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Abstract.

In this paper, a novel higher-order shear deformation theory (HSDT) is proposed for the analysis of the hygro-

thermo-mechanical behavior of functionally graded (FG) plates resting on elastic foundations. The developed model uses a
novel kinematic by considering undetermined integral terms and only four variables are used in this model. The governing
equations are deduced based on the principle of virtual work and the number of unknown functions involved is reduced to only
four, which is less than the first shear deformation theory (FSDT) and others HSDTs. The Navier-type exact solutions for static
analysis of simply supported FG plates subjected to hygro-thermo-mechanical loads are presented. The accuracy and efficiency
of the present model is validated by comparing it with various available solutions in the literature. The influences of material
properties, temperature, moisture, plate aspect ratio, side-to-thickness ratios and elastic coefficients parameters on deflections

and stresses of FG plates are also investigated.
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1. Introduction

Functionally graded materials (FGMs) are the novel
generation of advanced composite materials in the area of
engineering composites, whose characteristics are changed
smoothly in the spatial direction microscopically to improve
the overall structural performance. These materials provide
great promise in important temperature environments,
e.g., wear-resistant linings for handling large heavy abrasive
ore particles, rocket heat shields, heat exchanger tubes,
thermoelectric generators, heat engine components,
plasma facings for fusion reactors, and electrically
insulating metal/ceramic joints and also these are
widely employed in many structural applications
such as mechanics, civil engineering, optical, electronic,
chemical, biomedical, energy sources, nuclear, automotive
fields, and ship building industries to minimize
thermo mechanical mismatch in metal-ceramic bonding
(Reddy 2011, Yaghoobi and Yaghoobi 2013, Swaminathan
and Naveenkumar 2014, Ahmed 2014, Darilmaz 2015, Kar
and Panda 20153, b, Belkorissat et al. 2015, Hadji and Adda
Bedia 2015, Ait Yahia 2015, Akavci 2015, Bounouara et al.
2016, Kolahchi et al. 2016, Belabed et al. 2014, Aldousari
2017, Rahmani et al. 2017, Hirwani et al. 2018a, b,
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Abualnour et al. 2018).

Presently, various investigations are carried out for
theoretically studying the thermo-mechanical response
behavior of FG structures. Zhang et al. (1994) proposed an
analytical method for FG cylinder with axial symmetry
based on thermal elasticity theory. Reddy and Chen (2001)
developed a three-dimensional model for a FG plate under
mechanical and thermal loads, both applied at the top of the
plate. The analysis of the thermo-mechanical response of
hollow circular cylinders fabricated with FGM was studied
by Liew et al. (2003). Vel and Batra (2003) presented a
three-dimensional solution for transient thermal stresses in
FG rectangular plates. The buckling analysis of shear
deformable FG rectangular plates subjected to thermo-
mechanical loads was studied by Shukla et al. (2007) using
FSDT. The thermal bending behavior of a piezoelectric
circularly curved FG actuator under an applied electric
force is investigated by Zaman et al. (2010). Golmakani and
Kadkhodayan (2011) studied a large deflection behavior of
shear deformable FG plates subjected to thermo-mechanical
loads and under various boundary conditions via the
dynamic relaxation method. Fallah and Nosier (2012) used
two parameter perturbation technique and Fourier series
method to examine nonlinear response of FG circular plates
with various clamped and simply supported boundary
conditions. Bouderba et al. (2013) discussed thermo-
mechanical static response of FG thick plates resting on
Winkler-Pasternak elastic foundations based on a refined
trigonometric shear deformation theory. Zhu et al. (2014)

ISSN: 1738-1584 (Print), 1738-1991 (Online)



