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1. Introduction 
 

In nano-science and nano-engineering, the free vibration 

of nano-material and nano-structure as a common 

phenomenon is easily seen. Many nano-engineering 

devices, for instance the nano-electronic-mechanical 

systems (NEMS) contain various kinds of nano-structural 

models such as nanowire, nanotube, nanobeam, nanoplate 

and nanocone, etcetera. It is indispensable to understand the 

dynamical behaviors of these nano-structures for designing 

and optimizing such models or components in nano-

technology. Nowadays, the studies on the nanowire, 

nanotube, nanobeam and nanoplate are popular and there 

are a remarkably increasing number of research papers (Lim 

2009, Lim 2010, Aifantis 2011, Li et al. 2011a, Li et al. 

2011b, Thai and Vo 2012, Li 2013, Li et al. 2013, 

Anjomshoa, Jomehzadeh et al. 2014, Li 2014a, Sciarra and 

Barretta 2014, Li, Chen et al. 2015, Li et al. 2015, Lim, 

Zhang et al. 2015, Challamel et al. 2016, Dastjerdi et al. 

2016, Li 2016, Liu et al. 2016, Tuna and Kirca 2016, Shen 

et al. 2017) for these topics. However, research and 

publication on circular truncated nanocone via an  
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appropriate continuum approach are rather scarce and it is 

really necessary to reveal the longitudinal vibration of 

circular truncated nanocones in order to promote its 

application to nano-engineering devices. 

It is well known that the mechanical properties at nano-

scale are quite different from the corresponding counterpart 

at classical macro-scale due to the scale effect. It is essential 

to take the scale effect into consideration for a nano-scale 

structure because of the higher ratio of surface to volume. 

There have been several kinds of elasticity theories which 

are capable of describing the nano-structural behaviors, of 

which the strain gradient theory and nonlocal theory are the 

most popular approaches. The original form of strain 

gradient theory was put forward more than a hundred years 

ago and then it was developed systematically by Aifantis et 

al. (e.g., Xu et al. 2013, Xu et al. 2014, Aifantis 2016, 

Kateb et al. 2016). Unlike the strain gradient, the nonlocal 

theory is stress gradient. As a modified continuum 

mechanics theory, the nonlocal theory was firstly proposed 

by Eringen and Edelen (1972). Unlike the classical 

continuum constitutive relation which regards the stress at a 

point is related to the strain at that single point only, the 

nonlocal theory assumes that the stress at a point is a 

function of strains and history of deformations at all points 

in the domain. Actually, the nonlocal theory implicates 

some information about the forces between 
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atoms/molecules, and the internal characteristic length scale 

is also introduced into the nonlocal constitutive relation as a 

material parameter to capture the scale effect and long-

range interaction of nano-structures. Consequently, the 

nonlocal elasticity theory has been developed and applied in 

nano-mechanics extensively (e.g., Yang and Lim 2009, Lim 

2010, Guo and Yang 2012, Anjomshoa et al. 2014, Li 

2014a, Zenkour et al. 2014, Li et al. 2015, Lim et al. 2015, 

Zenkour et al. 2015, Challamel et al. 2016, Dastjerdi et al. 

2016, Tuna and Kirca 2016, Li et al. 2017, Shen et al. 2017) 

due to its inherent suitable for modeling the long-range 

interaction via the internal characteristic length scale. At 

present, some different theoretical branches concerning the 

nonlocal nano-mechanics are formed. Particularly, one of 

the most popular branches is the nonlocal stress model, 

which was developed by Lim (2009, 2010). The nonlocal 

stress model starts from the nonlocal energy variational 

principle and considers the higher-order nonlocal stress 

effect of nano-structures and it concludes some new 

effective nonlocal phenomena which are consistent with 

experimental observations (Lim 2009, 2010). Since its 

advent, Lim’s nonlocal stress model has been utilized to 

study various nano-mechanical issues widely and much 

related work has been published (e.g., Li 2011, Li et al. 

