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1. Introduction 
 

The plate elements are used in civil, mechanical, 

aeronautical and marine structures. the researches on plates 

have received great attention, and a variety of plate theories 

has been introduced based on considering the transverse 

shear deformation effect. The classical plate theory (CPT), 

which neglects the transverse shear deformation effect, to 

overcome the limitation of CPT, many shear deformation 

plate theories which account for then transverse shear 

deformation effect have been developed. First order shear 

deformation theories (FSDTs) are based on the assumption 

that straight lines which are normal to neutral surface before 

deformation remain straight but not necessarily normal to 

the deformed neutral surface. 

To overcome the limitations of classical plate theory and 

first order shear deformation theory, a many higher-order 

shear deformation plate theories which involve the higher-

order terms in power series of the coordinate normal to the 

middle plane, have been proposed. An extensive review of 

laminated plate theories can be found in such as Levinson 

(1980), Bhimaraddi and Stevens (1984), Reddy (1984), Ren 

(1986), Kant and Pandya (1988) and Mohan et al. (1994). A 

good review of these models for the investigation of 

laminated plates is found in (Noor and Burton 1989a, b, 

Reddy 1990, 1993, Mallikarjuna and Kant 1993, Dahsin 

and Xiaoyu 1996). Reddy (1984) proposed a HSDT with  
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cubic distributions for axial displacements. Based on 

Reddy’s theory, Xiang et al. (2011) developed a n-order 

shear deformation theory. Mallikarjuna and Kant (1993) and 

Kant and Khare (1997) employed also HSDTs with cubic 

distributions for axial displacements as in the article by 

Reddy (1984). Recently, a new class of HSDTs is proposed 

by many researchers such as Shahrjerdi et al. (2011), 

Bouderba et al. (2013), Viswanathan et al. (2013), Ait Amar 

Meziane et al. (2014), Belabed et al. (2014), Ahmed (2014), 

Swaminathan and Naveenkumar (2014), Nedri et al. (2014), 

Hamidi et al. (2015), Kar et al. (2015), Hebali et al. (2014), 

Mahi et al. (2015), Saidi et al. (2016), Bennoun et al. 

(2016), Bourada et al. (2016) and Tounsi et al. (2016), 

Panda and Singh (2009, 2010, 2011, 2013), Panda and 

Katariya (2015), Katariya and Panda (2016). 

In other hand, piezoelectric and piezomagnetic materials 

are a new class of smart materials which exhibit a coupling 

between mechanical, electric and magnetic fields and 

because of the ability of converting energy among these 

three energy forms, these materials have direct application 

in sensors and actuators, control of vibrations in structures, 

etc. Magnetoelectroelastic mechanics has absorbed much 

attention of researchers Avellaneda and Harshe (1994), 

Benveniste (1995), Li and Dunn (1998), Achenbach (2000), 

Wu and Huang (2000), Aboudi (2001), Priya et al. (2007). 

In addition to the above, piezoelectric materials are one 

of the most common subgroups of smart materials currently 

being used in structures to control deformation, vibration, 

buckling, etc. Shen (2001) presented the thermal 

postbuckling of shear-deformable laminated plates with 

piezoelectric actuators under uniform temperature rise using 

a perturbation technique. Also, a theoretical framework for 

analyzing the buckling and postbuckling response of 

composite laminates and plates with piezoactuators and 
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sensors has been presented by Varelis et al. (2004). 

Recently, Panda and Singh (2010), investigated the 

buckling and post-buckling behaviours of a laminated 

composite spherical shallow shell panel embedded with 

shape memory alloy (SMA) fibres under a thermal 

environment. The nonlinear finite element analysis of 

thermal post-buckling vibration of laminated composite 

shell panel embedded with shape memory alloy fibre was 

presented by Panda and Singh (2013a). Panda and Singh 

(2013b,c) investigated the post-buckling and large 

amplitude free vibration analysis of laminated composite 

doubly curved panel embedded with shape memory alloy 

fibres subjected to thermal environment. Panda and Singh 

(2015a,b) presented the large amplitude free vibration 

behaviour of laminated composite spherical shell panel and 

doubly curved composite panels embedded with the 

piezoelectric layer using a numerical approach. Various 

analytical or numerical studies have been carried out for 

these PZT and Magnetostrictive  materials which include 

studies on the large amplitude by Singh et al. (2016a, b), 

Dutta et al. (2017), Singh and Panda (2016), Suman et al. 

(2016). 

To the best of authors’ knowledge, however, the 

buckling problem of magnetoelectroelastic plate resting on 

a Pasternak foundation has not been considered. Hence, in 

this paper the buckling load of magnetoelectroelastic plates 

resting on elastic foundations are investigated by using a 

third-order shear deformation plate theory. According to 

Maxwell equations and magnetoelectric boundary 

conditions, the variation of electric and magnetic potentials 

along the thickness direction of the plate is determined. 

 

 

2. Mathematical formulations 
 

The strain displacement relations are (Reddy 2004) 

        
 

 
   
2   

        
 

 
   
2   

                    

             

             

(1) 

where εxx and εyy are the normal strains and γxy, γyz, and γxz 

are the shear strains. Here, u, ν, and w are the plate 

displacements parallel to the coordinates (x,y,z), and a 

comma indicates the partial derivative. 