76 Fouad Boukhelf, Mohamed Bachir Bouiadjra, Mohammed Bouremana and Abdelouahed Tounsi

analyzed a geometrically nonlinear thermo-mechanical
analysis of moderately thick FG plates by employing a local
meshless method with Kriging interpolation procedure.
Tung and Duc (2014) investigated the nonlinear behavior of
thick FG doubly curved shallow panels resting on elastic
foundations and under some conditions of mechanical,
thermal, and thermo-mechanical loads. Tounsi et al. (2013)
presented a thermo-elastic bending analysis of FG sandwich
plates by employing a refined trigonometric shear
deformation theory. In their work, the core layer is FGM
and two face sheets have different material properties.
Houari et al. (2013) proposed a novel higher order shear
and normal deformation theory for thermo-elastic bending
of FG sandwich plates. Zidi et al. (2014) discussed the
static response of FG plates under hygro-thermo-
mechanical loading using a four variable refined plate
theory. Attia et al. (2015) presented a free vibration analysis
of FG plates with temperature-dependent properties using
various four variable refined plate theories. Akbag (2015)
examined the wave propagation of a functionally graded
beam in thermal environments. Sobhy (2015) studied the
thermo-elastic behavior of FG plates with temperature-
dependent properties resting on variable elastic foundations.
Mantari and Granados (2015) investigated a thermo-elastic
bending behavior of two types of FGM sandwich plates by
using a new quasi-3D hybrid type higher order shear
deformation theory with 5 unknowns. Li et al. (2016)
investigated the thermo-mechanical bending behavior of FG
sandwich plates using four-variable refined plate theory.
Laoufi et al. (2016) examined the mechanical and
hygrothermal response of FG plates using a hyperbolic
shear deformation theory. Beldjelili et al. (2016) studied the
hygro-thermo-mechanical bending of S-FGM plates resting
on variable elastic foundations using a four-variable
trigonometric plate theory. Mehar and Panda (2017)
presented a numerical investigation of nonlinear thermo-
mechanical deflection of functionally graded CNT
reinforced doubly curved composite shell panel under
different mechanical loads. Recent works on flexural
behavior of the composite structure using HSDT are
presented by Benchohra et al. (2018), Youcef et al. (2018),
Mahapatra et al. (2017), Abdelaziz et al. (2017), Chikh et
al. (2017), Draiche et al. (2016), Bouafia et al. (2017),
Benadouda et al. (2017, Hirwani et al. (2016), Bennoun et
al. (2016), Hirwani et al. (2017), Bellifa et al. (2017a),
Mahapatra et al. (2016a, b), Kar and Panda (2015c,
2016a,b,c), Barati and Shahverdi (2016), Barka et al.
(2016), and Kar et al. (2015).

The purpose of this article is to investigate the bending
response of FG plates resting on variable two-parameter
elastic foundations and subjected to hygro-thermo-
mechanical loads. The use of the integral term in the
kinematic led to a reduction in the number of variables and
equilibrium equations. These latter are deduced using the
new proposed HSDT containing the hygro-thermo-
mechanical effect and the interaction between the plate and
the elastic foundations. The results obtained by the present
theory are compared with those reported by other HSDTs
available in the open literature. Some numerical examples
are offered to demonstrate the influences of various

parameters on the hygro-thermo-mechanical
response of the FG plates.

bending

2. Mathematical formulation

Consider a rectangular FG plate with sides axb and
uniform thickness h, referred to the rectangular Cartesian
coordinates (x,y,z), where (x,y) plane coincides with
middle surface of the plate and (z) is the thickness
coordinate (-=h/2<z<h/2), as presented in Fig. 1.

The FG plate is subjected to a transverse load q(x,Y)
and a temperature field T(x,y,z) as well as a moisture
concentration C(X, y, z) . The material characteristics of the
plate are supposed to change within the thickness of the
plate. By applying a simple power law distribution, the
volume fractions (V ) of metal and ceramic are defined as
(Bessaim et al. 2013, Ait Amar Meziane et al. 2014, Bellifa

et al. 2016, Ahouel et al., 2016, Boukhari et al. 2016, Hanifi
Hachemi Amar et al. 2017).

vc(z):(%%jp, O<p<w), V,()+V, (=1 ()

where p is the power-law index and the subscripts c

and m represent ceramic and metal, respectively. The
material properties P of the FG plate, such as Young’s
modulus E , Poisson’s ratio v, and thermal coefficient
a and moisture expansion [ are expressed as (Mouffoki
et al. 2017, El-Haina et al. 2017, Bouderba et al. 2016,
Saidi et al. 2016, Bousahla et al. 2016, Hamidi et al. 2015,
Larbi Chaht et al. 2015, Al-Basyouni et al. 2015)

P(Z) = (Pc - Pm )Vc (Z) + Pm (2)

2.1 Displacement base field

The displacement field of the novel theory is proposed
as follows (Bellifa et al. 2017b, Besseghier et al. 2017,
Khetir et al. 2017, Menasria et al. 2017, Yazid et al. 2018,
Bousahla et al. 2018)

Fig. 1 Geometry and coordinates of the rectangular
FG plate resting on elastic foundation
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u(x,y,z) =ug(x, y)—z%+kl f(z)J-e(x, y) dx

v(X,y,2) =V (X y) - z%+ k, f (z)je(x, y)dy (3ab.c)

W(Xv Y, Z) = WO (X, y)

Where uy (X, y) , Vo(X, ¥) , Wo(x,y) and 6(x,y) are the
four variable displacement functions of middle plane of the
plate. The last variable is a mathematical term that allows
determining the rotations of the normal to the mid plate
about the x and y axes (as in the ordinary HSDT). Note that
the integrals do not have limits. In the present work is
considered terms with integrals instead of terms with
derivatives. In this work, the present HSDT is obtained by
setting

z cosh(;z/z)—(h/;r)sinh[’; zj @

f)=
cosh(z/2)-1
It can be observed that the kinematic in Eq. (3) employs
only four variables (uy,V,, W, and @ ).The nonzero strains
associated with the kinematic in Eq. (3) are

& |& ky L,
g, r=1¢& r+zek) o+ f(2) L
0 0 0
Yy Ty kxy ny (5a)
0
{m} _402) {7%2}
Y x 7 xz
Where
auy oW,
g? OX k? 52)(2
0 NV, 0 0°W,
&y (= - Ky =9 ===
0 ox kO ay
7xy %ﬁ—% Xy _2 aZWO
X
% OX0Y | (5b)
L° k,0
L) ¢ = k,0
Ly klijedmkzijedy
oy OX

J'de
jedx

G

And

df (z
9(z )——( ) (5¢)

The integrals used in the above equations shall be
resolved by a Navier type procedure and can be expressed
as follows

2
-—jed I lody-822
axay OX oxoy
50 (6)
j 0 dx= A‘ j ody=8"%
oy
Where, the coefficients A' and B' are defined

according to the type of solution employed, in this case via
Navier solution. Therefore, A", B', k, and k, are
defined as follows

A=-—, B=—= k=L k=1
U

where 4 and g are defined in expression (24).