2013, Li 2016). Subsequently, Lim, Zhang et al. (2015) 

further proposed a new higher-order nonlocal elasticity and 

strain gradient theory based on Lim’s previous nonlocal 

stress model. The nonlocal strain gradient theory considers 

both the higher-order gradients of nonlocal stress and the 

nonlocality of strain gradient and it is regarded as an 

extension of the Eringen’s original nonlocal theory (Eringen 

and Edelen 1972) and the Mindlin’s strain gradient theory 

(Mindlin 1965). On the other hand, Aifantis (2011) 

analyzed the correlation between the gradient theory and 

nonlocal theory, in memory of the late A.C. Eringen (1921-

2009), and the results were strongly motivated by Eringen’s 

studies. Anjomshoa et al. (2014) developed a finite element 

approach according to the nonlocal elasticity theory to 

investigate the buckling property of nano-scaled multi-

layered graphene nanoplate embedded in polymer matrix, 

and its correctness was verified by a comparison with 

molecular dynamics and analytical solutions. Sciarra and 

Barretta (2014) proposed a new variational formulation of 

nonlocal Euler-Bernoulli nanobeams and it was concluded 

that the rigidity of nanostructures may be flexible or stiffer, 

which is identical to the earlier work (Li 2014b, Li et al. 

2015). Besides Li et al. (2015) addressed the free vibration 

of micro-scale and nano-scale beams using the nonlocal 

elasticity theory and eigenvalue method to reveal the size-

dependent behaviors, and further the mechanisms of size 

dependence and physical meaning of small scale parameter 

were presented. Some comparisons with classical theory, 

molecular dynamic simulation and surface effects theory 

validate the work by Li et al. (2015). Unlike the nonlocal 

differential model, a rencent work by Tuna and Kirca 

(2016) determined the closed-form analytical solutions of 

Eringen’s original integral model for static bending of 

Euler-Bernoulli and Timoshenko beams, respectively. In 

their work, the present Fredholm type integral governing 

constitutions were transformed to Volterra integral 

equations of the second kind, and the Laplace 

transformation was also applied to the corresponding 

equations. Dastjerdi, Lotfi et al. (2016) presented the effect 

of eccentric vacant defect on bending analysis of graphene 

sheets using the nonlocal elasticity theory and the 

Mindlinnanoplate theory. The subject was modeled as an 

anti-symmetric problem and a new semi-analytical 

polynomial method was employed to solve the problem. 

The derived results were compared with the results of 

ABAQUS finite element tool to prove the validity of their 

work. 

Although there is a great deal of work concerning with 

the nanowire, nanotube, nanobeam and nanoplate (e.g., 

Yang and Lim 2009, Lim 2010, Aifantis, 2011, Anjomshoa 

et al. 2014, Sciarra and Barretta 2014, Li et al. 2015, Lim et 

al. 2015, Challamel et al. 2016, Dastjerdi et al. 2016, Tuna 

and Kirca 2016, Shen et al. 2017), there has been less work, 

to the authors’ best knowledge, considers the free 

longitudinal vibration of circular truncated nanocone based 

on the nonlocal elasticity theory. The carbon nanocone is a 

transition nanostructure from a graphene sheet to a 

fullerene, which was firstly discovered by Ge and Sattler 

(1994). The exciting findings were reported about the 

excellent structural and electrical properties of carbon 

nanocone (Ge and Sattler 1994, Krishnan et al. 1997). 

Regarding the mechanical properties, for example, the 

nanocone has been applied extensively in nano-devices and 

nano-composites as a basic element due to its high 

mechanical strength. Krishnan et al. (1997) observed 

experimentally five types of nanocones distinguished by 

five cone angles of 19.2°, 38.9°, 60°, 86.6°, and 123.6°, 

respectively. Guo and Yang (2012) investigated the axial 

vibration of carbon nanocones via a non-uniform rod model 

using a modified Wentzel–Brillouin–Kramers method. 

However, more work was concerned with the free 

transverse vibration of nanocones in recent years. For 

example, Firouz-Abadi et al. (2011) presented the free 

transverse vibration of nanocones based on the nonlocal 

elasticity theory for the first time. The effects of small-scale 

and geometrical parameters of nanocones on the natural 

frequencies were investigated. Subsequently, Fotouhi et al. 

(2013) further extended the topic to the free transverse 

vibration of nanocones embedded in an elastic medium by 

employing the nonlocal shell model. Hu et al. (2012) 

studied the transverse dynamics of single-walled carbon 

nanocones via Timoshenko beam model and molecular 

dynamics simulations. They examined effects of apex 

angles, top radii and lengths on fundamental frequencies of 

transverse vibrations of cantilevered single-walled carbon 

nanocones. Hence it is necessary to investigate the nonlocal 

scale property and vertex angle effect of nanocone for its 

potential applications. 