In this research work, further simplifying supposition 

are considered to the third-order shear deformation plate 

theory, the displacement field is assumed to be (Reddy 

2004) 

𝑢(𝑥 𝑦 𝑧)  𝑢0(𝑥 𝑦)  𝑧𝜙𝑥(𝑥 𝑦) − 𝑐1𝑧
3(𝜙𝑥  𝑤0 𝑥) 

𝑣(𝑥 𝑦 𝑧)  𝑣0(𝑥 𝑦)  𝑧𝜙𝑦(𝑥 𝑦) − 𝑐1𝑧
3(𝜙𝑦  𝑤0 𝑦) 

𝑤(𝑥 𝑦 𝑧)  𝑤0(𝑥 𝑦) 

(2) 

 

where u0, ν0, and w0 represent the displacements on the mid-

plane (z=0) of the plate, and 𝜙𝑥 and 𝜙𝑦 are the mid-plane 

rotations of transverse normal about the y and x axes, 

respectively. Here, c1  
4

3h2
, where the traction- free 

boundary conditions on the top and bottom faces of the 

laminated plate are satisfied. 

Substituting Eqs. (2) into the strain displacement 

relations (1) gives the kinematic relations as : 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
}  {

𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

}  𝑧{

𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)

}  𝑧3 {

𝜀𝑥𝑥
(3)

𝜀𝑦𝑦
(3)

𝛾𝑥𝑦
(0)

} 

,
𝛾𝑦𝑧
𝛾𝑥𝑧
-  {

𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
}  𝑧2 {

𝛾𝑦𝑧
(2)

𝛾𝑥𝑧
(2)
} 

(3) 

where 

{

𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

}  {

𝑢0 𝑥
𝑣0 𝑦

𝑢0 𝑦  𝑣0 𝑥
} 

{

𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)

}  {

𝜙𝑥 𝑥
𝜙𝑦 𝑦

𝜙𝑥 𝑦  𝜙𝑦 𝑥

} 

{

𝜀𝑥𝑥
(3)

𝜀𝑦𝑦
(3)

𝛾𝑥𝑦
(3)

}  −𝑐1 {

𝜙𝑥 𝑥  𝑤0 𝑥𝑥
𝜙𝑦 𝑦  𝑤0 𝑦𝑦

𝜙𝑥 𝑦  𝜙𝑦 𝑥   𝑤0 𝑥𝑦

} 

{
𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
}  {

𝜙𝑦  𝑤0 𝑦
𝜙𝑥  𝑤0 𝑥

} 

{
𝛾𝑦𝑧
(2)

𝛾𝑥𝑧
(2)
}  −3𝑐1 {

𝜙𝑦  𝑤0 𝑦
𝜙𝑥  𝑤0 𝑥

} 

(4) 

For the transversely isotropic magnetoelectroelastic 

solid, the constitutive equations can be defined as 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}
 
 

 
 

 

[
 
 
 
 
𝑐11 𝑐12 0 0 0
𝑐12 𝑐22 0 0 0
0 0 𝑐44 0 0
0 0 0 𝑐44 0
0 0 0 0 𝑐66]

 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

−

[
 
 
 
 
0 0 𝑒31
0 0 𝑒31
0 𝑒24 0
𝑒15 0 0
0 0 0 ]

 
 
 
 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

}

−

[
 
 
 
 
0 0 𝑓31
0 0 𝑓31
0 𝑓24 0
𝑓15 0 0
0 0 0 ]

 
 
 
 

{

𝐻𝑥
𝐻𝑦
𝐻𝑧

} 

(5) 

 

{

𝐷𝑥
𝐷𝑦
𝐷𝑧

}  [

0 0 0 𝑒15 0
0 0 𝑒24 0 0
𝑒31 𝑒32 0 0 0

]

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

− [

𝑕11 0 0
0 𝑕22 0
0 0 𝑕33

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

}

− [

𝑔11 0 0
0 𝑔22 0
0 0 𝑔33

] {

𝐻𝑥
𝐻𝑦
𝐻𝑧

} 

(6) 

 

(4) 
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{

𝐵𝑥
𝐵𝑦
𝐵𝑧

}  [

0 0 0 𝑓15 0
0 0 𝑓24 0 0
𝑓31 𝑓32 0 0 0

]

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

− [

𝑔11 0 0
0 𝑔22 0
0 0 𝑔33

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

}

− [

𝜇11 0 0
0 𝜇22 0
0 0 𝜇33

] {

𝐻𝑥
𝐻𝑦
𝐻𝑧

} 

(7) 

where Cij, eij, fij and gij denote elastic, piezoelectric, 

piezomagnetic and magnetoelectric constant respectively; 

hij and μij are dielectric and magnetic permeability 

coefficients, respectively. σij is the stress component; Di and 

Bi are the electric displacement and magnetic induction 

respectively. Ei and Hi are the electric and magnetic field 

intensities respectively. 

