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1. Introduction 
 

Optimization is a popular topic in structural engineering 

extensively applied to optimal design of structures (Saka 

and Geem 2013, Aydoğdu et al. 2016, Aydogdu et al. 2017, 

Kaveh 2017, Kaveh and Bolandgerami 2017). 

In recent decades, many new meta-heuristic algorithms 

have been presented some of which can be listed as: 

Genetic Algorithms (GA) (Holland John 1975), Particle 

Swarm Optimization (PSO) (Eberhart and Kennedy 1995), 

Ant Colony Optimization (ACO) (Dorigo et al. 1996), 

Differential Evolution (DE) (Storn and Price 1997), 

Harmony Search (HS) (Geem et al. 2001), Big-Bang Big-

Crunch (BBBC) (Erol and Eksin 2006), Artificial Bee 

Colony (ABC) (Karaboga and Basturk 2007), Ray 

Optimization (RO) (Kaveh and Khayatazad 2012), Grey 

Wolf Optimization (GWO) (Mirjalili, Mirjalili et al. 2014), 

Cuckoo Search (CS) (Yang and Deb 2010), Water Cycle 

Algorithm (WCA) (Eskandar et al. 2012), Dolphin 

Echolocation Optimization (DEO) (Kaveh and Farhoudi 

2013), Colliding Bodies Optimization (CBO) (Kaveh and 

Mahdavi 2014), Enhanced Colliding Bodies Optimization 

algorithm (ECBO) (Kaveh and Ilchi Ghazaan 2014), Water  

Evaporation Optimization (WEO) and accelerated version 

(AWEO) (Kaveh and Bakhshpoori 2016), Pigeon Colony 

Algorithm (PCA) (Yi et al. 2016), social spider 

optimization (Aydogdu et al. 2017), Tug of War 

Optimization (TWO) (Kaveh and Zolghadr 2016), 

Simplified Dolphin Echolocation algorithm (SDE) (Kaveh 

and Hosseini 2014). 

In this study, weight optimization of three frame  

structures is assessed. Sections are selected from a standard  
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set of steel sections of the American Institute of Steel 

Construction (AISC) wide-flange W-shapes. 

Dolphin Echolocation Optimization (DEO) is one of the 

recently developed meta-heuristics (Kaveh and Farhoudi 

2013). This algorithm was simplified, modified and 

introduced as Simplified Dolphin Echolocation (SDE) 

method (Kaveh and Hosseini 2014). The DEO algorithm 

and its simplified version (SDE) are based on the hunting 

technique of dolphins. Dolphins send echo in different 

directions and listen to the reflections and then move 

towards their prey. During approaching the bait, dolphins 

continue sending echoes in order to increase the probability 

of successful hunting. The optimal solution acts as model's 

bait in the algorithm. In this study, SDE is used for size 

optimization of three well-studied frame structures. 

This paper is organized as follows: After this 

introductory section, a brief explanation of the SDE 

algorithm for structural optimization problems is presented 

in section 2. Three well-known benchmark problems are 

studied in section 3, and finally, concluding remarks are 

provided in the final section. 

 

 

2. The SDE algorithm for structural optimization 
problems 

 

This section briefly provides the SDE algorithm for 

discrete optimization of frame structures. Firstly, a general 

explanation of this algorithm is presented as follow: 

Dolphins first send a click in different directions for 

hunting. Then, they find their bait based on the reflection 

and move toward it. Sending and receiving the click 

continues until catching the bait and thus the probability of 

catching the bait increases at any moment. In the SDE 

algorithm, this increase of probability is indicated as 
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𝑃𝐿𝑖 = 𝑃𝐿1 + (1 − 𝑃𝐿1)
𝐿𝑖 − 1

𝐿𝑁 − 1
 (1) 

where PLi, Li and LN are the probability of the ith loop, the 

number of the ith loop and number of loops, respectively; 

PL1 is the probability of the first loop usually obtained 

approximately as 0.1 (10%). Also, this PL1 can be 

considered as equations presented in Ref. (Kaveh and 

Hosseini 2014). 