In this paper, the nonlocal elasticity approach involving 

the small scale effect for longitudinal vibration of a circular 

truncated nanocone is constructed. The exact expression of 

nonlocal longitudinal stress is determined and it can be 

written as an infinite series. The cross section of the circular 

truncated nanocone is a function of axial coordinate, which 

results in a nonlinear partial differential governing equation 

of motion. The theoretical formulations are derived and 
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they are solved by Galerkin method. The aim of this study 

is to reveal the nonlocal small scale and vertex angle effect 

in free longitudinal vibration of circular truncated nanocone 

because they should be taken into account in modeling and 

designing such nanostructures. In the numerical results, 

some new observations are shown and some unclear issues 

such as how to determine the range of nonlocal small scale 

are solved. The work may provide some useful reference to 

current nano-engineering. 

 

 

2. Problem model and governing equation 
 

Considering the continuum model for a circular 

truncated nanocone shown in Fig. 1, the force equilibrium 

equation for an element shown in Fig. 2 can be obtained as 

   
 2

2

,u x t
F dF F A x dx

t



  


 (1) 

where dx is length of the circular truncated nanocone 

element, A(x) is the area of the cross section with an axial 

coordinate x apart from the left end of circular truncated 

nanocone, ρ is the mass density of the nanocone, u(x,t) is 

the longitudinal displacement of the nanocone, t is time, 

F+dF and F are the internal axial forces at the left and right 

sides of the element, respectively. Note that the force 

analysis methods employed in Fig. 1 and Eq. (1) are the 

same as the classical continuum mechanics. However, the 

nonlocal elasticity idea will be introduced and then drawn 

into the continuum model. 

 

 

 x 
 d0 

 

Fig. 1 Sketch of a circular truncated nanocone 

 

 

 

Fig. 2 Force equilibrium for an element of nanocone 

In the nonlocal elasticity theory, the stress at a point Ais 

expressed as a function of strains at not only A but also all 

points and the history of strains in the continuum domain 

(Eringen and Edelen 1972). However, the contributions of 

other points are weaker with increasing the distances 

between other points and the reference point A. The 

nonlocal differential stress-strain relation was derived from 

its original integral form equivalently by Eringen (1983) as 

 
2

2

0 2

d
e a E

dx


    (2) 

where σ is the nonlocal stress, ε is the strain in nonlocal 

field and it is the same as the classical or local counterpart, 

E is the elastic modulus of the material, e0 is a material 

constant in nonlocal elasticity theory, and a is an internal 

characteristic length scale (e.g., lattice parameter, particle 

diameter, etc.). Note that e0 and a represent the intrinsic 

scale parameters revealing the nonlocal small scale effect.  

In fact, the classical continuum theory is a particular 

case of nonlocal theory, and it is recovered from the 

nonlocal theory by taking e0=0. 

Because F=σA, we have 

   22 2 2

2 2 2 2
2

d A d Ad F d d d dA d A
A

dx dx dx dx dx dx dx dx

   


 
     

 

 (3a) 

Multiplying the cross sectional area Aat both sides of 

Eq. (2) yields 

 
2

2

0 2

d
A e a A EA

dx


    (3b) 

As a result, the nonlocal force equilibrium formula for 

longitudinal vibration of circular truncated nanocone arrives 

at 

 
2 2

2

0 2 2
2

d F d A d dA u
F e a EA

dx dx dx dx x




  
    

 
 (3c) 

where
u

x






is adopted and it is consistent with 

theclassical strain-displacement relation. Note that the 

displacement u is a function with respect to x and t, hence 

the partial differential operator is used in Eq. (3(c)). 

A first partial derivative of Eq. (3(c)) with respect to xis 

employed and one obtains 

 
3 3 2 2 2

2

0 3 3 2 2 2
3 2

dF d F d A d d A d dA u dA u
e a EA E

dx dx dx dx dx dx dx x dx x

 


   
      

  

 
(4) 

From Eq. (1), one obtains that 

2

2

dF u
A

dx t






. 