2.2 Constitutive equations

For the FG plate, the stress - strain relationships can be
expressed as

Oy Cy, C, O 0 0 1lex—a AT =B AC

oy C, Cp O 0 0 ||&y—aAT-pAC
Twr=[ 0 0 Ci O O Yy (8)
7y, 0 0 0 Cu O Yy

Ty 0 0 0 0 Cg -

Where (0y, O, Ty, Ty,

Ty)and (&, 7y
Vy. » Vx ) are the stress and strain components,

respectively. Using the material properties defined in Eq.

(2), stiffness coefficients, CIJ , can be given as

E(z v E(z
Ci1=Cyp Z—( )2 , Coo Z—(2)1
1-v 1-v ©)
Cay = Cop = Cop = 22
44 55 66 2(1+v)'

Where AT =T-T, and AC=C-C, in which T,
is the reference temperature and C, is the reference

moisture  concentration. In the present work, the moisture
concentration C(x,Y,2) and the temperature distribution

field T(x,y,z) areexpressed as (Bouderba et al. 2013)

T(xy,2) =Ti(x.y) +%T2(Xl V+P@T(xY)  (108)

Cxy,2) =Ci(xy) +%Cz (%, Y)+¥(2)Cy(xy)  (10b)
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In which T(2)= sm(h ZJ in the case of sinusoidal

. . 2 .
temperature  distribution, ¥z )_(1_3(:1]J in the

case of cubic  temperature  distribution  and

Y(z) = % e’z(ﬂ in the case of exponential temperature

distribution.
2.3 Governing equations

The governing equations of equilibrium can be
determined by using the principle of virtual displacements.
The principle of virtual work in the this case yields (Zidi et
al. 2017, Houari et al. 2016, Bousahla et al. 2014, Hebali et
al. 2014, Bourada et al. 2015, Mahi et al. 2015, Zemri et al.
2015)

hi2
j j [ox & +0y 06ty 07y 415 01 t1y §yyz}dde
0-hi2 (11)

—j(q—fe)éwszo
Q

Where € is the top surface, and f, is the density of

reaction force of foundation. For the Pasternak foundation
model

o’w . d*w
SX 6X2 sy ~ 2 ay
where K, is the modulus of subgrade reaction (elastic
coefficient of the foundation) and K, and K, are the

f.=K,w—K

e w

(12)

shear moduli of the subgrade (shear layer foundation
stiffness). If the foundation is homogeneous and isotropic,
this implies that Kg =Ky =K . If the shear layer

foundation stiffness is neglected, Pasternak foundation
becomes a Winkler foundation.

Substituting Egs. (5) and (8) into Eg. (12) and
integrating across the thickness of the plate, Eqg. (12) can be
expressed as

108 0,3 45 M3 7y MG KL MK M, 5K

7Ny
! (13)
+sx5L2+sy5L‘;+sxy5L‘;ymyz(sy;mxzayg]dg-j(q-fe)ﬁwdgzo
Q
where the stress resultants N, M ,S, and R are
defined by
hi2
(N, M;,S;) = _[ (Lz,f)o;dz, (i=xY,xy) and
—hi2
hi2 (14)
(sz’Ryz): J. g(sz’Tyz)dZ

—-h/2

Substituting Eq. (8) into Eq. (15) and integrating across
the thickness of the plate, the stress resultants are expressed
as

[0
No|[AcA O By By 0 1 By 0 E; NG| [N
N, Ay by 0 By By 0 By By 0 2 N; N?
Ny [0 0 A 0 0 B 0 0 By|in| 0| 0
M| By B, 0 Dy D, 0 Dy D, 0 M| {M
My =B, By 0 Dy Dy 0 D Dy 0 k[y) B M; B MyC (15a)
Myl 0 0 B 0 0 Dy 0 0 Dy kh| 0| 0
S| By B 0 Dy Dy 0 Hy Hy 0 L S| (s
b By By 0 Dp Dy 0 Hy Hy 0 L(; S; S?
S o 0By 0 0Dy 0 0 H UL

R s v
S A
Ry 0 A§5 732

Where stiffness components are defined as

Ar By Dy 5151 D151 Hf1 hi2 1
A, By D, B, D Hy :jCli(],z,zz,f(z),zf(z),fz(z)) v it (16a)
As By Dy By Di Ha| ™ Ly

2

(Ayz: B, Dyg, B, D5, HE, )= (A, By, Dy, B, D3 HS,) - (16b)