Lower PLi is first seen as exploration search mode and 

the algorithm enters into exploitation phase by increasing 

the amount of this value. 

The parameter AC is considered for indicating the 

accuracy of every variable in the SDE algorithm. It displays 

the number of decimal places for each variable, it should be 

noted that this parameter is equal to 1 for discrete 

optimization the parameter R is supposed as one-fifth of the 

search space for all variables individually. 

 
2.1 Step by step summary of the SDE algorithm for 

discrete optimization 
 

İnitial parameters of the SDE algorithm consisting of: 

number of loops (LN), number of locations (this parameter 

is similar to the number of population in other algorithms), 

the probability of the first loop (PL1), the accuracy of every 

parameter (AC=1; for discrete optimization) and R 

parameter are initialized. 

Step 1: Generate the L matrix  

Matrix L is generated by random numbers (in the 

permissible range for every variable) in the first loop; these 

random numbers consist of the sequence numbers of the W-

sections. So, the initial sections for each group of the frame 

are determined. However, the matrix L is generated in the 

subsequent loops according to the steps of the algorithm.  

Step 2: Compute PLi 

This parameter is calculated according to Eq. (1). 

Step 3: Calculate fitness 

Before calculating the fitness, L matrix should be ordered. 

This ordering has a high impact on quality of the optimum 

answers. The SDE algorithm considers a triangle 

distribution in the neighborhood of the answers for all 

variables and all locations. In those cases where the 

triangular distribution is located outside the permissible 

range, it is reflected into the range (like a mirror). 

The aim of the optimum design of frame structures is to 

minimize the weight of frame structures satisfying certain 

design constraints. Design constraints include strength and 

displacements constraints according to the LRFD-AISC 

specification (AISC 2001). In fact, the aim of the SDE 

algorithm in this research is to find a suitable set of design 

variables to reach the best weight without violation. The 

mathematical formulation can be expressed as follow: 

Find   1 2[ , ,..., ]ng i ix x x x x W   

To minimize 

1

({x})
nm

i i i

i

W A L


  
(2) 

where {x}  is a set of design variables containing the 

sequence numbers of the W-sections; ng is the numbers of 

member groups (number of design variables); W({x} ) is 

the weight of the structure; nm is the number of elements of 

the structure; i
 shows the material density of member i; Ai 

and Li denote the cross-sectional area and the length of 

member i, respectively. Here, xi is the number of a W-

section and Ai is its cross-sectional area for the ith group. As 

mentioned, in this study, discrete optimization is 

considered, and the ith variable can be selected from W-

sections list for ith member group of frame sections. 

,1 ,2 , ( )( , ,..., )i i i i r iW w w w   (3) 

Thus the problem can be solved as a discrete optimization 

problem, r(i) is the last available W-section. The frame 

structure is analyzed and checked for design constraints for 

each location of L matrix according to the following 

equation (to control the constraints, the penalty approach is 

utilized) 

1

1

2 {( )}, max(0, )( ) (1 . )

nc

i

j

w xfitness x


   


      (4) 

Fitness (x) and ν are the fitness function and the sum of the 

violations of design. In this study, 1 and 2 are set to 

0.3 and 1, respectively and nc is the total number of 

constraints for each individual design. In fact, in discrete 

optimization, algorithms find the numbers associated with 

the W-sections and then these values are interpreted as 

properties of the corresponding W-sections. Also, as 

mentioned, violations are managed with penalty approach. 