The electric and magnetic intensities can be defined as 

gradients of the scalar electric and magnetic potentials ψ 

and φ, respectively, 

𝐸  −∇𝜓 

𝐻  −∇𝜑 
(8) 

 

2.1 Governing equations 
 

The starin energy of the magnetoelectroelastic plate can 

be expressed as 

𝑈  
 

 
∫∫ (𝜎𝑥𝑥𝜀𝑥𝑥  𝜎𝑦𝑦𝜀𝑦𝑦  𝜎𝑦𝑧𝜀𝑦𝑧  𝜎𝑥𝑧𝜀𝑥𝑧

𝑕/2

−𝑕/2
Ω

 𝜎𝑥𝑦𝜀𝑥𝑦 − 𝐷𝑥𝐸𝑥 − 𝐷𝑦𝐸𝑦 − 𝐷𝑧𝐸𝑧
− 𝐵𝑥𝐻𝑥 −  𝐵𝑦𝐻𝑦 − 𝐵𝑧𝐻𝑧) 𝑑Ω𝑑𝑧 

(9) 

Since the magnetoelectroelastic layer is thin, the in-

plane electric and magnetic field can be ignored, i.e., 

Ex=Ey=0 and Hx=Hy=0. Substituting Eqs. \ (1)- (7) to Eq. (9). 

The stress resultants are related to the stresses by the 

equations 

{

𝑁𝛼𝛽
𝑀𝛼𝛽
𝑃𝛼𝛽

}  ∫ 𝜎𝛼𝛽 {
 
𝑧
𝑧3
}

𝑕/2

−𝑕/2

𝑑𝑧 

{
𝑄𝛼
𝑅𝛼
}  ∫ 𝜎𝛼𝛽 ,

 
𝑧2
- 𝑑𝑧

𝑕/2

−𝑕/2

 

(10) 

where α and β take the symbols x and y. 

The external virtual work due to surrounding elastic 

medium can be written as 

𝛿𝑊  ∫𝑞𝛿𝑤0𝑑Ω
Ω

 (11) 

where q is related to the Pasternak foundation and 

transverse load, which can be expressed as 

𝑞  𝑘𝑤𝑤0 − 𝑘𝑔∇
2𝑤0  (𝑁𝑥𝑚  𝑁𝑥𝑒  𝑁𝑥𝑎)

𝜕2𝑤0

𝜕𝑥2
 

(𝑁𝑦𝑚  𝑁𝑦𝑒  𝑁𝑦𝑎)
𝜕2𝑤0

𝜕𝑦2
  

(12) 

The principle can be expressed in analytical form as 

 

𝛿𝑈 − 𝛿𝑊  0 (13) 

when substituting Eqs. (9)- (12) into (13), integrating by 

parts the governing equations as 

N     N     0 (14) 

 

N     N     0 (15) 

 

Q    Q   − 3c1(R    R   )  c1(P       P      

P     )  kw 0 − kg∇
2 0  (N m  N e  N a)

∂2w0

∂ 2
 

(N m  N e  N a)
∂2w0

∂ 2
 0  

(16) 

 

M     M    − Q  3c1R − c1(P     P    )  0 (17) 

 

M     M    − Q  3c1R − c1(P     P    )  0 (18) 

 

D    0 

B    0 
(19) 

 

N m  P 

N e  e31V0 
N a  f31Ω0 
N m  λP 

N e  e31V0 

N a  f31Ω0 

(20) 

In wich P is the mechanical load along x direction and 

𝜆 is the lateral load parameter. 

Substituting Eqs. (1) into Eq. (19),  the following two 

equations can be derived 

𝑒31[𝜙𝑥 𝑥 − 3𝑐1𝑧
2(𝜙𝑥 𝑥  𝑤0 𝑥𝑥)]  𝑒31[𝜙𝑦 𝑦 −

3𝑐1𝑧
2(𝜙𝑦 𝑦  𝑤0 𝑦𝑦)] − 𝑕33

𝜕2𝜓

𝜕𝑧2
− 𝑔33

𝜕2𝜑

𝜕𝑧2
 0  

(21) 

 

𝑓31[𝜙𝑥 𝑥 − 3𝑐1𝑧
2(𝜙𝑥 𝑥  𝑤0 𝑥𝑥)]

 𝑓31[𝜙𝑦 𝑦 − 3𝑐1𝑧
2(𝜙𝑦 𝑦  𝑤0 𝑦𝑦)]

− 𝑔33
𝜕2𝜓

𝜕𝑧2
− 𝜇33

𝜕2𝜑

𝜕𝑧2
 0 

(22) 

Thus, by adopting Crammer’s rule, one may have 

𝜕2𝜓

𝜕𝑧2
 
(𝜇33𝑒31 − 𝑔33𝑓31)∆

𝑕33𝜇33 − 𝑔33
2  

𝜕2𝜑

𝜕𝑧2
 
(𝑕33𝑓31−𝑔33𝑒31)∆

𝑕33𝜇33−𝑔33
2   

(23) 

 

where 
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Δ  [𝜙𝑥 𝑥 − 3𝑐1𝑧
2(𝜙𝑥 𝑥  𝑤0 𝑥𝑥)]

 [𝜙𝑦 𝑦 − 3𝑐1𝑧
2(𝜙𝑦 𝑦  𝑤0 𝑦𝑦)] 

(24) 

The second integral of Eq. (23) is given by 

𝜓  
(𝜇33𝑒31 − 𝑔33𝑓31)∆

𝑕33𝜇33 − 𝑔33
2 .

