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1. Introduction 
 

Deterioration of engineering structures throughout their 

service lives is a significant problem (Yi et al. 2011, 2013).  

Current inspections of engineering structures are usually 

based on various nondestructive testing (NDT) methods to 

provide warning of catastrophic failure. The Lamb wave-

based method has exhibited remarkable advantages in 

damage identification for plate-like structures (Wang and 

Qiao 2017, Wang et al. 2017), since Lamb waves can 

propagate over a long distance (Qiu et al. 2013) and are 

highly sensitive to various forms of damage (Wang et al. 

2015, Wang et al. 2016, Tao et al. 2017). The function 

modes of transducers in Lamb wave-based damage 

identification include the pulse-echo and pitch-catch modes 

(Giurgiutiu 2011). The pulse-echo mode takes the time-of-

flight, which is the time interval between excitation and 

damage reflection, to multiply the Lamb wave velocity to 

determine distance between damage and transducer. On  
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the other hand, the pitch-catch mode investigates time delay 

of a direct wave to detect damage on the path between 

transducers or nearby. To this end, both modes require 

precise knowledge of Lamb wave velocity to produce 

accurate damage localization. However, the dispersive 

nature of Lamb waves leads to different velocities of 

individual frequency, impeding implementation of Lamb 

waves in damage identification. 

The analytical characterization of Lamb wave dispersion 

has been examined (He et al. 2013). In isotropic materials, 

the Lamb wave equation is solved based on the theory of 

elasticity by considering the traction-free boundary 

condition. In laminated materials, wave scattering and mode 

conversion at the interface in plies complicate the 

characterization of Lamb wave dispersion. Thus, the 

transfer (Wang and Yuan 2007) and global (Pant et al. 2014) 

matrix methods have been adopted to coordinate the 

displacement and stress at the interface in plies to calculate 

the dispersion curve of Lamb waves. 

Since the analytical solutions can only be derived in 

simple scenarios, finite element (FE) modeling has been 

adopted to aid in the study of Lamb wave dispersion in 

complex cases (Hong et al. 2014, Poddar and Giurgiutiu 

2016a, b). The measurements of dispersion curves, which 

show the relationship between frequency and wave velocity, 

are mainly based in the pitch-catch mode via a series of 

transducers. However, the plate edges cause strong wave 

reflection and contaminate the signals received by 
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transducers. Since these boundary reflections have the same 

frequency and greater amplitude than the direct waves, it is 

difficult to separate the direct waves in order to calculate 

the wave velocities relating to different frequencies. To 

prevent the boundary reflections from compromising the 

measurement of dispersion curves, it is desirable to develop 

non-reflecting boundaries to keep the area of measurement 

clean. The present non-reflecting boundaries include 

infinite elements (Liu and Jerry 2003), dashpot supports 

(Hosseini et al. 2013), spring-damper elements (Shen and 

Giurgiutiu 2015), and damping sections (Drozdz et al. 

2006). 

In this study, non-reflecting boundaries were developed 

in both numerical finite element (FE) model and experiment 

to alleviate boundary reflections and facilitate measurement 

of dispersion curves.  The analytical solutions of the Lamb 

wave equation for isotropic and laminated materials were 

formulated as the benchmarks of the following 

measurement in the first place. Subsequently, non-reflecting 

boundaries were designed in the FE model and applied in 

the experiment as damping frames to absorb waves at plate 

edges.  Finally, the direct waves were clearly received by 

transducers to calculate the dispersion curves of phase and 

group velocities through the slant-stack (Ambrozinski et al. 

2014) and short-time Fourier transformations (Niethammer 

et al. 2000), respectively. Both the numerical and 

experimental results agree well with the analytical 

solutions, demonstrating that the combination of non-

reflecting boundary and time-frequency analysis is a 

feasible and reliable scheme for characterizing Lamb wave 

dispersion in plate-like structures. 

 

 

2. Analytical solution of the Lamb wave dispersion 
 

Elastic waves in infinite isotropic materials consist of 

three decoupled bulk waves, i.e., longitudinal, shear 

vertical, and shear horizontal waves. For thin-walled 

isotropic materials, whose thickness has the same scale as 

the wave length, the bulk waves hit the top and bottom 

surfaces of the structure and get reflected, merging to 

generate Lamb waves that propagate within the structure.  

In this process, the longitudinal and shear vertical waves 

couple to two vibration modes (i.e., the symmetric and anti-

symmetric modes) of Lamb waves, leaving the shear 

horizontal wave decoupled. In this section, the dispersion 

curves of Lamb waves in isotropic and laminated materials 

are analytically solved. 