According to the AISC-LRFD (AISC 2001), constraints are 

as follow: 
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The inter-story drift constraints 
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where T  is the maximum lateral displacement of the roof; 

H is the height of the frame; Rk is the maximum drift index 

(in this study it is equal to 
1

300
); di is the inter story drift; hi 

is the story height of the ith floor; ns is the total number of 

stories; Rl shows the inter story drift index and its limitation 

is like Rk index; Pu is the required strength (tension or 

compression); Pn is the nominal axial strength (tension or 
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compression); Ø c is the resistance factor (Ø c = 0.9 for 

tension and Ø c = 0.85 for compression); Mu (containing Mux 

and Muy) is the required flexural strengths; Mn (containing 

Mnx and Mny) is the nominal flexural strengths (for two-

dimensional frames Muy=0 and Mny=0 ); and Ø b presents the 

flexural resistance reduction factor (Ø b = 0.90). The 

nominal axial strength is evaluated according to the AISC-

LRFD (AISC 2001). 

Step 4: Calculate the accumulative fitness, AF matrix 

The intended triangular distributions should somehow be 

integrated. Therefore, a matrix called Accumulative Fitness 

(AF) is used which adds all the triangular distributions in 

each alternative. In fact, AF matrix puts all the fitness 

together (considering triangular distributions) for all 

variables. 

Then, the highest value is considered equal to PLi and the 

remaining probability (1- PLi) is assigned to other 

alternatives. A hypothetical curve for each variable is 

considered, where the horizontal axis is the alternative 

value and the vertical axis is the corresponding AF value. 

Fig. 1 illustrates this hypothetical curve. This figure shows 

the probability of each W-section for being the optimum 

answer for each variable. 

Step 5: Generate AFAreaij 

The goal is the sub-curved area of the AF (according to 

Fig. 1) to be equal to 1. Thus, Eq. (8) is used. It should be 

noted that the entire search space is numbered and 

considered as an alternative. 

𝐴𝐹𝐴𝑟𝑒𝑎𝑖𝑗 =
𝐴𝑟𝑒𝑎𝑖𝑗

∑ 𝐴𝑟𝑒𝑎𝑖𝑗
𝑁
𝑖=1

 (8) 

where AFAreaij and Areaij are the modified AF sub-curved 

area and the AF sub-curved area for the ith alternative and 

jth vtheariable, respectively. 

Step 6: Create L matrix for the next loop 

The required number of values is picked up from the 

obtained AFAreaij for the next loop. These values must be 

arranged for the formation of the L matrix. 

 

 

 

Fig. 1 The hypothetical curve 

 

Ordering is performed in a way that a variable that is to 

be sorted is arranged against the values taken from the 

AFAreaij , and a constant value is assigned to other 

variables. Then, the fitness value of each location is 

calculated and they are sorted in terms of their fitness value 

and this is done for all variables. Choosing this constant 

value is influential on some problems. Upon completion of 

the operation, the sorted L matrix is generated. To improve 

the search functionality of the algorithm, one can replace 

random values in the permissible range with L matrix 

values in 30% of the occasions. For further clarity, the 

flowchart of the SDE algorithm is presented in Fig. 2 and 

the pseudo code of the SDE algorithm for discrete 

optimization problems is presented in the following: 

 

 

 

%%Pseudo code of the SDE algorithm%% 
Set the initial parameter of the SDE algorithm 
LN=number of loops; 
NV=number of variables; 
CL=1; 
AC=1; % for discrete optimization this parameter is 

equal to 1. 

Location=select to enough value 
R=1/5 of the search space for all variables; 
PL1=0.1 or can be calculated according to Kaveh and 

Hosseini research (2014); 
L=random W-section for each variable; 
while CL<=NL 
    CL=CL+1; 
    PL(CL)= considering as Eq. (1); 
    L=reorder L matrix according to section 2.1; 
    Fitness=calculating using Eq. (4) 
    Fitness= considering triangle distribution according 

to section 2.1; 
    Accumulative Fitness= considering the effect of all 

Fitness together in each alternative; 
    assigning the probability of PL(i) to highest value 

and (1-PL(i) to others; 
    for j=1:NV 
        for i=1:Alternatives 
        Area(i,j)=calculating according to sub curve of 