𝑧2

 
−
𝑕2

8
/  

𝑉0
𝑕
𝑧  

𝑉0
 

 

𝜑  
(𝑕33𝑓31 − 𝑔33𝑒31)∆

𝑕33𝜇33 − 𝑔33
2 .

𝑧2

 
−
𝑕2

8
/  

Ω0
𝑕
𝑧  

Ω0
 

 

(25) 

where the electric and magnetic boundary conditions are 

prescribed as 𝜓(h/2)=V0 and 𝜓(-h/2)=0 and 

𝜑(𝑕  ⁄ )  Ω0 and 𝜑(− 𝑕  ⁄ )  0. 

𝑁𝑥𝑥  𝑐11𝑢0 𝑥𝑕  𝑓31Ω0  𝑒31𝑉0  𝑐12𝑣0 𝑦𝑕 (26) 

 

𝑁𝑦𝑦  𝑐12𝑢0 𝑥𝑕  𝑓31Ω0  𝑒31𝑉0  𝑐22𝑣0 𝑦𝑕 (27) 

 

𝑁𝑥𝑦  𝑐66(𝑢0 𝑦  𝑣0 𝑥)𝑕 (28) 

 

𝑀𝑥𝑥  −
𝑕3

 0
*(
𝑐11
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑥 𝑥  𝑤0 𝑥𝑥)

 (
𝑐12
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑦 𝑦

 𝑤0 𝑦𝑦)+

 
𝑕3

  
[(𝑐11  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑥 𝑥

 (𝑐12  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑦 𝑦] 

(29) 

 

𝑀𝑦𝑦  −
𝑕3

 0
*(
𝑐12
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑥 𝑥  𝑤0 𝑥𝑥)

 (
𝑐22
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑦 𝑦

 𝑤0 𝑦𝑦)+

 
𝑕3

  
[(𝑐12  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑥 𝑥

 (𝑐22  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑦 𝑦] 

(30) 

 

𝑀𝑥𝑦  −
𝑕3

60
𝑐66(𝜙𝑥 𝑦  𝜙𝑦 𝑥   𝑤0 𝑥𝑦)

 
𝑕3

  
𝑐66(𝜙𝑥 𝑦  𝜙𝑦 𝑥) 

(31) 

 

𝑃𝑥𝑥  −
𝑕5

   
*(
𝑐11
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑥 𝑥  𝑤0 𝑥𝑥)

 (
𝑐12
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑦 𝑦

 𝑤0 𝑦𝑦)+

 
𝑕5

80
[(𝑐11  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑥 𝑥

 (𝑐12  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑦 𝑦] 

(32) 

 

𝑃𝑦𝑦  −
𝑕5

   
*(
𝑐12
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑥 𝑥  𝑤0 𝑥𝑥)

 (
𝑐22
3
 𝑒31𝑀1  𝑓31𝑀2) (𝜙𝑦 𝑦

 𝑤0 𝑦𝑦)+

 
𝑕5

80
[(𝑐12  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑥 𝑥

 (𝑐22  𝑓31𝑀2  𝑒31𝑀1)𝜙𝑦 𝑦] 

(33) 

 

𝑃𝑥𝑦  −
𝑕5

 68
𝑐66𝑤0 𝑥𝑦  

𝑕5

 05
𝑐66(𝜙𝑥 𝑦  𝜙𝑦 𝑥) (34) 

 

𝑄𝑥  
 𝑕

3
𝑐44(𝜙𝑥  𝑤0 𝑥) (35) 

 

𝑄𝑦  
 𝑕

3
𝑐44(𝜙𝑦  𝑤0 𝑦) (36) 

 

𝑅𝑥  
𝑕3

3
𝑐44(𝜙𝑥  𝑤0 𝑥) (37) 

 

𝑅𝑦  
𝑕3

3
𝑐44(𝜙𝑦  𝑤0 𝑦) (38) 

with 

𝑀1  
(𝜇33𝑒31 − 𝑔33𝑓31)

𝑕33𝜇33 − 𝑔33
2  (39) 

 

𝑀2  
(𝑕33𝑓31 − 𝑔33𝑒31)

𝑕33𝜇33 − 𝑔33
2  (40) 

By substituting Eqs. (26)-(38) to Eqs. (14)-(18), one can 

yield 

[𝑐11𝑢0 𝑥𝑥  𝑐12𝑣0 𝑥𝑦  𝑐66(𝑢0 𝑦𝑦  𝑣0 𝑥𝑦)]𝑕  0 (41) 

 

[𝑐12𝑢0 𝑥𝑦  𝑐22𝑣0 𝑦𝑦  𝑐66(𝑢0 𝑥𝑦  𝑣0 𝑥𝑥)]𝑕  0 (42) 

 