The stress and moment resultants, NT = N;, M = M;

Sy =Sy, NE=NS, MS=MS, SE=s¢, to thermal
and hygroscopic loading are defined by
NJ 1
X h/2
MT L= I E@) a()T4 z ldz (17a)
st] = i
N¢ 1
X h/2
E(z
ME b= j ( )ﬂ(z)C z tdz (17
SXC h/21 v f(Z)

The governing equations of equilibrium can be obtained
from Eqg. (14) by integrating the displacement gradients by
parts and setting the coefficients ouy, dvy, ow, and 66
zero separately. Thus one can obtain the governing
equations associated with the present HSDT
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ON. ON
Suy: X
ox oy
oN,, oN
SV —2+—L=0
ox 0y
aZM aZMXy aZMy (18)
oWy ax2X+2 P +—+f+q=0
2 2
50: S ko i Ao g R o 2 g
Oxoy OXoy ox oy

By substituting Eq. (16) into Eq. (19), the governing
equations can be expressed in terms of generalized
displacements as

Ayyyg + Agg ool +(Aiz + A ) tipVo — By iy Wo _(BIZ +2Bg )d122W0

L , . 19a)
+(Bs Ak BY)+ Bk, BY) i+ BEA 0=y

Poy dypVlg + A thrVi +(A12 + Aﬁe) iU — By tpgWh - ( B, + 2866) dyoWo

19
(B3 (A BY)+ B A) 0+ By B0 =F, )

By Gy + ( By+ ZBes)duz”u +(By 28y )duz"o +By Gy~ Dyl - 2(D12 + ZDse) )
Dy Gzt + Dy Ay (19c¢)
+( (D3, +205, )(kl/'“ kB )] G+ DBt 1, =F,

A Bty _(Bls2kZB +By (k1A'+ kB '))dmzuo ‘(szk1A'+ B (k1A'+ kB ]) i ~BylBd
DA+ {(DISZ +2Dg) A+ sz'))dnzzWo Dy B~ Hiy (kA 0 (19d)

) - Y | |
H3, (kB )dea-(ZHfz koA (kA'k B Hgﬁ)dmzmA;klAZdMeu/A;5 kB4, 0=F,

Where dj; , dy and dy, are the following
differential operators

2 3

dij :8_, ijl 28—’
OX;OX OX;OX; OX

g .0 _ 0 (20)
ook ox oy T x|

@, j,1,m=12).

where {F}z {Fl, F, k. F, }t is generalized force vector.
The components of the generalized force vector {F}
are given by

T c ONT  oNE
l:aNX +8N_X, F,=—2 +—2, (21)
OX OX oy oy

y(Mj+Mf) y(M;+M§)

F,=-q+ v + Y
o*(S]+SS) &*(S] +S¢
AL TR

3. Analytical solution for simply-supported FG plates

Rectangular plates are generally classified in accordance
with the type of support employed. We are here concerned
with the exact solution of Egs. (20) for a simply supported
FG plate. To solve this problem, Navier supposed that the
transverse mechanical, temperature and moisture loads, q,

T, and C; inthe form of a in the double Fourier series as

q Qo
T, r=<t esin(Ax)sin(uy), (1=123) (22)
C C

where q,, t; and c; areconstantsand T; and C; are
defined in Eq. (11). with
A=mzla and g=nxzl/b (23)
Following the Navier method, we consider the following
solution form for u,, v,, w, and @ that satisfies the
boundary conditions
U U cos(A x)sin(u y)
Vo | |V sin(4 x)cos(u y)
W, [ |Wsin(A x)sin(u y)
o Xsin(A x)sin(u y)

(24)

where U, V, W, and X are arbitrary parameters to
be determined subjected to the condition that the solution in
Eq. (25) satisfies governing Eqg. (20). Substituting Eq. (25)
intoEqs. (20), one obtains

Sii S1z Sy Sy ||V F
Si2 Sz Sy Sy ||V _ F, (25)
Sis Spz Sy Sgu||W Fs
Sis Sa Sz Sy |[X F,
Where
Sy = _pil/lz - Ateﬂz v Sy =—Au (A, +Ay),
Stz :}“(811/12 +(By +2866)/u2)' (26)

5= {(k BB + (G A+ B B+ B’

Sp = _Aasﬂz — A’
Sp = ,U(Bzzﬂz +(By, +2866)ﬂ‘2)’
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—_ﬂ((k1A'Blsz (kA“+k,B' )Besa)/iz"'k BB, )
Sy =41 D81 +(D, +2D, G+ B)+ DA K (AB)+K B+K A
Sy, =k A'DiA" +((D5, +2D5, ) (k A+k,B)) 42> +k,B' D5 u
Sy =~k AYHA - (kK A'B'HS + (k A+ B HE)A W - (k B Hout
(A (B Ko
The components of the generalized force vector
{F}z {Fl, F, F, F, }t are given by