Accumulative Fitness; 
        end 
    end 
    AFArea=considering as Eq. (8); 
    L= select the necessary W-section from AFArea; 
    for j=1:NV 
        for i=1:locations 
            if rand<0.3        
                L(i,j)=Select a random W-section for 

jth variable; 
            end 
        end 
    end 

end while 
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Fig. 2 Flowchart of the SDE algorithm. 
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3. Optimum design of steel frames using SDE 
algorithm 

 

The SDE algorithm is applied to damage detection 

problems (Kaveh et al. 2016) and weight optimization of 

truss structures (Kaveh and Hosseini 2014) successfully. 

Thus the authors decided to investigate the ability of this 

algorithm for weight optimization of the frame structures. 

In this section, three well-studied frame structures are 

considered to investigate the performance of the SDE 

algorithm to compare with some other meta-heuristic 

algorithms. Minimizing the weight of three frame structures 

is the aim of this study. These frames are: 

A 1–bay 10-story frame 

A 3-bay 15-story frame 

A 3-bay 24-story frame 

In this study, the value of AC algorithm parameter is 

assumed to be 1 and the number of loops is considered as 

100; and the location sizes are assumed as 80, respectively. 

For more precise study, each problem has been solved 30 

times independently and each run, objective function is 

evaluated 80000, 96000 and 168000 times for problems 1, 2 

and 3, respectively. Also, for better comparison, five 

algorithms consisting of CBO (Kaveh and Mahdavi 2014), 

ECBO (Kaveh and Ilchi Ghazaan 2014), CBO-MDM 

(Kaveh et al. 2017), AWEO (Kaveh and Bakhshpoori 2016)  

and EVPS (Kaveh et al. 2017, Kaveh et al. 2018) are 

applied in this study. It should be noted that population size, 

number of independent runs and number of evaluating 

objective function are the same as the SDE algorithm for all 

problems. The results of the CBO, ECBO, CBO-MDM, 

AWEO, EVPS and SDE algorithms have no violation. 

All problems and algorithms are coded in MATLAB 

and the frame structures are analyzed using the direct 

stiffness methods. It should be note that the purpose of 

optimal solution is the best answer among answers for each 

algorithm. For better evaluation, five metaheuristic 

algorithms are considered.  

 

3.1 A 1–bay 10-story frame 
 

Fig. 3 illustrates the schematic, applied loads and the 

numbering of the member groups for this frame structure. 

This frame consists of 11 joints and 30 elements. The 

element grouping results in 4 beam sections and 5 column 

sections for a total of 9 design variables. Each of the 4 beam 

element groups is selected from all 267 W-sections while 

the 5 column groups are chosen from only W14 and W12 

sections. 

The material has a modulus of elasticity equal to E 

=200GPa (29 000 ksi) and the yield stress of Fy =248.2MPa 

(36 ksi). The effective length factors of the members are 

calculated as kx ≥ 1.0 for a sway-permitted frame, and the 

out-of-plane effective length factor is specified as ky = 1.0. 

All columns are considered as non-braced along their 

length, and the non-braced length for all beam members are 

specified as 
1

5
 of the span length. The frame is designed 

following the AISC-LRFD specifications (AISC 2001). 

Table 1 provides the results of the present method and 

some other meta-heuristic algorithms. In this table the best, 

worst and mean weights for each algorithm are provided. 

It can be seen that the lightest design is found by the 

EVPS and CBO-MDM which is 286.3 kN and the lightest 

design of GA (Pezeshk et al. 2000), DEO, CBO, ECBO, 

AWEO and SDE respectively are 1.8%, 8%, 8.6%, 7.72%, 

6.22% and 0.8% heavier than the lightest weight of Table 1. 