[(
𝜙𝑥 𝑥𝑥𝑥+𝜙𝑥 𝑥𝑦𝑦+𝜙𝑦 𝑥𝑥𝑦+𝜙𝑦 𝑦𝑦𝑦

210
−

𝑤0 𝑥𝑥𝑥𝑥+𝑤0 𝑦𝑦𝑦𝑦+2𝑤0 𝑥𝑥𝑦𝑦

84
) (𝑒31𝑀1  𝑓31𝑀2)  

𝑐66 (
𝜙𝑥 𝑥𝑥𝑦+8𝜙𝑦 𝑥𝑥𝑥−5𝑤0 𝑥𝑥𝑥𝑦

315
)  𝑐12 (

4(𝜙𝑥 𝑥𝑦𝑦+𝜙𝑦 𝑥𝑥𝑦)

315
−

𝑤0 𝑥𝑥𝑦𝑦

126
)  𝑐11 (

4𝜙𝑥 𝑥𝑥𝑥

315
−
𝑤0 𝑥𝑥𝑥𝑥

252
)  

𝑐22 (
4𝜙𝑦 𝑦𝑦𝑦

315
−
𝑤0 𝑦𝑦𝑦𝑦

252
)] 𝑕3  [

8(𝜙𝑥 𝑥+𝜙𝑦 𝑦+𝑤0 𝑥𝑥+𝑤0 𝑦𝑦)

15
] 𝑕  

𝑤0 𝑥𝑥(𝑁𝑥𝑚  𝑁𝑥𝑒  𝑁𝑥𝑎 − 𝑘𝑔)  𝑤0 𝑦𝑦(𝑁𝑦𝑚  𝑁𝑦𝑒  𝑁𝑦𝑎 −

𝑘𝑔)  𝑘𝑤𝑤0  0  

(43) 
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((9𝜙𝑥 𝑥𝑥  9𝜙𝑦 𝑥𝑦 −   𝑤0 𝑥𝑥𝑥 −   𝑤0 𝑥𝑦𝑦)(𝑒31𝑀1

 𝑓31𝑀2)  𝑐12( 7𝜙𝑦 𝑥𝑦 − 4𝑤0 𝑥𝑦𝑦)

 𝑐11( 7𝜙𝑥 𝑥𝑥 − 4𝑤0 𝑥𝑥𝑥)

 𝑐66( 7𝜙𝑥 𝑦𝑦   7𝜙𝑦 𝑥𝑦

− 8𝑤0 𝑥𝑦𝑦)) 𝑕
3 −  68𝑐44(𝜙𝑥  𝑤0 𝑥)𝑕

 0 

(44) 

 

((9𝜙𝑥 𝑥𝑦  9𝜙𝑦 𝑦𝑦 −   𝑤0 𝑥𝑥𝑦 −   𝑤0 𝑦𝑦𝑦)(𝑒31𝑀1

 𝑓31𝑀2)  𝑐12( 7𝜙𝑥 𝑥𝑦 − 4𝑤0 𝑥𝑥𝑦)

 𝑐22( 7𝜙𝑦 𝑦𝑦 − 4𝑤0 𝑦𝑦𝑦)

 𝑐66( 7𝜙𝑥 𝑥𝑦   7𝜙𝑦 𝑥𝑥

− 8𝑤0 𝑥𝑥𝑦)) 𝑕
3 −  68𝑐44(𝜙𝑦  𝑤0 𝑦)𝑕

 0 

(45) 

 

𝑢0  
𝑢0

𝑙
 ;𝑣0  

𝑣0

𝑙
 ;𝑤0  

𝑤0

𝑙
 ;𝑥  

𝑥

𝑙
 ; 

𝑦  
𝑦

𝑏
 ; 𝛿  

𝑕

𝑙
; 𝜂  

𝑙

𝑏
; 𝜃  

 

𝛿2
;  𝑐𝑖𝑗  

𝑐𝑖𝑗

𝑐11
 

(46) 

 

𝑒31𝑀1  
𝑒31𝑀1

𝑐11
 ;𝑓
31
𝑀2  

𝑓31𝑀2

𝑐11
 ; 

𝑘𝑤  
𝑘𝑤𝑙

4

𝑕3𝑐11
 ;𝑘𝑔  

𝑘𝑔𝑙
2

𝑕3𝑐11
 ;𝑁𝑖𝑗  

𝑁𝑖𝑗𝑙
2

𝑕3𝑐11
 

(47) 

 

[ 𝑐
11
𝑢0 𝑥𝑥  𝑐12𝜂𝑣0 𝑥𝑦  𝑐66(𝜂

2𝑢0 𝑦𝑦  𝜂𝑣0 𝑥𝑦)]𝜃  0 (48) 

 

[ 𝑐
12
𝜂𝑢0 𝑥𝑦  𝑐22𝜂

2𝑣0 𝑦𝑦  𝑐66(𝜂𝑢0 𝑥𝑦  𝑣0 𝑥𝑥)]𝜃  0 (49) 

 

(
𝜙𝑥 𝑥𝑥𝑥  𝜂

2𝜙𝑥 𝑥𝑦𝑦  𝜂𝜙𝑦 𝑥𝑥𝑦  𝜂
3𝜙𝑦 𝑦𝑦𝑦

  0

−
𝑤0 𝑥𝑥𝑥𝑥  𝜂

4𝑤
0 𝑦𝑦𝑦𝑦

  𝜂2𝑤
0 𝑥𝑥𝑦𝑦

84
) (𝑒31𝑀1  𝑓31𝑀2)