Combining the expression with Eq. (4), we have 

 
2 4 2 2 3 3

2

02 2 2 2 2 2 3

2 2 2

2 2 2

2

3 2

u u d A u dA u d A
A e a A

t x t dx t dx x t dx

d d A d dA u dA u
EA E

dx dx dx dx x dx x

    

 

   
   

     

  
   

 

 

(5) 
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When the cross sectional area A is reduced to a constant 

in Eq. (5), the linear partial differential equation for 

longitudinal vibration of a nanorod is then recovered (e.g., 

see Eq. (32) in Li et al. 2017, Eq. (16) in Li et al. 2017). On 

the other hand, the conception of nonlocal stress shouldbe 

defined here. As aforementioned, the classical model and 

classical stress can be recovered from the nonlocal theory in 

case of e0=0. Consequently, it is possible to have classical 

and nonlocal stresses in one nonlocal model. In other 

words, the nonlocal stress is not only the non-classical 

stress but also including the classical stress. Using an 

iterative method, the series expression of nonlocal stress 

can be determined from Eq. (2) directly 

   
2 1 2 1

2 2

0 02 1 2 1
0 1

k k
k k

k k
k k

u u u
E e a E E e a

xx x


  

 
 

  
  

 
   (6) 

It is found that the nonlocal stress can be treated as the 

combination of classical stress derived in mechanics of 

materials and an infinite series of higher-order derivative 

relating to longitudinal displacement with respect to axial 

coordinate, or the non-classical stress. The result shown in 

Eq. (6) verifies the definition of nonlocal stress. According 

to the constitution of nonlocal theory, the higher-order 

derivative of Eq. (6) represents the long-range force 

between atoms/molecules. We assume the vertex angle of 

circular truncated nanocone is 2α, and diameter of the left-

most end section (x=0) is d0. Accordingly, the area of 

arbitrary cross section can be described as 

   
2

0 2 tan
4

A x d x


   (7) 

Substituting Eqs. (6) and (7) into Eq. (5), one arrives at 

   

     

   

2 2
2

0 02 2

4 2 2 2
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0 0 02 2 2 2 2
0

3 2 3
2

0 02 2 3
0

2 tan 4 tan 2 tan

2 tan 8 tan 24 tan

8 2 tan tan

k
k

k
k

k
k

k
k

u u u
d x E E d x

t x x

u u u
e a d x E e a

x t t x

u u
d x E e a

x t x

   
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  











   
    

   

   
   

   

   
    

    





 

(8) 

Eq. (8) is the nonlinear partial differential governing 

equation for longitudinal vibration of circular truncated 

nanocones considering the nonlocal elasticity field effect, 

and its non-dimensional normalized form is 

   

 

 

2 2
2

2 2

4 2 2 2
22 2 2 2

2 2 2 2 2
0

3 2 3
2

2 2 3
0

1 2 tan 4 tan 1 2 tan

1 2 tan 8 tan 24 tan

8 1 2 tan tan

k
k

k
k

k
k

k
k

u u u
x x

t x x

u u u
x

x t t x

u u
x

x t x

  
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  










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    

   

   
   

   

  
    

   





 

(9) 

where the dimensionless variables are defined as 

0

2

0 0 0 0

, , ,
e ax E u

x t t u
d d d d




     (10) 

in which τ is a non-dimensional nonlocal small scale 

parameter. It is obvious that τ=0 corresponds to e0=0 and 

the classical continuum theory is recovered with τ=0 in non-

dimensional physical analyses. 

It is noted that the derived nonlinear partial differential 

equation of motion includes the entire nonlocal effects since 

the full expression of Eq. (6) is adopted, where Eq. (6) is 

from Eq. (2) and the latter is the original nonlocal 

differential constitutive relation. Therefore, the overall 

nonlocality is taken into account in the mathematical model 

constructed in this paper. However, the common truncation 

method was utilized in most previous studies (Lim 2009, 

Lim 2010, Anjomshoa et al. 2014, Li 2014a) where only a 

few front terms in infinite series were retained but the other 

terms were omitted without certification. Suppose the 

longitudinal displacement is    , ni t
u x t U x e


 , where 

n  is the normalized vibration natural frequency and the 

relation between normalized and physical frequency is 

2
0n n d E   . Substitution of the longitudinal 

displacement expression into Eq. (9), one can obtain the 

following ordinary differential governing equation in spatial 

domain as 

   