Also from this table, it is obvious that the SDE algorithm 

has reached the lightest mean weight for all runs. Fig. 4 

illustrates the convergence histories of the SDE for one of 

the best designs of the 1-bay 10-story frame. Figs. 5 and 6 

show the existing stress ratios and inter-story drift for the 

optimal design of the SDE algorithm. 

 

3.2. A 3-bay 15-story frame 
 

Fig. 7 illustrates the schematic, applied loads and the 

numbering of the member groups for this problem, 

consisting of 64 joints and 105 elements. This problem is a 

well-known benchmark in structural optimization literature. 

 

 

 

Fig. 3 Schematic of a 1-bay 10-story frame 
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Table 1 Optimal designs of the SDE and some other meta-heuristic algorithms for the 1-bay 10-story frame 

 

Element group 

Optimal W-Shaped sections 

GA DEO CBO  ECBO  CBO-MDM  AWEO EVPS SDE 

(Pezeshk et 

al. 2000) 
       

1 W14x233 W14x233 

 
W14x233 W14x233 W14x233 W14x233 W14x233 W14x233 

 2 W14x176 W14x193 

 
W14x176 W14x176 W14x176 W14x211 W14x176 W14x176 

 3 W14x159 W14x145 

 
W14x132 W12x152 W14x159 W12x170 W14x159 W14x145 

 4 W14x99 W12x106 

 
W14x99 W12x120 W14x99 W14x99 W14x99 W14x99 

 5 W12x79 W14x61 

 
W14x61 W12x65 W14x61 W14x68 W14x61 W12x65 

 6 W33x118 W33x118 

 
W30x148 W33x118 W33x118 W33x118 W33x118 W33x118 

 7 W30x90 W30x116 

 
W30x116 W33x130 W30x90 W30x99 W30x90 W30x99 

 8 W27x84 W30x90 

 
W27x102 W24x84 W27x84 W30x90 W27x84 W27x84 

 9 W24x55 W24x104 

 
W16x50 W14x61 W18x46 W18x50 W18x46 W21x44 

 Best weight (kN) 289.12 306.76 308.44 305.94 284.01 301.69 284.01 286.3 

Worst weight (kN) - 328.24 324.07 330.95 296.07 328.55 297.24 286.3 

Mean weight (kN) - 325.37 310.93 315.52 287.63 316.28 286.43 286.3 

 

Fig. 4 Convergence curves of the optimal and mean design of the SDE algorithm for the 1-bay 10-story frame in 

comparison with other utilized metaheuristic algorithms 

 
Fig. 5 Stress ratio for the lightest design of the SDE algorithm for the 1-bay 10-story frame 
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Fig. 6 Inter-story drifts for the lightest design of the SDE algorithm for the 1-bay 10-story frame 

 

Fig. 7 Schematic of a 3-bay 15-story frame 
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The element grouping results are classified as 11 groups 

consisting of 10 column groups and 1 beam group. The 

material has a modulus of elasticity equal to E =200GPa (29 

000 ksi) and the yield stress is 248.2MPa (36 ksi). The 

effective length factors of the members are calculated as kx  

≥  0 for a sway-permitted frame and the out-of-plane 

effective length factor is indicated as ky = 1.0. Each column 

is considered as non-braced along its length, and the non-

braced length for each beam member is determined as 
1

5
 of  

 

 

 

 

 

the span length. The structure is designed following the 

AISC-LRFD specifications and using an inter-story drift 

displacement constrains (AISC 2001). 

Table 2 provides the results of the present method and 

some other meta-heuristic algorithms. In this table the best, 

worst and mean weights for each algorithm are provided. 

It can be seen that the lightest design is found by SDE 

which is 387.64 kN and the lightest design of EWOA 

(Kaveh and Ilchi Ghazaan 2016), DE (Talatahari et al. 

