. (Jiang et al. 2004) 

 In order to study effect of noise in stability of 

sensitivity methods, scenario2 (Speed ratio of moving load 

is considered to be fix and equal with 0.3 and mass ratio is 

equal to 0.5) is considered and  different levels of noise 

pollution are investigated, and RPEP changes with 

increasing number of loops for iterative procedure has been 

studied.  

Results are illustrated in Fig. 6  for DDM and AVM 

methods. These contours show that both AVM and DDM 

methods are sensitive to noise and if noise level becomes 

greater than 1.4% these methods lose their effectiveness and 

are not able to detect damage. So, in cases with noise level 

greater than 1.5%, a denoising tool alongside sensitivity 

methods should be used. 

 

 

 

Fig. 6 RPEP contours with respect to noise level and 

loops 

 
 
5.1.3 Efficiency of proposed method 
In order to compare and quantification the performance 

of different methods and evaluate the proposed method, 

relative efficiency parameter (REP) is defined as 

𝑅𝐸𝑃 = 𝑆𝑇𝐷𝐷 𝑆𝑇𝐴𝐷 ⁄    (85) 

In which, ST is the solution time of DD method. In fact 

this parameter represents the computation cost of method. 

In Fig. 7 changes of REP parameter with respect to 

velocity and mass ratio is illustrated. As shown in this 

figure, as much as velocity and mass ratio decreases, The 

REP parameter increases. Summary of this figure is shown 

in Table2. According to this table, the efficiency parameter 

is between 1.2327 to 10.9170 and its average is 4.2073. 

In Fig. 8 changes of REP average with respect to 

velocity and mass ratio is shown. As illustrated in this 

figure, increasing these two ratios, the REP parameter 

decreases almost linear. For example, in mass ratio equal to 

0.15 average of REP is about 7.5 but increasing mass ratio 

to 0.9 causes this amount reduces to 3.2. 

In addition, accuracy of AVM method reduces 

significantly for mass ratio greater than 0.9 and in velocity 

ratio greater than 0.45. So, in this range, using AVM method 

is not recommended. It is noteworthy that in real bridges, 

Including highways and railway bridges, maximum ratio of 

moving vehicle to bridge is much lower than this ratio. So 

the adjoint variable method is extremely successful for real 

time structures and computational cost for this method is 

about 23.8% of other sensitivity-based finite element model 

updating method. 
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5.2. Plane grid model 
 
A plane grid model of bridge is studied as another 

numerical example to illustrate the effectiveness of the 

proposed method. The finite element model of the structure 

is shown in Fig. 9 the structure is modeled by 46 frame 

elements and 32 nodes with three Dof‘s at each node for the 

translation and rotational deformations. The mass density of 

material is 7.8×10
-9

 kg/mm
3
 and the elastic modulus of 

material is 2.1×10
-5 

N/ mm
2
. The first five un-damped 

natural frequencies of the intact bridge are 45.59, 92.77, 

181.74, 259.73 and 399.07 Hz. Rayleigh damping model is  

 

 

 

 

 

 

adopted with the damping ratios of the first two modes 

taken equal to 0.05. The equivalent Rayleigh coefficients a0 

and a1 are respectively 0.1 and 2.364×10
-5

. 

 
5.2.1 Damage scenarios 
Three damage scenarios of single, multiple and random 

damages in the bridge without measurement noise are 

studied and they are shown in Table3.  

The sampling rate is 14000 Hz and 1150 data of the 

acceleration response (degree of indeterminacy is 25) 

collected along the z-direction at nodes 4, 11, 21 and 27 are 

used.  

  
(a) Scenario1 (b) Scenario2 

  
(c) Scenario3 (d) Scenario4 

Fig. 7 REP contours with respect to speed and mass ratio in model1 

Table 2 REP ranges in different scenarios for model1 

Damage scenario Max REP Min REP average 

M1-1 4.5928 1.2327 2.5669 

M1-2 10.0151 2.5146 4.5142 

M1-3 10.9170 1.9474 4.4732 

M1-4 9.2783 2.7705 5.2750 

Total 10.9170 1.2327 4.2073 

  

Fig. 8 Average of REP changes with respect to speed and mass ratio in model1-scenario3 
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Fig. 9 Plane grid bridge model used in detection procedure 

Table 3 Damage scenarios for grid model 

Damage 

scenario 
Damage type Damage location Reduction in elastic modulus Noise 

M2-1 Single 41 7% Nil 

M2-2 Multi 5,7,12,15,24,37 4%,11%,6%,2%,10%,16% Nil 

M2-3 Random All elements 
Random damage in all elements with an 

average of 5% 
Nil 

M2-4 
Estimation of 

undamaged state 
All elements 6% reduction in all elements Nil 

  

(a) Scenario1-AVM method (b) Scenario2-AVM method 

 
 

(c) Scenario1-DDM method (d) Scenario2-DDM method 

Fig. 10 RPE contours with respect to speed and mass ratio in model2 
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Similar to the previous model, scenario 1 studies the 

single damage scenario and the iterative solution converges 

in all speed parameters and mass ratio and changes of 

relative error significantly increase by increasing in relative 

speed and mass of moving vehicle. 