F,=A(A't,+B't, + *B't;+ A% +B°C, + *BC, ) (270
F,=u(A't +B't,+ *B't,+ A°¢ +BCc, + °B%,) (27h)
Fy =—go —h{#2 + 42 [BTt, + D"t,+°D"t, + BSc, + D¢, +D%c, ) (27¢)

F, :_h(,12 +;¢2)(SBT'[1 + D', +°F't,+° B +° D, + SFCC3) (27d)

Where

[A,B",D"|= j%a(z)[l,%,ﬂdz (282)

[A°,B°,D°]= hjz lE(Z) ,B(z)[l 2.2 } (28b)

—-h/2

[*8",°D" |= hf %Zv)a(zﬁ(z) [1,E]dz (28¢)

—h/2

h/2

[B°,°D°]= [ 1E(ZV) (z)\P(z)[lz] (28d)

-h/2

[*87.°D",°F" |= T E@) (z)f(z)[lz‘l’(z)] (28¢)

“h2 TV

[°B°,°D°°F = | %ﬂ(z)?(z)[l,i,@(z)]dz (28f)

—hr2 ="~

Inwhich z=z/h and f(z)=f(z)/h.

4. Analytical solution for simply-supported FG plates

In this section, numerical examples are proposed and
discussed for checking the accuracy of the developed new
theory in investigating the hygro-thermo-mechanical
bending behaviours of plates. Comparisons are carried out

with available solutions in literature. In order to verify the
accuracy of the present analysis, some numerical examples
are solved. The obtained results are compared with those of
other shear deformation theories available in literature such
as Laoufi et al. (2016), third shear deformation theory
(TSDT) and sinusoidal shear deformation theory (SSDT) of
Zenkour (2006). The material properties of the FGM are
reported in Table 1.

In this work, the numerical results for the mechanical
loading is shown in the dimensionless quantities defined as
follows

— 10h°E (a bj — h (a b hj
W= ©w ox=—0,—,—,—= | .
a’‘q, aq, 222

h b
xy =—— xz:_ 0 ,O 29
009 030 e
" Ka _Ka Eh®
=g k= T12(1-v?)

Tables 2 and 3 list the non-dimensional transverse and
stresses of a FG square plate with side-to-thickness ratio
a/h=10. It can be shown from these tables that results
predicted by the proposed HSDT are in an excellent
agreement with those obtained using SSDT (Zenkour 2006),
of Laoufi et al. (2016) and TSDT (Reddy 2000).

In the second examples, a comparison study is presented
and discussed for checking the accuracy of the proposed
theory in investigating the bending behavior of FG plates
under sinusoidal load and a temperature field T(x,y,z) as

well as moisture concentration C(X,y,z). The material

characteristics are considered in the investigation at the
reference temperature T, =25°C (room temperature) and

moisture concentration C, =0% as shown in Table 4.

In the following, the non-dimensional quantities are
defined as

10°D

33)
W ,
aCIo
(th
2'2"2

i ( —“J :
Xy = 10q xy ! 3 / sz—_loqo XZ(O,Z,OJ'

w=

(30)

Table 1 Material properties used in the FG plate

Properties Metal, Ti-6Al-4V Ceramic Zerconia, ZrO,
E (GPa) 70 380
1% 0.3 0.3
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Table 2 Effects of volume fraction exponent on the dimensionless displacements and stresses of a FG square plate
(a/h=10, k,=k;=0, gq,=1, T=C=0)

p Theory W Oy Tyy Ty
Present 0.29597 1.99322 0.70682 0.23101
Coramic TSDT(Reddy 2000) 0.294 1.98915 0.70557 0.23778
Zankour (2006) 0.296 1.9955 0.7065 0.2462
Laoufi et al. (2015) 0.29604 2.02724 0.70678 0.23215
Present 0.588799 3.08315 0.611186 0.23101
1 TSDT(Reddy 2000) 0.58895 3.08501 0.61111 0.23817
Zankour (2006) 0.5889 3.087 0.611 0.2462
Laoufi et al. (2015) 0.58893 3.12645 0.61118 0.23215
Present 0.75696 3.60419 0.54433 0.21066
5 TSDT(Reddy 2000) 0.75747 3.60664 0.54434 0.22568
Zankour (2006) 0.7573 3.6094 0.5441 0.2265
Laoufi et al. (2015) 0.75718 3.63002 0.54432 0.2119
Present 0.83687 3.86769 0.55281 0.19413
3 Zankour (2006) 0.8377 3.8742 0.5525 0.2107
Laoufi et al. (2015) 0.83717 3.86808 0.55278 0.19543
Present 0.88065 4.06191 0.56713 0.18592
4 Zankour (2006) 0.8819 4.0693 0.5667 0.2029
Laoufi et al. (2015) 0.88102 4.03991 0.5671 0.18728
Present 0.91037 4.24082 0.57586 0.18434
5 TSDT(Reddy 2000) 0.90951 4.24293 0.57368 0.21609
Zankour (2006) 0.9118 4.2488 0.5755 0.2017
Laoufi et al. (2015) 0.9108 4.20242 0.57585 0.18575
Present 0.934029 4.41601 0.580769 0.186597
6 Zankour (2006) 0.9356 4.4244 0.5803 0.2041
Laoufi et al. (2015) 0.93452 4.36696 0.58075 0.18807
Present 0.954678 4.58872 0.583804 0.190548
7 Zankour (2006) 0.9562 4.5971 0.5834 0.2081
Laoufi et al. (2015) 0.95521 4.53333 0.58378 0.19206
Present 0.973533 4.7577 0.586039 0.194901
8 Zankour (2006) 0.975 4.7661 0.5856 0.2124
Laoufi et al. (2015) 0.97408 4.69925 0.58602 0.19645
Present 0.99115 4.92201 0.58796 0.19902
9 Zankour (2006) 0.9925 4.9303 0.5875 0.2164
Laoufi et al. (2015) 0.9917 4.86294 0.58794 0.20059
Present 1.00775 5.08083 0.58981 0.20265
10 Zankour (2006) 1.0089 5.089 0.5894 0.2198
Laoufi et al. (2015) 1.00832 5.02282 0.58977 0.20424
Present 1.60667 1.99322 0.70682 0.23101
Vet TSDT( Reddy, 2000) 1.59724 1.98915 0.70557 0.23778
Zankour (2006) 1.607 1.9955 0.7065 0.2462