 𝑐66 .
8𝜂𝜙𝑥 𝑥𝑥𝑦  8𝜙𝑦 𝑥𝑥𝑥 − 5𝜂𝑤0 𝑥𝑥𝑥𝑦

3 5
/

 𝑐12 (
4(𝜂2𝜙𝑥 𝑥𝑦𝑦  𝜂𝜙𝑦 𝑥𝑥𝑦)

3 5
−
𝜂2𝑤

0 𝑥𝑥𝑦𝑦

  6
)

 𝑐11 .
4𝜙𝑥 𝑥𝑥𝑥
3 5

 
𝑤0 𝑥𝑥𝑥𝑥
 5 

/  𝑐22 (
4𝜂3𝜙𝑦 𝑦𝑦𝑦

3 5
−
𝜂4𝑤

0 𝑦𝑦𝑦𝑦

 5 
)

 [
8(𝜙𝑥 𝑥  𝜂𝜙𝑦 𝑦  𝑤0 𝑥𝑥  𝜂

2𝑤
0 𝑦𝑦

)

 5
]𝜃

 (𝑁𝑥𝑚  𝑁𝑥𝑒  𝑁𝑥𝑎 − 𝑘𝑔)𝑤0 𝑥𝑥

 (𝑁𝑦𝑚  𝑁𝑦𝑒  𝑁𝑦𝑎 − 𝑘𝑔)𝜂
2𝑤

0 𝑦𝑦
 𝑘𝑤𝑤0  0 

(50) 

 

 

(9𝜙𝑥 𝑥𝑥  9𝜂𝜙𝑦 𝑥𝑦 −   𝑤0 𝑥𝑥𝑥 −   𝜂
2𝑤0 𝑥𝑦𝑦)(𝑒31𝑀1

 𝑓
31
𝑀2)

 𝑐12 ( 7𝜂𝜙𝑦 𝑥𝑦 − 4𝜂
2𝑤

0 𝑥𝑦𝑦
)

 𝑐11( 7𝜙𝑥 𝑥𝑥 − 4𝑤0 𝑥𝑥𝑥)

 𝑐66( 7𝜂
2𝜙𝑥 𝑦𝑦   7𝜂𝜙𝑦 𝑥𝑦

− 8𝜂2𝑤0 𝑥𝑦𝑦) −  68𝑐44𝜃(𝜙𝑥  𝑤0 𝑥)

 0 

(51) 

 

(9𝜂𝜙𝑥 𝑥𝑦  9𝜂
2𝜙𝑦 𝑦𝑦 −   𝜂𝑤0 𝑥𝑥𝑦 −   𝜂

3𝑤
0 𝑦𝑦𝑦

) (𝑒31𝑀1

 𝑓
31
𝑀2)  𝑐12( 7𝜂𝜙𝑥 𝑥𝑦 − 4𝜂𝑤0 𝑥𝑥𝑦)

 𝑐22( 7𝜂
2𝜙𝑦 𝑦𝑦 − 4𝜂

3𝑤0 𝑦𝑦𝑦)

 𝑐66( 7𝜂𝜙𝑥 𝑥𝑦   7𝜙𝑦 𝑥𝑥 − 8𝜂𝑤0 𝑥𝑥𝑦)

−  68𝑐44𝜃(𝜙𝑦  𝜂𝑤0 𝑦)   0 

(52) 

For the simply supported magnetoelectroelastic plate we 

have following boundary conditions 

𝑢  𝑣  𝑤  𝑀𝑥𝑥  0   𝑥  0 𝑎 

𝑢  𝑣  𝑤  𝑀𝑦𝑦  0   𝑦  0 𝑏 
(53) 

 

𝑢0  𝑈 cos(𝛼𝑥) sin(𝛽𝑦) 
𝑣0  𝑉 sin(𝛼𝑥) cos(𝛽𝑦) 
𝑤0  𝑊 sin(𝛼𝑥) sin(𝛽𝑦) 
𝜙𝑥  𝐴 cos(𝛼𝑥) sin(𝛽𝑦) 

𝜙𝑦  𝐵 sin(𝛼𝑥) cos(𝛽𝑦) 

(54) 

In wich α and β are defined as α=mπ and β=nπ, 

respectively, and m and n are the half wave numbers. 