Fig. 10 shows that in both methods, the minimum error 

is related to the least relative mass and moving speed. And 

for higher amounts of mass ratio, it increases significantly 

for AVM method. For DDM method, The RPE parameter is 

more stable with respect to mass and speed ratio variation. 

For range of mass ratio equal to 0.75, the error of two 

methods is almost identical but with increasing mass ratio 

to 0.9 and relative speed greater than 0.45, error of AVM 

method is significantly greater than DDM method. 

Scenario 2 is on multiple damages with different amount 

of measured responses for the identification and Scenario3 

is on random damages for the identification. These 

scenarios also converge in all speed parameter ranges and 

similar results with the first scenario were obtained. One 

more scenario with model error is also included as Scenario 

4. This scenario consists of no simulated damage in the 

structure, but with the initial elastic modulus of material of 

all the elements under-estimated by 6% in the inverse 

identification. 
Using both described methods, including DDM and 

proposed method, the damage locations and amount are 

identified correctly in all the Scenarios (Fig. 12). 

 

 

 
 
 
5.2.2 Effect of noise 
In order to study effect of noise in stability of sensitivity 

methods, scenario3 (Speed ratio of moving load is 

considered to be fix and equal with 0.3 and mass ratio is 

equal to 0.5) is considered and  different levels of noise 

pollution are investigated, and RPE changes with increasing 

number of loops for iterative procedure has been studied. 

Fig. 13 Shows that both AVM and DDM methods are 

sensitive to noise and if noise level becomes greater than 

2.8% and 2.5% for AVM method and DDM method 

respectively, these methods lose their effectiveness and are 

not able to detect damage. So, in cases with noise level 

greater than mentioned values, a de-noising tool such as 

wavelet transform alongside sensitivity methods should be 

used. The wavelet transform is mainly attractive because of 

its ability to compress and encode information to reduce 

noise or to detect any local singular behavior of a signal. 
 
5.2.3 Efficiency of proposed method 
In Fig. 14 changes of REP parameter with respect to the 

velocity and mass ratio is illustrated. As shown in this 

figure, as much as velocity and mass ratio decrease, The 

REP parameter increases. 

Summary of this figure is shown in Table4. According to 

this table, the efficiency parameter is between 1.2327 to 

10.9170 and its average is 4.2073. 
 
 

 

Fig. 11 Detection of damage location and amount in elements 5, 7, 12, 15, 24 and 37 and distribution of error in different 

elements with AVM scheme 
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In Fig. 15 changes of REP average with respect to 

velocity and mass ratio is shown. As illustrated in this 

figure, increasing these two ratios, the REP parameter 

decreases. Furthermore, accuracy of AVM method reduces 

significantly for mass ratio greater than 0.9 and in velocity 

ratio greater than 0.45. So, for second model similar to firs, 

in this range, using AVM method is not recommended. 

Outside of this limit and for real time structures, the adjoint 

variable method is extremely successful and computational 

cost for this method is about 23.8% of DDM method. 

 
 

 
 

 
 

6. Conclusions 
 

In this paper an iterative sensitivity-based method has been 

developed to identify both the input excitation mass and the 

physical parameters of a bridge just from the output of the 

system. This method can be an efficient tool in the case when 

the structure for example a highway bridge must be on 

operation continuously. 

 

 

  

Fig. 12 RPE contours with respect to noise level and loops 

  
(a)Scenario1 (b)Scenario2 

  
(c)Scenario3 (d)Scenario4 

Fig. 13 EP contours with respect to speed and mass ratio in model2 

Table 4 REP ranges in different scenarios for model2 

Damage scenario Max REP Min REP Average 

M2-1 4.5928 1.2327 2.5669 

M2-2 10.0151 2.5146 4.5142 

M2-3 10.9170 1.9474 4.4732 

M2-4 9.2783 2.7705 5.2750 

Total 10.9170 1.2327 4.2073 
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In proposed method an incremental solution for adjoint 

variable equation developed which calculates each elements of 

sensitivity matrix separately. The main advantage is inclusion 

of an analytical method to augment the accuracy and speed of 

the solution. 

Numerical simulations demonstrate the efficiency and 

accuracy of the method to identify location and extent of 

single, multiple and random damages and unknown input 

excitation mass simultaneously in different bridge models. 

Comparison studies confirmed that computational cost for 

this method is much lower than other traditional sensitivity 

methods. For modern, practical engineering applications, 

the cost of damage detection analysis is expensive. So, this 

method is feasible for large-scale problems. 

The drawback of this method is its accuracy and 

efficiency reduction in mass and speed ratios near to one. 

It‘s notable that in real structures this range of speed and 

mass ratio is not accessible. 
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