2 0 1 5 ) ,  ES -DE (Ta la t a h a r i  e t  a l .  2 0 1 5 ) ,  DEO   

Table 2 Optimal designs of the SDE and some meta-heuristic algorithms for the 3-bay 15-story frame 

 

Element group 

Optimal W-Shaped sections 

EWOA DE ES-DE DEO CBO ECBO CBO-MDM AWEO EVPS SDE 

(Kaveh and 

Ilchi 

Ghazaan 
2016) 

(Talatahari, 

Gandomi  

et al. 2015) 

(Talatahari, 

Gandomi  

et al. 2015) 

(Kaveh and 

Farhoudi 

2013) 

      

1 W14x99 W21X122 W18X106 W12x87 W12x96 W12x106 W14x99 W18x143 W14x99 W14x90 

 2 W27x161 W33X141 W36X150 W36x182 W36x170 W27x161 W27x161 W24x162 W27x161 W36x170 

 3 W27x84 W14X82 W12X79 W21x93 W27x84 W27x84 W27x84 W24x84 W27x84 W27x84 

 4 W24x104 W30X108 W27X114 W18x106 W27x114 W24x104 W24x104 W33x118 W24x104 W24x104 

 5 W21x68 W30X108 W30X90 W18x65 W24x68 W16x67 W21x68 W12x65 W14x61 W14x61 

 6 W18x86 W12X79 W10X88 W14x90 W16x89 W16x89 W18x86 W18x97 W30x90 W30x90 

 7 W21x48 W14X61 W18X71 W10x45 W21x48 W21x48 W8x48 W12x50 W14x48 W14x48 

 8 W14x68 W18X71 W18X65 W12x65 W10x68 W24x68 W12x65 W21x68 W12x65 W12x65 

 9 W8x31 W6X25 W8X28 W6x25 W6x25 W12x30 W8x28 W8x28 W6x25 W6x25 

 10 W10x45 W24X62 W12X40 W10x45 W16x50 W10x39 W16x40 W16x40 W12x40 W12x40 

 11 W21x44 W21X48 W21X48 W21x44 W21x44 W21x44 W21x44 W21x44 W21x44 W21x44 

 Best weight (kN) 391.84 423.83 415.06 395.35 398.94 394.61 389.86 412.22 387.89 387.64 

Worst weight (kN) 422.27 - - - 432.57 431.64 397.21 449.97 394 394 

Mean weight (kN) 403.82 - - - 419.2 413.36 392.39 429.46 389.77 387.89 

 

Fig. 8 Convergence curve for the optimal and mean design of the SDE algorithm of the 3-bay 15-story frame in comparison 

with other metaheuristic algorithms 
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Fig. 9 Stress ratio for the optimal design of the SDE algorithm for the 3-bay 15-story frame 

 

Fig. 10 Schematic of a 3-bay 24-story frame 
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(Kaveh and Farhoudi 2013), CBO, ECBO, CBO-

MDM,AWEO and EVPS, respectively, are 1.08%, 9.33%, 

7.07%, 1.98%, 2.91%, 1.79%, 0.57%, 6.34% and 0.06% 

more heavy than the lightest weight obtained by the SDE 

algorithm. Also from Table 2 it is obvious that the SDE has 

reached the lightest mean weight for the worst and mean 

weights. Fig. 8 illustrates the convergence curve of the SDE 

for the 3-bay 15-story frame. Fig. 9 displays the existing 

stress ratios for the optimal design obtained by the SDE 

algorithm. 

 

3.3 A 3-bay 24-story frame 
 

A 3-bay 24 story frame consisting of the schematic, 

applied loads and the numbering of the member groups is 

illustrated in Fig. 10. This structure consists of 100 joints 

and 168 elements that are collected in 20 groups (16 column 

groups and 4 beam groups). The beam and column element 

groups are selected from all 267 W-shape and W-14 

sections, respectively. The material has a modulus of 

elasticity equal to E = 205GPa (29,732 ksi) and a yield 

stress of fy = 230.28 MPa (33.4 ksi). The effective length  

 

 

 

factors of the members are computed as kx ≥ 1.0 for a sway 

permitted frame and the out-of-plane effective length factor 

is determined as ky = 1.0. All columns and beams are 

considered as non-braced along their lengths. The frame is 

designed according to the AISC-LRFD specifications using 

an inter-story drift displacement constraint (AISC 2001). 