By substituting Eqs. (54) into Eqs. (48)-(52), one have 

 (−𝑐11𝛼
2 − 𝑐66𝜂

2𝛽2)𝜃𝑈  (−𝑐12𝜂𝛼𝛽 − 𝑐66𝜂𝛼𝛽)𝜃𝑉  0 (55) 

 

(−𝑐12𝜂𝛼𝛽 − 𝑐66𝜂𝛼𝛽)𝜃𝑈  (−𝑐22𝜂
2𝛽2 − 𝑐66𝛼

2)𝜃𝑉  0 (56) 

 

*−
1

84
(𝛼4  𝜂4𝛽4   𝜂2𝛼2𝛽2)(𝑒31𝑀1  𝑓31𝑀2)  

1

252
(4𝜂𝛼3𝛽𝑐66   𝜂

2𝛼2𝛽2𝑐12 − 𝛼
4𝑐11 − 𝜂

4𝛽4𝑐22)  
8

15
(−𝛼2 − 𝜂2𝛽2)𝑐44𝜃 − (𝑁𝑥𝑚  𝑁𝑥𝑒  𝑁𝑥𝑎 − 𝑘𝑔)𝛼

2  

(𝑁𝑦𝑚  𝑁𝑦𝑒  𝑁𝑦𝑎 − 𝑘𝑔)𝜂
2𝛽2  𝑘𝑤+𝑊  *

1

210
(𝛼3  

𝜂2𝛼𝛽2)(𝑒31𝑀1  𝑓31𝑀2)  
4

315
(𝜂2𝛼𝛽2𝑐12  𝛼

3𝑐11 −

 𝜂𝛼2𝛽𝑐66) −
8

15
𝛼𝑐44𝜃+ 𝐴  *

1

210
(𝜂𝛼2𝛽  𝜂3𝛽3)(𝑒31𝑀1  

𝑓
31
𝑀2)  

4

315
(− 𝛼3𝑐66  𝜂

3𝛽3𝑐22  𝜂𝛼
2𝛽𝑐12) −

8

15
𝜂𝛽𝑐44𝜃+ 𝐵  0  

(57) 

 

*
1

315
(  𝛼3    𝜂2𝛼𝛽2)(𝑒31𝑀1  𝑓31𝑀2)  

(58) 
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4

315
𝛼2𝜂𝛽2𝑐12  

4

315
𝛼3𝑐11  

8

315
𝜂2𝛼𝛽2𝑐66 −

8

15
𝛼𝑐44𝜃+𝑊  

*−
1

35
𝛼2(𝑒31𝑀1  𝑓31𝑀2) −

17

315
𝛼2𝑐11 −

17

315
𝜂2𝛽2𝑐66 −

8

15
𝑐44𝜃+ 𝐴  *−

1

35
𝜂𝛼𝛽(𝑒31𝑀1  𝑓31𝑀2) −

17

315
𝜂𝛼𝛽𝑐12 −

17

315
𝜂𝛼𝛽𝑐66+ 𝐵  0  

 

[
 

3 5
(  𝛼2𝛽    𝜂2𝛽3)(𝑒31𝑀1  𝑓31𝑀2)  

4

3 5
𝜂2𝛼𝛽𝑐12

 
4

3 5
𝛽3𝑐22  

8

3 5
𝜂2𝛼2𝛽𝑐66

−
8

 5
𝛽𝑐44𝜃]𝑊

 [−
 

35
𝛼𝛽(𝑒31𝑀1  𝑓31𝑀2)

−
 7

3 5
𝜂2𝛼𝛽𝑐66 −

 7

3 5
𝜂𝛼𝛽𝑐12] 𝐴

 [−
 

35
𝜂𝛽2(𝑒31𝑀1  𝑓31𝑀2)

−
 7

3 5
𝛽2𝑐22 −

 7

3 5
𝜂𝛼2𝑐66 −

8

 5
𝑐44𝜃] 𝐵

 0 

(59) 

Eqs. (55)-(59) can be written as 

[
 
 
 
 
𝐿11 𝐿12 𝐿13 𝐿14 𝐿15
𝐿21 𝐿22 𝐿23 𝐿24 𝐿25
𝐿31 𝐿32 𝐿33 𝐿34 𝐿35
𝐿41 𝐿42 𝐿43 𝐿44 𝐿45
𝐿51 𝐿52 𝐿53 𝐿54 𝐿55]

 
 
 
 

{
 
 

 
 
𝑈
𝑉
𝑊
𝐴
𝐵}
 
 

 
 

 

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

 (60) 

where coefficients L11 through L55 are given in Appendix A. 

 
 

3. Results and discussion 
 
Numerical examples of buckling behaviors for 

magnetoelectroelastic plate are investigated. The 

magnetoelectroelastic composite made of the piezoelectric 

material BaTiO3 as the inclusions and piezomagnetic 

material CoFe2O4 as the matrix is considered. The materials 

properties for the composite are (Wang and Han 2007): 

c11=226x10
9 

N/m
2
, c12= 124x10

9
 N/m

2
, c22=216x10

9
 N/m

2
, 

c44=44x10
9
N/m

2
, e31=-2.2C/m

2
, f31=290.2N/Am,       

h33=6.35x10
-9

C
2
/Nm

2
,g33=2737.5x10

-12
Ns/VC,         

µ33=83.5x10
-6

Ns
2
/C

2
. The length of the magnetoelectro- 

elastic plate is l=1m.  

 

3.1 Comparisons 
 
Firstly, in order to validate the accuracy of the present 

method, a comparison has been carried out with previously 

published results by Li (2014) for both thin and moderately 

thick  square plates . Plates are subjected to various loads. 

The buckling load parameters  are listed in Table 1 with 

the available results by Li (2014), obtained by Mindlin 

plates theory for shear correction facto π2   ⁄ . It can be 

observed an excellent agreement between the present results 

and those given by Li (2014). 