 

 

2
2 2

2

2 2 2
22 2 2 2 2 2

2 2 2
0

2 3
2 2

2 3
0

1 2 tan 4 tan 1 2 tan

1 2 tan 8 tan 24 tan

8 1 2 tan tan

n

k
k

n n k
k

k
k

n k
k

d U dU
x U x

dx dx

d U d U
x U

dx dx

dU d U
x

dx dx

   

      

   











 
    

 


   



 
    
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



 

(11) 

In order to determine the solution, we further assume   
xU Ce where C is a constant and λ is the dispersion 

parameter (Li et al. 2011a, Li 2013). Substituting the 

expression into Eq. (11), we derive a characteristic algebra 

equation as 

     

 

 

2 2 2

2
22 2 2 2 2

2 2

2
2

2 2

1 2 tan 4 tan 1 2 tan

3
1 2 tan 8 tan

1

8 1 2 tan tan
1

n

n n

n

x x

x

x

     


     

 


   

 

   

  
     

 

 
    

 

 

(12) 

 

 

3. Results and discussion 
 

In this section, taking a circular truncated nanocone with 

fixed-free boundary constraint as an example, we suppose 

the circular truncated nanocone is fixed at left end and free 

at right end. For this purpose, the longitudinal displacement 

at the fixed end should be zero, and the external axial force 

at the free end should also be zero. Hence the boundary 

conditions are written as 

 

 

0 0

1
0

U

dU

dx




 (13) 
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Combining Eqs. (11)-(13), one can determine the natural 

frequencies for free longitudinal vibration of fixed-free 

circular truncated nanocones numerically. We can also 

apply the Galerkin method to Eq. (11) and the expression of 

non-dimensional longitudinal displacement in spatial 

domain can be given by 

 
1

= ( )
M

m m

m

U q x


  (14) 

where qm is the undetermined coefficient. According to the 

boundary conditions expressed in Eq. (13), we can use the 

trial solution which satisfies the boundary conditions as 

 2 1
( ) sin

2
m

m x
x





  (15) 

Substituting Eq. (14) into the ordinary differential 

governing equation and multiplying the expression of 
n at 

both ends, then integrating the results from 0 to 1 yields 
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q x dx q x dx

dx
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q dx q
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
       


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
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 

 




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(16) 

where n=1,2,3…M. 

For each value of n, we can determine an equation 

including q1, q2, …,qM. The number of such equations is M. 

Hence the equations can be expressed as 

     2

n q q  M K 0  (17) 

where {q}={q1, q2, q3, …, qM}
T
. In the following numerical 

results we take M=5. According to Krishnan et al. (1997), 

vertex angle of nanocones 2α includes five values, i.e.. 

19.2°, 38.9°, 60°, 86.6°, and 123.6°. Therefore, effects of 

the non-dimensional nonlocal small scale on the first three 

modes natural frequencies for longitudinal vibration of 

fixed-free circular truncated nanocones are shown in Figs. 

3-7 for α=9.6°, 19.45°, 30°, 43.3°, 61.8°, respectively. 

The coupling phenomenon of non-dimensional natural 

frequencies is observed subjected to the combined effects of 

nonlocal small scale and vertex angle from Figs. 3-7. It is 

seen that the vertex angle plays a significant role in free 

longitudinal vibration behaviors of circular truncated 

nanocones. The first three modes frequencies consist of 

distinguishing values for different vertex angles. The 

second and third modes frequencies are coupled for α=9.6°, 

19.45°, 30° and 43.3° with a relative larger non-dimensional 

nonlocal small scale (e.g., τ≥0.25 for α=9.6°), while the 

first, second and third modes frequencies are coupled 

together with increasing the vertex angle continuously, e.g., 

for α=61.8°. Hence the coupling phenomenon of natural 

frequencies is common relatively for larger vertex angle 

nanocones, which provides a reference for understanding 

and managing the mechanical properties of circular 

truncated nanocones. In fact, the radius effect is involved in 

the remarkable effect of the vertex angle and it cannot be 

neglected in studying the nanocone elements based 

nanoscale equipments. On the other hand, the nonlocal 

small scale effect based long-range force of circular 

truncated nanocones also plays an important role and it has 

a remarkable influence on natural frequencies. 