Laoufi et al. (2015) 1.57882 1.89911 0.70234 0.24229
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Table 3 Effects of volume fraction exponent and elastic foundation parameters on the dimensionless displacements and
stresses of a FGM rectangular plate (a/h =10, b =3a, qo=100, ti=t3=0, t2= 10, c1=c3= 0, c2= 100)

p kW ks Theory V_V g'x Txy ;xz
Present 0.29597 1.99322 0.70682 0.23101
Present 1.80647 0.47165 1.55994 -0.408538
0 0 Laoufi et al. (2015) 1.80709 0.46227 1.5599 -0.41798
TSDT 1.80712 0.47187 1.55982 -0.42955
SSDT 1.80708 0.472 1.55975 -0.44327
100 0 Present 0.972134 -0.027288 0.852158 -0.011384
Laoufi et al. (2015) 0.97215 -0.02729 0.85215 -0.01164
. TSDT 0.97216 -0.0274 0.85211 -0.01197
Ceramic Present 0.188661 -0.495817 0.187525 0.361559
0 100 Laoufi et al. (2015) 0.1886 -0.48723 0.18797 0.36968
TSDT 0.18861 -0.4957 0.18806 0.3799
SSDT 0.18861 -0.49588 0.1881 0.39206
Present 0.173143 -0.505098 0.17436 0.368946
100 100 Laoufi et al. (2015) 0.17309 -0.49633 0.17482 0.37723
TSDT 0.17309 -0.50498 0.1749 0.38766
SSDT 0.17309 -0.50716 0.17495 0.40007
Present 0.18416 -0.519873 0.182428 0.422388
Laoufi et al. (2015) 0.18409 -0.50982 0.18292 0.43981
0.5 100 100
TSDT 0.1841 -0.51975 0.18299 0.44334
SSDT 0.18411 -0.51999 0.18301 0.45728
Present 0.185098 -0.514645 0.155729 0.42383
n 100 100 Laoufi et al. (2015) 0.18503 -0.50181 0.15622 0.4334
TSDT 0.18504 -0.5145 0.15631 0.44545
SSDT 0.18504 -0.51476 0.15635 0.45984
Present 0.185664 -0.503584 0.133831 0.415814
5 100 100 Laoufi et al. (2015) 0.18559 -0.48892 0.13438 0.42571
TSDT 0.1856 -0.50336 0.13451 0.43831
SSDT 0.1856 -0.50363 0.13461 0.45337
Present 0.187038 -0.489732 0.123353 0.414022
5 100 100 Laoufi et al. (2015) 0.18696 -0.47268 0.1234 0.42443
TSDT 0.19696 -0.4894 0.12417 0.43754
SSDT 0.18694 -0.48967 0.12431 0.45322
Present 0.188464 -0.594955 0.120202 0.437745
Laoufi et al. (2015) 0.18842 -0.4228 0.12011 0.4468
Metal 100 100
TSDT 0.1884 -0.43095 0.12087 0.45993
SSDT 0.1884 -0.43117 0.12092 0.47465

Table 4 Material properties used in the FG plate

Properties Metal (Ti-6Al-4V) Ceramic Zerconia,(ZrO,)
E (GPa) 66.2 117

14 1/3 1/3
a(10°/C°) 10.3 7.11

B(10°/K°) 0.33 0
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Table 5 Effects of volume fraction exponent and elastic foundation parameters on the dimensionless displacements and
stresses of a FG rectangular plate (a/h =10, b = 3a,q0 =100,t1 =0, t2 =t3 =10, ¢c1 =0, c2 =3 = 100)