Table 3 illustrates the results of the present method and 

some other meta-heuristic algorithms. In this table the best, 

worst and mean weights for each algorithm are presented. It 

can be seen that the lightest design is found by applying 

SDE which is 894.13 kN and the lightest design of EWOA 

(Kaveh and Ilchi Ghazaan 2016), DE (Talatahari et al. 

2015), ES-DE (Talatahari, Gandomi et al. 2015), DEO 

(Kaveh and Farhoudi 2013), CBO, ECBO, CBO-MDM, 

AWEO and EVPS, respectively, are 1.23%, 11.56%, 5.7%, 

2.02%, 3.82%, 3.61%, 1.05%, 2.16% and 0.53% heavier 

than the lightest weight of the SDE algorithm. 

As it can be observed from Table 3, it becomes apparent 

that the SDE algorithm has reached the lightest mean 

weight for the worst and mean weights. SDE also obtained 

a very good result for the best optimized answer compared 

to other algorithms.  

Table 3 Optimal designs of the SDE and some meta-heuristic algorithms for the 3-bay 24-story frame 

 

Element group 

Optimal W-Shaped sections 

EWOA DE ES-DE DEO CBO ECBO 
CBO-

MDM 
AWEO EVPS SDE 

(Kaveh 

and Ilchi 

Ghazaan 

2016) 

(Talatahari, 

Gandomi  

et al. 2015) 

(Talatahari, 

Gandomi  

et al. 2015) 

(Kaveh 

and 

Farhoudi 

2013) 

      