Firstly, the first three modes natural frequencies change 

significantly and even get coupled with the increasing of 

non-dimensional nonlocal small scale. The values of 

nonlocal small scale at which the frequencies get coupled 

can be determined from Figs. 3-7. For examples, the 2
nd

 and 

3
rd

 natural frequencies get coupled after the threshold of 

nonlocal small scale τ=0.25 for α=9.6°; the 2
nd

 and 3
rd

 

frequencies get coupled after the threshold of nonlocal 

small scale τ=0.23 for α=19.45°; the 2
nd

 and 3
rd

 frequencies 

get coupled after the threshold τ=0.22 for α=30°; the 2
nd

 and 

3
rd

 frequencies get coupled after the threshold τ=0.217 for 

α=43.3°; the 2
nd

 and 3
rd

 frequencies get coupled after τ=0.21 

for α=61.8°. It is seen that the nonlocal small scale 

threshold becomes smaller with increasing the vertex 

angles, and moreover, not only the 2
nd

 and 3
rd

 but also the 

1
st
 and 2

nd
 natural frequencies get coupled for α=61.8°, 

which means the natural frequencies get coupled more 

easily for circular truncated nanocone with larger vertex 

angle. Additionally, the 1
st
 and 2

nd
 frequencies get coupled 

twice for α=61.8°, and the nonlocal small scale thresholds 

are τ=0.17 and τ=0.2, respectively. 

Secondly, the 1
st 

natural frequency becomes zero under a 

certain value of nonlocal small scale. For instance, the 

nonlocal small scale τ=0.27, 0.25 and 0.24 change the 1
st
 

frequency to zero for circular truncated nanocones with 

α=30°, 43.3° and 61.8°, respectively. Such values can be 

defined as critical values of nonlocal small scale in free 

longitudinal vibration behaviors of circular truncated 

nanocones. That means, what is the maximum nonlocal 

small scale we can select in a specific study, since we know 

the minimum nonlocal small scale is zero (τ=0 as the 

minimum nonlocal small scale is always correct because it 

corresponds to the classical elasticity while τ>0 represents 

the existence of nonlocal small scale effect). Actually, it is 

still unclear that how to choose the range of non-

dimensional nonlocal small scale when applying the 

nonlocal theory to nano-mechanics. It is surprised that 

different range adopted in different published papers 

without certification (e.g., τ=0~0.06 in Wang et al. (2008), 

τ=0~0.02 in Lim (2009, 2010), τ=0~0.8 in Guo and Yang 

(2012), τ=0~0.15 in Li (2013), τ=0~0.1 in Yu and Lim 

(2014), τ=0~0.2 in Lim et al. (2015), τ=0~0.2 in Li et al. 

(2017)). It is no doubt that the range of nonlocal small scale 

cannot be chosen arbitrarily. Through this study, we can 

propose a method for determining the range of nonlocal 

small scale. The procedure of the method is to measure the 

critical value of nonlocal small scale first and then 

determine the range of nonlocal small scale. Accordingly, 

the proper range of nonlocal small scale is from zero to its 

critical value. As far as the research object concerned in this 

paper, the reasonable intervals of nonlocal small scale are 

[0, 0.27], [0, 0.25] and [0, 0.24] for α=30°, 43.3° and 61.8°, 
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respectively. Of course, the range of nonlocal small scale 

may change for other research topics or objects but it can be 

determined using the same method. 

Thirdly, the non-monotonicity of variations of natural 

frequencies with respect to nonlocal small scale is observed. 