P kw ko

Theory w Ox Txy Tx
Present 2.54014 0.525163 2.20384 -0.404199
0 0 Laoufi et al. (2015) 2.54076 0.51588 2.20381 -0.41354
TSDT 2.54076 0.52522 2.20374 -0.42454
SSDT 2.54068 0.52552 2.20366 -0.43753
Present 1.36695 -0.176414 1.20861 0.154253
100 0 Laoufi et al. (2015) 1.36683 -0.17281 1.20872 0.15777
TSDT 1.36682 -0.17643 1.20877 0.16257
Ceramic SSDT 1.3668 -0.17649 1.20881 0.16834
Present 0.265285 -0.835229 0.274052 0.678662
0 100 Laoufi et al. (2015) 0.26517 -0.8191 0.27488 0.6939
TSDT 0.26518 -0.835 0.27507 0.71354
SSDT 0.26518 -0.83531 0.27519 0.73692
Present 0.243462 -0.848278 0.25554 0.689049
100 100 Laoufi et al. (2015) 0.24336 -0.8319 0.25639 0.70452
TSDT 0.24336 -0.84804 0.25658 0.72442
SSDT 0.24337 -0.84835 0.2567 0.74816
Present 0.262064 -0.872634 0.279282 0.780308
Laoufi et al. (2015) 0.26194 -0.86236 0.28023 0.75161
0.5 100 100
TSDT 0.26195 -0.87239 0.28034 0.81947
SSDT 0.26196 -0.87282 0.28041 0.84586
Present 0.263417 -0.862338 0.236503 0.781178
1 100 100 Laoufi et al. (2015) 0.2633 -0.83867 0.23741 0.79871
TSDT 0.2633 -0.86205 0.23762 0.82148
SSDT 0.2633 -0.86252 0.23772 0.84866
Present 0.264093 -0.841791 0.200059 0.764692
5 100 100 Laoufi et al. (2015) 0.26396 -0.81483 0.20107 0.78289
TSDT 0.26396 -0.84138 0.20133 0.80652
SSDT 0.26395 -0.84185 0.20154 0.83484
Present 0.266174 -0.818065 0.183053 0.759403
: 100 100 Laoufi et al. (2015) 0.26603 -0.78678 0.18423 0.77849
TSDT 0.26601 -0.81745 0.18459 0.80297
SSDT 0.266 -0.81792 0.18486 0.8323
Present 0.267874 -0.985018 0.181616 0.799027
Laoufi et al. (2015) 0.26729 -0.77772 0.18167 0.79866
Metal 100 100
TSDT 0.26774 -0.71656 0.18286 0.84003
SSDT 0.26775 -0.71694 0.18298 0.86748

The computed results using the present HSDT are
compared with those reported by other higher-order shear
deformation theories as is indicated in Tables 5 and 6.

An excellent agreement between the presented results is
confirmed thought this study. These examples show also the
influences of the gradient index k and elastic foundation
on the non-dimensional deflection and stresses of FG plate,
It is important to see that the stresses for a fully ceramic
plate are not the same as that for a fully metal plate with

elastic foundations. This is because the plate here is affected
with the introduction of the temperature field. The number
of primary unknowns in this model is even less than that of
other HSDTSs.

It can be concluded that the present theory is not only
accurate but also comparatively simple and quite elegant in
predicting the hygro-thermo-mechanical bending behavior
of FG plates resting on elastic foundations.
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Table 6 Effect of side to thickness ratio and elastic foundation parameters on the dimensionless deflection of an FG

square plate (go=100, t1=0, t2=t3=10, c¢1=0, c2=c3=100)

P K Ko o 5 10 20 50
0 0 4.0497 1.206 0.494059 0.294638
_ 100 0 3.07714 0.948305 0.391973 0.23435
Ceramic 0 100 0.559442 0.189501 0.0804538 0.0484757
100 100 0.536037 0.18174 0.0771806 0.0465072
0 0 5.3187 1.58389 0.648419 0.386365
100 0 3.76592 1.1683 0.483434 0.288933
! 0 100 0.581976 0.197448 0.0838112 0.0504632
100 100 0.556854 0.189065 0.0802706 0.0483342
0 0 5.58968 1.66861 0.685656 0.410235
100 0 3.87378 1.20963 0.502976 0.301946
2 0 100 0.573678 0.196544 0.08393 0.0507766
100 100 0.548733 0.188137 0.0803575 0.0486187
0 0 5.72589 1.71031 0.703206 0.420981
100 0 3.92709 1.23013 0.512163 0.307702
3 0 100 0.570219 0.196474 0.0840838 0.0509238
100 100 0.545342 0.188043 0.0804938 0.0487525
0 0 5.82242 1.73958 0.715375 0.428339
A 100 0 3.96619 1.24461 0.518504 0.311605
0 100 0.568694 0.196565 0.0842131 0.0510253
100 100 0.543835 0.188111 0.0806106 0.0488454
0 0 5.89976 1.76305 0.725206 0.434346
100 0 3.99829 1.25615 0.523574 0.314763
> 0 100 0.567978 0.567978 0.0843094 0.0511038
100 100 0.543114 0.188178 0.0806969 0.0489171
0 0 6.82003 2.04726 0.85215 0.517368
Metal 100 0 4.37574 1.38303 0.583543 0.355662
0 100 0.567094 0.195342 0.0844888 0.051868
100 100 0.541922 0.186784 0.0808012 0.0496067

Figs. 2 and 3 present the variation of the non-
dimensional center deflection w versus the side-to-

thickness thickness a/h and plate aspect ratiosa/b
respectively. It can be seen that the deflection is
maximum for the fully metallic plate and becomes
minimum for the ceramic plate irrespective of the
values of temperature, moisture, and elastic
foundation coefficient.