1 W30x90 W30x90 W30x90 W30x90 W30x99 W30x90 W30x90 W30x90 W30x90 W30x90 

 2 W10x30 W21x48 W21x55 W6x20 W6x15 W10x33 W8x18 W8x18 W6x15 W6x15 

 3 W24x55 W21x44 W21x48 W21x44 W24x55 W21x48 W24x55 W24x55 W24x55 W24x55 

 4 W6x8.5 W27x129 W10x45 W6x9 W8x13 W12x16 W6x8.5 W6x8.5 W6x8.5 W6x8.5 

 5 W14x15 W14x176 W14x145 W14x159 W14x145 W14x176 W14x145 W14x193 W14x159 W14x159 

 6 W17x99 W14x120 W14x109 W14x145 W14x132 W14x120 W14x145 W14x120 W14x145 W14x132 

 7 W14x120 W14x132 W14x99 W14x132 W14x99 W14x120 W14x99 W14x132 W14x90 W14x109 

 8 W14x74 W14x132 W14x145 W14x99 W14x82 W14x82 W14x68 W14x82 W14x74 W14x74 

 9 W14x74 W14x109 W14x109 W14x68 W14x68 W14x82 W14x74 W14x61 W14x74 W14x61 

 10 W14x43 W14x53 W14x48 W14x61 W14x48 W14x38 W14x61 W14x38 W14x38 W14x38 

 11 W14x30 W14x61 W14x38 W14x43 W14x30 W14x34 W14x34 W14x34 W14x30 W14x34 

 12 W14x22 W14x30 W14x30 W14x22 W14x22 W14x53 W14x22 W14x22 W14x22 W14x22 

 13 W14x90 W14x99 W14x99 W14x109 W14x90 W14x90 W14x109 W14x82 W14x99 W14x90 

 14 W14x120 W14x132 W14x132 W14x109 W14x90 W14x145 W14x90 W14x109 W14x90 W14x99 

 15 W14x90 W14x109 W14x109 W14x90 W14x90 W14x90 W14x99 W14x82 W14x99 W14x90 

 16 W14x99 W14x74 W14x68 W14x82 W14x82 W14x90 W14x99 W14x82 W14x90 W14x90 

 17 W14x68 W14x82 W14x68 W14x74 W14x68 W14x61 W14x68 W14x68 W14x68 W14x74 

 18 W14x61 W14x82 W14x68 W14x43 W14x53 W14x61 W14x48 W14x68 W14x61 W14x61 

 19 W14x43 W14x48 W14x61 W14x30 W14x34 W14x38 W14x34 W14x43 W14x43 W14x34 

 20 W14x22 W14x82 W14x22 W14x26 W14x22 W14x26 W14x22 W14x34 W14x22 W14x22 

 Best weight (kN) 905.16 

 

997.56 945.15 912.26 928.35 

 

926.4821 

 

903.58 

 

913.51 

 
898.91 894.13 

Worst weight (kN) 1005.38 - - - 1023.46 1054.114 988.34 

 
966.89 923.18 897.53 

Mean weight (kN) 928.11 - - - 983.16 967.56 950.58 

 
927.59 905.67 894.72 
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Fig. 11 Convergence curves of the optimal and mean design for the 3-bay 24-story frame using the SDE algorithm in 

comparison with other utilized metaheuristic algorithms 

 

Fig. 12 Stress ratio for the optimal design of the 3-bay 24-story frame using the SDE algorithm 

 

Fig. 13 Inter-story drifts for the lightest design of the SDE algorithm for the 3-bay 24-story frame 
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Fig. 11 illustrates the convergence curve of the SDE for 

the 3-bay 24-story frame. Figs. 12 and 13 show the existing 

stress ratios for the optimal design of the SDE algorithm. 

 

 

4. Conclusions 
 
According to the explanation of the SDE algorithm, in 

each iteration (without mentioning the details), all the effort 

of this algorithm is applied to rearranging the matrix L. This 

action results in generating a vector that has best numbers 

among all location sizes for all variables. It is expected that, 

this special vector be the best answer for each iteration (for 

some objective functions this may not be true). In fact, this 

vector is the result of all the effort of the SDE algorithm for 

each iteration. For next step, according to this vector and 

other locations, other sequences of algorithm are performed. 

While the other algorithms, try to improve all the 

population in each iteration, smoothly. In other words, other 

algorithms do not try as much as the SDE algorithm to 

generate a special vector.  

In this study, the simplified dolphin echolocation 

optimization (SDE) is utilized for size optimization of three 

well studied frame structures. These frames have been 

optimized by many researchers and some of their recent 

results are presented in this paper. 

To evaluate the performance of the SDE algorithm, this 

method is compared to other meta-heuristic methods. The 

lightest design obtained by SDE is better than other 

methods in two of the three problems and other remaining 

problems and it has reached a very competitive answer in 

comparison to other meta-heuristic algorithms.  In addition, 

the SDE algorithm has found the best mean in comparison 

to other methods.   

At first glance to the provided convergence figures, the 

convergence speed of the SDE algorithm seems to be very 

high. However, it should be noted that this does not refer to 

the very high speed of the algorithm. In this algorithm, the 

analysis is not performed as the number of location sizes in 

each loop; rather, the objective function analysis is 

performed for each loop is equal to [Location sizes* 

(number of variables+1)].  Hence, the algorithm’s speed is 

very low in each loop compared to other algorithms, but 

according to the results, very few loops are needed to reach 

the final answer compared to other algorithms. In other 

words, the SDE algorithm converges very fast in 

comparison with other algorithms and dispersion of results 

in this algorithm is very low compared to the other methods 

(according to mean weight in convergences diagram).  

Additionally, the quality of the obtained results is very good 

in each run. Due to these reasons, the low speed of the 

algorithm in each loop is compensated. 

Finally, considering the quality of the answers obtained 

by the present algorithm in comparison to other algorithms, 

it is recommended to investigate other characteristics of the 

present algorithm when applied to other optimization 

problems. 
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