 

2.1 Isotropic materials 
 

According to the displacement potential or partial wave 

method (Rose 2004), the longitudinal and shear vertical 

waves are decoupled from the Lamb wave equations, 

forming the Rayleigh-Lamb equation 
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where ω is the circular frequency; cp is the phase velocity; 

cL is the velocity of the longitudinal wave; cT is the velocity 

of the shear vertical wave; h is the half thickness of the 

plate; k is the wavenumber; λ and μ are the Lame constants; 

and +1 and -1 represent the symmetric and anti-symmetric 

modes, respectively.  As an example, the dispersion curve 

of phase velocity is presented in Fig. 1(a) for an aluminum 

plate whose material properties are shown in Table 1. Due 

to the dispersive nature, the phase velocity varies according 

to frequency.  In addition, the dispersion curve of group 

velocity, which shows the average velocity of the whole 

wave packet containing various frequency contents, is 

plotted in Fig. 1(b) 
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Fig. 1 Dispersion curves of aluminum plate: (a) phase 

velocity and (b) group velocity 
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Table 1 Material properties of aluminum plate 

Young’s modulus Poisson’s ratio Density 

68.9 GPa 0.33 2700 kg/m3 

 

 

 

Fig. 2 Model of the laminated material 

 

 

 

2.2 Laminated materials 
 

Considering the symmetric N-layered laminates 

illustrated in Fig. 2, the fiber-reinforced plies on the x1-x2 

plane are perfectly bonded at interfaces and stacked in the 

x3 direction.  When the waves propagate off the symmetry 

on the x1-x2 plane, the whole laminates are characterized as 

monoclinic material about the mid-plane. 

According to the theory of elasticity, the equilibrium 

equations are as follows 
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where ρ is the density of ply. Applying the equivalent 

matrix to simplify the laminate as homogeneous material 
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where 
k

Q    is the global stiffness matrix of the k-th layer.  

Due to the symmetry of laminates, the equivalent matrix is 

in the form of monoclinic materials 
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To define a homogenous plane wave, all the 

displacements are assumed to be uniform over the 

wavefront. 
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The strain-displacement relationship is as follows 
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and substituting Eqs. (7) and (8) into Eqs. (5) and (9) leads 

to the following 

( ) 0mn nK U      ( , 1,2,3)m n   (10) 

where 
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The nontrivial solutions of Eq. (10) require the 

determinant of matrix Kmn to be zero, further leading to a 

polynomial equation 
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where the coefficient A is listed in Appendix A. There are 

six roots for Eq. (12) with unique properties as 
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α1, α2, and α3 represent the roots with a positive imaginary 

part, while α4, α5, and α6 represent the roots with a negative 

imaginary part. To normalize the displacement, the 

displacement ratios are defined as 
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According to Eqs. (13)-(15), the displacement ratios also 

have unique properties of 
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At this point, the displacement and stress at any point of 

a lamina are given as 
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By applying the traction-free boundary conditions at the 

top and bottom surfaces of the laminates (x3 = ±h) in Eq. 

(18), six equations in terms of the partial amplitudes U1q are 

obtained. Applying the uniqueness properties of Eqs. (13), 

(16), and (22), the characteristic equation is derived to give 

nontrivial solutions of U1q 
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symmetric wave modes, respectively 
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(a) 

 
(b) 

Fig. 3 Dispersion curve of [45/0/-45/90]2s laminate: (a) 

phase velocity and (b) group velocity 

 
 

For instance, the dispersion curves of phase and group 

velocities for [45/0/-45/90]2s laminates are shown in Fig. 3.   

The wave propagation direction is 45°, and the material 

properties of the laminate are given in Table 2. 

 

 

3. Non-reflecting boundary 
 

The Lamb waves are high-frequency vibrations that 

obey the equations in theory of elasticity. Adding the 

damping term in the wave equation can decrease the 

amplitude of vibration. To this end, non-reflecting 

boundaries are designed as damping frames to decrease the 

amplitude of waves at the plate edges. N frames are 

partitioned around the boundary, and the damping 

coefficient αn of each frame is defined as 

 

Table 2 Material properties of carbon fiber reinforced epoxy laminate 

E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) 

175.9 8.73 8.73 4.49 4.49 

ν12 ν13 ν23 Density (g/cm) Thickness (mm) 

0.34 0.34 0.28 1.576 0.191 
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where ln is the length of the n-th frame, and αmax is the 

largest damping coefficient. These frames permit rapid 

damping growth while avoiding inter-frame reflection due 

to sudden damping changes. 

A three-dimensional (3-D) FE model was built in ABAQUS 

to validate applicability of non-reflecting boundaries. Only 

a quarter of the plate (0.1 × 0.1 × 0.001 m) was modeled, by 

considering its symmetry about the x and y axis (see Fig. 4). 