It is evident that for the FG plates the values of the
deflections are between those of fully metallic and
fully ceramic plates. In addition, the deflection is
increased with the absence of the elastic foundation
and the influence of moisture load may be less than
that of the temperature one.

Figs. 4 to 6 present the through-the-thickness variations
of the non-dimensional axial stress o , longitudinal shear
stress ;xy and transversal shear stress 7y in the rectangular
FG plates on elastic foundations for different values

of moistures and temperatures, respectively. In
this  figures, it is considered, that ¢, =100 GPa,

a/h=10, b/a=3, p=2.Asisshown in Figs. 4 and 5,

the maximum compressive stresses is found at a point on
the top surface and the maximum tensile stresses occur, of
course, at a point on the lower surface of the FG plates. It
can be observed that the shear stresses increase with the
increase of both thermal and moisture load, and the
maximum value is found at a point above the mid-plane of
the FG plate.
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Fig. 2 Non-dimensional center deflection w

foundations (a/h =10)
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Fig. 3 Non-dimensional center deflection w versus side-to-thickness ratio a/h

foundations (b/a =3)
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for FG plate on Winkler-Pasternak

Fig. 4 Variation of non-dimensional axial stress ox through the thickness of a rectangu- lar FG plate on elastic foundations
for different values of moistures and temperatures (a/h=10,b/a =3, p =2)
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Fig. 6 Variation of non-dimensional transversal shear stress ;xz through the thickness of a rectangular FG plate on elastic
foundations for different values of moistures and temperatures (a/ h=10,b/a=3 p= 2)

Figs. 7 to 10 demonstrate the relation between the non-  geflection w, the axial stress o, the longitudinal shear
dimensional center deerEtlonw,the axial stress ox the stress 7y and the transversal shear stress Txz.
longitudinal shear stresszy , the transversal shear stress Furthermore, the sinusoidal variation provides medium

value in deflection and stresses case. The cubic variation
gives higher values relatively than those of the other two
distributions.

rxzand the plate aspect ratiob/a for three different
thermal and moisture loading. It's can be seen from these
that the three considered cases of temperature and moisture
give almost the same values of the non-dimensional center
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Fig. 8 Dimensionless axial stress ox versus side-to-thickness ratio a/h for FG plate for different distributions of ¥(z)

(b/a=3p=2)

The variations of the non-dimensional center deflection
w, the in-plane shear stress ryy , the transversal shear

stress 7y Versus the plate aspect ratio b/a for different
values of E,, /E,with or without hygrothermal influences
are presented in Figs. 11 to 18. The deflection, the axial and
the transversal shear stress increase with increasing the
plate aspect ratio b/a, and this quantities take maximum
values for E, / E. =0.03 and minimum ones for E, / E;, =1
as demonstrated in Figs. 11, 12, 14 to 16 and 18.

It can be seen that when hygrothermal effects are
not considered, the in-plane shear stress increases with
increasing the aspect ratio for b/a less than 1.75.
However, when b/a is greater than 1.75 the in-plane
shear stress decreases upon increasing the aspect ratio
as shown in Fig. 13. In the case where the
hygrothermal effects are considered, it can be
observed that the in-plane shear stress increases with
increasing the aspect ratio for b/a less than 1.0.
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Fig. 9 Dimensionless in-plane shear stress ;xy versus side-to-thickness ratio a/h for FG plate for different distributions
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Fig. 11 Dimensionless center deflection W Versus plate aspect ratio b/a for FG plate for different E, /E, ratios
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Fig. 17 Dimensionless longitudinal tangential stress ;xy versus plate aspect ratio b/a for FG plate for different
E./E ratios (a/h=10,p=2)
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However, when b/a is greater than 1.0 the in-plane
shear stress is reduced with increasing the aspect ratio.
For the two cases with or without considering the
hygrothermal effects, the in-plane shear stress is
maximum for E,/E,=1 and minimum for

E,/E. =0.03 asshown in Figs. 13 and 17.

5. Conclusions

This article presents the hygro-thermo-mechanical
analysis for FG plates using a novel and original HSDT
with 4 unknowns. The governing equations are determined
through the virtual work's principle. These equations are
solved via Navier's method. The results were compared
with the solutions of several theories. Illustrating
examples are presented to demonstrate the effects of
moisture  concentration parameter on thermo-
mechanical behavior of the FG plates. The good
comparisons among the proposed theoretical model, and the
other analytical solutions available in the literature,
demonstrate that the presented solution can accurately
predict the hygro-thermo-mechanical behavior of the FG
plate and be employed in the design of the solar plate.
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