Table 1 Comparison study of buckling load parameters, Pcr 

for square magnetoelectroelastic plate (V0 =Ω0 =0, 

kw=kg=0, m=n=1) 

δ=l/h 

 Theories 0.001 0.01 0.05 0.1 0.15 0.2 

λ=0 

FSDT* 

(ks=π2/12) 
3.2794 3.2760 3.1975 2.9747 2.6652 2.3264 

Present 2.9824 2.9794 2.9089 2.7087 2.4304 2.1254 

λ=0.5 

FSDT* 

(ks=π2/12) 
2.1862 2.1840 2.1317 1.9831 1.7768 1.5509 

Present 1.9882 1.9863 1.9392 1.8058 1.6203 1.4169 

λ=-0.5 

FSDT* 

(ks=π2/12) 
6.5587 6.5520 6.3950 5.9494 5.3304 4.6527 

Present 5.9647 5.9588 5.8177 5.4174 4.8608 4.2508 

* Taken from Ref (Li. 2014) 

 

 

 

3.2.1 Effect of the lateral load 
The effect of lateral load parameter on the buckling load 

is considered firstly. From Fig. 1, one can see that buckling 

load increases with increasing length-to-width ratio for a 

rectangular magnetoelectroelastic thinner plate. The 

responses are not following a monotonous trend and revert 

from the expected line with the thickness ratio. This is 

because of the fact that the thin structure may not follow a 

monotonous trend of results due to severity in geometrical 

distortion. 

 

3.2.2 Effect of the electric load 
Fig. 2 displays the influence of electric potential on the 

normalized buckling load under different thickness-to-

length ratio for a square magnetoelectroelastic plate. It is 

seen that the buckling load decreases linearly with an 

increase in the value of electric load. 
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Fig. 1 Variations of buckling load, Pcr, versus 𝜂, for 

rectangular magnetoelectroelastic plate under different 

lateral load parameter (𝛿  0.00  𝑉0  Ω0  0 𝑘𝑤  
𝑘𝑔  0 𝑚  𝑛   ) 
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Fig. 2 Variations of buckling load, Pcr, versus electric 

potential, 𝑉0 , for square magnetoelectroelastic plate 

under different 𝛿  ( Ω0  0 𝑘𝑤  𝑘𝑔  0 𝜆  0 𝑚  

𝑛   ) 
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Fig. 3 Variations of buckling load, Pcr, versus, for 

rectangular magnetoelectroelastic plate under different 

electric potential 𝑉0 (𝛿  0.00  Ω0  0  𝑘𝑤  𝑘𝑔  0 

𝜆  0 𝑚  𝑛   ) 
 

 

Fig. 3 illustrates the influence of the length to width 

ratio on the buckling load of a rectangular plate for varies 

electric load. It can be conclude that the buckling load 

increases with an increase in the value of length to width 

ratio and the trend becomes more apparent for a negative 

electric load. This is because of the fact that the thin flexible 

structures may not follow a specified trend of results due to 

the geometrical distortions are nonlinear in nature. 

 

3.2.3 Effect of the magnetic load 
Fig. 4 shows the effect of magnetic load on the buckling 

load under different thickness to length ratio for a square 

plate. Contrary to the case of electric load shown in Fig. 2, 

the buckling load increases with the increase of magnetic 

load. 
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Fig. 5 Variations of buckling load, Pcr, versus  𝜂 ,          

for rectangular magnetoelectroelastic plate under 

different magnetic potential Ω0 , ( 𝛿  0.00  𝑉0  
0 𝑘𝑤  𝑘𝑔  0 𝜆  0 𝑚  𝑛   ) 

 

 

The effect of the length to width ratio on the normalized 

buckling load of a rectangular plate for varies magnetic 

potential is shown in Fig. 5. It is clear that the buckling load 

increases with an increase in the value of length to width 
ratio especially for a larger magnetic load. 

 

 

4. Conclusions 
 

In this paper, the buckling behavior of a 

magnetoelectroelastic plate resting on a Pasternak elastic 

foundation is investigated using the third-order shear 

deformation plate theory by taking the nonlinear equations 

according to Von Karman’s theory sense to incorporate the 

true geometrical distortion in geometry. 
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The in plane electric and magnetic fields can be ignored 

for plates. According to Maxwell equation and 

magnetoelectric boundary condition, the variation of 

electric and magnetic potentials along the thickness 

direction of the plate is determined. From the numerical 

results, some conclusions can be drawn. 

• Buckling does not mean failure of the structure, 

rather it is a state of geometrical instability due to 

excess thermal and/or mechanical distortion of 

structural geometry, and it may lead to 

catastrophic failure. This geometrical distortion 

may also be reckoned as the geometrical non-

linearity, and it has been modelled through von-

Karman type non-linear strain-displacement 

relation. 

• For a rectangular magnetoelectroelastic plate, the 

buckling load increases with an increase in the 

value of length to width ratio. 

• The buckling load decreases with an increase in 

the values of lateral load and thickness to length 

ratio for a square magnetoelectroelastic plate. 

• For a rectangular magnetoelectroelastic plate, the 

buckling load decreases linearly with the increase 

of electric load, and increases with the increase of 

magnetic load. 
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