The natural frequencies may decrease with increasing the 

nonlocal small scale (e.g., from τ=0 to τ=0.22 for 2nd 

natural frequencies with α=9.6°), while may increase with 

increasing the nonlocal small scale (e.g., from τ=0.22 to 

τ=0.3 for 2
nd 

natural frequencies with α=9.6°). Such 

observation is consistent with some previous studies (Li 

2014b, Li et al. 2015, Lim et al. 2015). The nonlocal 

weakening and nonlocal strengthening phenomena are 

commonly seen in nonlocal elastic models for different 

nano-materials and it has been a contentious subject 

because the weakening and strengthening phenomena are 

opposite (Li et al. 2015, Lim et al. 2015, Shen and Li 

2017). The nonlocal weakening (e.g., Wang et al. 2008, 

Firouz-Abadi et al. 2011, Li et al. 2017) means the stiffness 

of nanostructures becomes smaller under the nonlocal small 

scale effect than that without the nonlocal small scale effect, 

namely, the nanostructural rigidity based on nonlocal 

elasticity gets smaller than the nanostructural rigidity based 

on classical elasticity. Consequently, the deformation of 

nanostructures becomes larger and the vibration frequency 

becomes smaller with an increase of the nonlocal small 

scale τ. The nonlocal strengthening (e.g. Lim 2009, 2010, Li 

2014a, Yu and Lim 2014, Shen and Li 2017) means the 

nanostructural rigidity becomes larger under the nonlocal 

small scale effect than that based on classical elasticity. 

Consequently, the deformation becomes smaller and the 

frequency becomes larger with increasing the nonlocal 

small scale τ. The dispute now is resolved and both the 

nonlocal weakening and strengthening have been proved to 

be reasonable and they are related to different types of 

surface effects of nano-materials or structures. (Li 2014b, 

Shen and Li 2017). In fact, in 1983 Eringen pointed out that 

"nonlocal theory accounts for surface physics, an important 

assert not included in classical theories" based on the 

derivation of original nonlocal constitutive relations.  

 

 

 

Fig. 3 Variation of the first three modes non-dimensional 

natural frequencies with respect to non-dimensional 

nonlocal small scale for α=9.6° 

 

 

 

 

Fig. 4 Variation of the first three modes non-dimensional 

natural frequencies with respect to non-dimensional 

nonlocal small scale for α=19.45° 

 

 

 

Fig. 5 Variation of the first three modes non-dimensional 

natural frequencies with respect to non-dimensional 

nonlocal small scale for α=30° 

 

 

 

Fig. 6 Variation of the first three modes non-dimensional 

natural frequencies with respect to non-dimensional 

nonlocal small scale for α=43.3° 
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Fig. 7 Variation of the first three modes non-dimensional 

natural frequencies with respect to non-dimensional 

nonlocal small scale for α=61.8° 

 

 

This is the echo of the judging studies for different 

nonlocal effects and it provides the foundation to 

understand why the nonlocal weakening and strengthening 

effects associate with different types of surface effects, 

namely the attractive or repulsive, respectively (Li 2014b). 

The present study indicates and confirms the existence of 

different nonlocal effects in nanostructures. The 

correspondence relation between free longitudinal vibration 

frequencies and the nonlocal small scale as well as vertex 

angle is helpful for designing and optimizing the NEMS or 

other nano-devices where the circular truncated nanocone 

acts as a basic component. 

 

 

4. Conclusions 
 

This work is concerned with the free longitudinal 

vibration of a circular truncated nanocone used frequently 

in NEMS. The nonlocal elasticity theory is employed and 

the simplified mathematical model is constructed using the 

nonlinear differential governing equation. The nonlocal 

longitudinal stress can be expressed as an infinite series 

containing infinite higher-order derivatives. The first, 

second and third modes natural frequencies are calculated 

using the Galerkin method. It is concluded that both 

nonlocal small scale and vertex angle play remarkable roles.  

The coupling of natural frequency is found and it is 

more easily seen in circular truncated nanocones with larger 

vertex angle. The threshold of nonlocal small scale at which 

the frequencies get coupled is proposed, and the threshold 

becomes smaller with increasing the vertex angles. 

Subsequently, we define the critical value of nonlocal small 

scale that makes the first mode frequency vanish. Based on 

this, we solve the unclear issue about how to determine the 

range of nonlocal small scale. On the other hand, from the 

numerical results it is indicated the larger nonlocal small 

scale may result in either higher natural frequency or lower 

one and it depends on different surface properties of 

nanostructures. Consequently, two different types of 

nonlocal effects including nonlocal stiffness weakening and 

strengthening are verified. Accordingly, the correlation 

between the nonlocal theory and surface physics declared 

by Eringen is confirmed. The present study is useful for 

understanding and controlling the longitudinal vibration 

behaviors of circular truncated nanocones since they are 

common elements in the current nano-engineering. For 

example, we should pay particular attention to the coupling 

of natural frequencies for larger-vertex-angled nanocone-

based nanostructures. 
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