The model was discretized by 1 × 1 mm C3D8R elements, 

and the time increment was 2 × 10
-7

 s was considered. The 

excitation x(t) was a tone burst with a central frequency of 

100 kHz 

2
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where fc is the central frequency. This tone burst was 

applied as in-plane concentrated forces on the element 

nodes 4 mm away around the origin, assuming that most 

shear comes from the edges of piezoelectric disk. Ten  

damping frames were assigned at the plate edges with a  

 

 

 

length of 2 mm and αmax was chosen as 4 × 10
6
. The direct 

waves were extracted as the normalized out-of-plane 

displacement at (40, 40) mm, indicating that the boundary 

reflections (waves after 80 μs) are effectively reduced, as 

shown in Fig. 5. In addition, the snapshots of the simulation 

with non-reflecting and normal boundaries are presented in 

Fig. 6 for the sake of comparison. 

 

 

4. Time-frequency analysis 
 

In this section, two time-frequency analysis, i.e., the slant-

stack (SL) transformation and the short-time Fourier 

transformation (STFT), are introduced, from which the phase 

and group velocities are calculated, respectively. By applying 

these transformations, the direct waves are used to characterize 

the dispersion of Lamb waves. 

 

4.1 Phase velocity via SL transformation 
 

SL transformation can be adopted to measure the phase 

velocity of Lamb waves. For simplicity of explanation, the 

Lamb waves are assumed to be non-attenuating during 

propagation. After transmitting an excitation s with the 

frequency of interest, the direct wave y at location x is given as 

 

Fig. 4 Finite element modeling of non-reflecting boundaries 

 

Fig. 5 Comparison of different boundaries 
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when the responses of excitation are recorded by a series of 

transducers located in a linear configuration along the wave 

propagation path (see Fig. 7). In reference to the first 

transducer (the one closest to the excitation), the direct 

wave received by the n-th transducer gains a time delay 
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where c is the shifting parameter. When the shifting 

parameter c equals the phase velocity cp, y reaches the 

maximum. Then, the direct waves received by different 

transducers are shifted in amounts of c and summed up to 

index sl 
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where N is the total number of transducers. By changing the 

parameters t and c, a contour is generated to show the 

variance of sl with respect to time and velocity. For a 

specific time, the velocity corresponding to the maximum 

of sl on this contour indicates the measured phase velocity.  

By performing Fourier transformation regarding the time  

variable t, the contour is converted to the frequency-

velocity domain 

 

 

1

( , ) ( )
N

n n

n p

x x
SL c F s t

c c




 
   

  
  (31) 

where F represents the Fourier transformation. The energy 

distribution with respect to frequency ω and phase velocity 

c should be consistent with the analytical phase velocity of 

the Lamb wave. 

 

4.2 Group velocity via STFT 
 

STFT can be adopted to measure the group velocity of 

Lamb waves. STFT divides the direct wave into short 

segments of equal length in the time domain and then performs 

a Fourier transformation on each segment separately. By 

determining the frequency for each segment, STFT represents 

the direct wave in the time-frequency domain as follows 

      ( , ) j tSTFT x t x t w t e dt  





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where w(t) is the window function. The energy distribution 

in the time-frequency domain should be consistent with the 

analytical group velocity of the Lamb wave. 

Since STFT provides sinusoid basis for signal 

decomposition, it is essentially suitable to analyze direct waves  

excited by a chirp signal (the excitation in following sections), 

compared with the wavelet and Hilbert-Huang transformations. 

 

 

    
(a) damping boundary (40 μs) (b) damping boundary (60 μs) (c) damping boundary (80 μs) (d) damping boundary (100 μs) 

    
(e) normal boundary (40 μs) (f) normal boundary (60 μs) (g) normal boundary (80 μs) (h) normal boundary (100 μs) 

Fig. 6 Snapshots of the FE simulation 
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Fig. 7 Illustration of the SL transformation 

 

Fig. 8 2-D modeling of an aluminum plate 

 

Fig. 9 Dispersion curve of phase velocity in aluminum plate 

 

Fig. 10 Signal at 0.9 m from the left end 
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5. FE simulation 
 

The non-reflecting boundaries developed in Section 3 are 

applied in a two-dimensional (2-D) FE model to simulate 

propagation of Lamb waves. After the boundary reflections are 

effectively decreased, the direct waves are clearly extracted.  

By applying the time-frequency analysis described in Section 

4, the dispersion curves of phase and group velocities are 

characterized in contours and compared with the analytical 

solutions derived in Section 2. 

 

5.1 Description of FE model 
 

Since the shear horizontal wave remains decoupled in 

addition to the longitudinal and shear vertical waves in 

isotropic material, the plane strain condition was applied to 

facilitate the development of a 2-D FE model in the 

longitudinal-thickness plane. The mesh size and time 

increment were set to 0.2 mm and 1 × 10
-8

 s, respectively.   

A chirp signal whose frequency swept from 0 to 10 

MHz in 1×10
-4

 s was applied as the nodal displacement to 

input various frequency contents (see Fig. 8). Ten frames of 

the damping boundary were assigned on the right end of a 4 

mm-thick aluminum plate to absorb reflection. Direct waves 

were extracted as out-of-plane displacements at the points 

30 mm to 60 mm from the left end with a space of 0.2 mm. 

 
5.2 Dispersion curve of phase velocity 
 

All the direct waves are subjected to SL transformation 

to present a contour in the frequency-velocity domain.  

The energy distribution on this frequency-velocity contour 

compares well with the analytical solutions, as 

demonstrated in Fig. 9. 

 

5.3 Dispersion curve of group velocity 
 

Due to the dispersive group velocity, different frequency 

contents reach the transducer at different time. By applying 

STFT to the direct wave 0.9 m from the left end (see Fig. 10), 

the time of arrival of a specific frequency can be represented 

on the time-frequency contour.  

 

 

Fig. 11 Dispersion curve of group velocity in aluminum 

plate 

 

For comparison, the analytical dispersion curves of group 

velocity are converted to the time-frequency domain and 

plotted on the STFT contour (see Fig. 11), demonstrating that 

the energy distribution along this contour agrees well with the 

analytical solutions. 

 

 

6. Experiment 
 

In this section, the group velocities of Lamb waves are 

measured through experiments on aluminum and laminated 

plates, respectively. Both plates are sealed by damping clay 

to absorb waves at plate edges. By applying STFT to the 

direct waves, the group velocities are characterized in 

contours and compared with the analytical solutions. 

 

6.1 Experimental setup 
 

Two experiments were conducted to measure the group 

velocities of the Lamb waves on the isotropic and laminated 

plates. To keep the direct waves clean, damping clay was 

sealed at the plate edges to absorb the boundary reflections.  

A chirp signal, whose frequency rose from 1 μHz to 1 MHz 

in 0.1 μs, was generated by the Agilent
®
 3325A waveform 

generator. The voltage of the chirp signal was amplified to 

200 Vpp by the PINTEK
®
 HA-405 high voltage amplifier.  

A signal from the monitoring terminal of the amplifier with 

a -40 dB attenuation was input to the Agilent
®
 DSO7034B 

oscilloscope as a trigger. Once the transmitter was excited, 

the oscilloscope recorded the voltage variation of the 

receiver in a 1.8 μs period with a sampling frequency of 20 

MHz.  The recorded signals were then subjected to the 

STFT to characterize the dispersion of group velocity on a 

time-frequency contour. 

 

6.2 Dispersion in aluminum plate 
 

The group velocity was measured on an 800 × 800 × 3 

mm aluminum plate (see Fig. 12) whose material properties 

are shown in Table 1. Two piezoelectric disks were mounted 

at the upper corners of the plate, functioning as a transmitter 

and receiver, respectively. 

 

 

 

Fig. 12 Group velocity measurement in aluminum plate 
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Fig. 13 Time-frequency contour in the aluminum plate 

 

 

 

The time-frequency contour of this signal is produced by 

STFT and then compared with the analytical solutions, as 

shown in Fig. 13. The energy distribution is in accordance 

with the analytical solutions. 

 

6.3 Dispersion in laminated plate 
 

A similar measurement was conducted on a 590 × 590 × 3 

mm [45/0/-45/90]2s laminated plate (see Fig. 14). The 

transmitter and receiver were mounted at the diagonal corners 

of the plate to measure the Lamb wave propagating at 45°.  

The output cables, which were used to excite the transmitter, 

were wrapped by foil tape and connected to the grounding 

terminal of the oscilloscope to alleviate the electromagnetic 

crosstalk in the received signals. 

The time-frequency contour of the received signal along 

with the analytical solutions is plotted in Fig. 15, and a good 

correlation is observed. 

 

 

 

Fig. 14 Group velocity measurement in laminated plate 

 

 

 

 

Fig. 15 Time-frequency contour in the laminated plate 

 

 

7. Conclusions 
 

To facilitate the time-frequency characterization of Lamb 

wave dispersion, the non-reflecting boundaries are developed 

in both numerical and experimental cases as damping frames 

and damping clay, respectively. These damping boundaries are 

capable of absorbing waves at plate edges and accordingly 

purifying the wave field of interest. By applying time-

frequency analysis to the direct waves obtained from the 

purified wave field, Lamb wave dispersion can be 

characterized in a way that has strong accordance with the 

analytical solutions. Both the numerical and experimental 

results obtained from both isotropic and laminated materials 

demonstrate that the combination of a non-reflecting boundary 

and time-frequency analysis is a feasible and reliable way to 

evaluate elastic waves and can be extended to more complex 

scenarios. 
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Appendix A 
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