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1. Introduction 
 

Knowledge of the displacement field of a structure is 

crucial for assessing the structure’s safety (Aldar 2013). 

Direct measurement techniques such as using linear 

variable differential transformers or dial indicators require 

fixed references below the measurement points, which are 

difficult to apply in practice. By contrast, the accuracy of 

the traditional geodetic technique is generally limited by 

measurement errors of few millimeters. The hydrostatic 

leveling system comprises communicating vessels filled 

with an appropriate liquid fixed to the structure at selected 

points. As a rule regarding fixed supports, one vessel of the 

circuit is designated as the datum reference. The constant 

absolute altitude of the liquid-free surface is ensured by the 

hydrostatic equilibrium of the communicating vessels.  
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Consequently, vertical displacements can be obtained by 

measuring the liquid height variation in each vessel. 

Typically, a resolution of few tenths of a millimeter can be 

obtained. Sensors proposed for practical application differ 

in terms of how the liquid level is measured (Marecos 1978, 

Vurpillot et al. 1998, International Federation for Structural 

Concrete 2003, Rodrigues et al. 2010, Rodrigues et al. 2011 

and the references cited therein). In particular, in Rodrigues 

et al. (2010, 2011), fiber Bragg grating (FBG)-based 

sensors connected to a float on the liquid have been used as 

transducer load cells to measure the apparent immersed 

weight of a suspended float, which is a linear function of 

the liquid level inside the sensor. The FBG–differential 

settlement measurement (DSM) (FBG–DSM) sensor used 

in this paper employs prestressed clamped FBG with a 

direct connection to the immersed float, as illustrated in 

patents (Lee 2014, 2015). Lai et al. (2016) used the same 

FBG mechanism for liquid-level sensors to conduct railway 

track differential settlement measurements. The mechanism 

of this FBG–DSM sensor can provide reliable measurement 

results of the deflected shapes of structures. One aim of the 

present study was to estimate the accuracy of this type of 

FBG–DSM sensor when applied to a compressed steel 

beam to simulate more rugged conditions than those of a 

calibration test. The main purpose of this study was to 

simulate the field procedure of a novel nondestructive 

testing (NDT) method for detecting the axial load in a 

compressed steel beam based on the displacement measured 

along the beam’s length. 
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Abstract.  Nondestructive testing methods are required to assess the condition of civil structures and formulate their 

maintenance programs. Axial force identification is required for several structural members of truss bridges, pipe racks, and 

space roof trusses. An accurate evaluation of in situ axial forces supports the safety assessment of the entire truss. A considerable 

redistribution of internal forces may indicate structural damage. In this paper, a novel compressive force identification method 

for prismatic members implemented using static deflections is applied to steel beams. The procedure uses the Euler–Bernoulli 

beam model and estimates the compressive load by using the measured displacement along the beam’s length. Knowledge of 

flexural rigidity of the member under investigation is required. In this study, the deflected shape of a compressed steel beam is 

subjected to an additional vertical load that was short-term measured in several laboratory tests by using fiber Bragg grating–

differential settlement measurement (FBG–DSM) sensors at specific cross sections along the beam’s length. The accuracy of 

midspan deflections offered by the FBG–DSM sensors provided excellent force estimations. Compressive load detection 

accuracy can be improved if substantial second-order effects are induced in the tests. In conclusion, the proposed method can be 

successfully applied to steel beams with low slenderness under real conditions. 
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In situ structural assessment of compressive forces is 

required in the top chords of truss bridges, pipe racks, and 

space roof trusses. These structures require operating state 

control to support safety assessments during their 

serviceability. A considerable redistribution of internal 

forces may indicate damage. Nondestructive static and 

dynamic methods have been studied for axial force 

identification in externally loaded beams (Tullini and 

Laudiero 2008, Bahra and Greening 2011, Tullini et al. 

2012, Tullini 2013, Rebecchi et al. 2013, Maes et al. 2013, 

Bonopera et al. 2018 and the references cited therein). In 

particular, vibration-based estimations of axial loads require 

accurate selection of the flexural mode shape for use in the 

identification process (Bahra and Greening 2011, Maes et 

al. 2013). Such methods are particularly sensitive to 

experimental and model errors. Moreover, selecting a priori 

the optimal frequency for estimating the axial load is 

difficult, and different natural frequencies yield different 

degrees of accuracy in axial force estimations. Lim and Soh 

(2013) and Naseralavi et al. (2016) have studied dynamic 

methods for damage detection in axially loaded beams. In 

these methods, load predictions are mainly affected by 

numerical and experimental errors due to the level of noise. 

In this study, a novel NDT method for compressive load 

detection in prismatic beams was applied to steel members. 

A post-tensioned steel beam with a straight unbonded 

tendon was utilized as a prototype for experimental and 

numerical simulations. The reference model comprised a 

simply supported Euler–Bernoulli beam compressed by a 

straight unbonded tendon, where compressive force was 

modeled as an external axial load applied eccentrically to 

the beam ends. In this framework, the total vertical 

displacement from a three-point bending test is accurately 

approximated by multiplying the first-order deflection by 

the magnification factor of the second-order effects 

(Timoshenko and Gere 1961, Bazant and Cedolin 1991), as 

predicted using the “compression-softening” theory in the 

static case. First, deflected shape measurements obtained 

from 33 three-point bending tests were used to assess the 

accuracy of the FBG–DSM sensors. Reliability was verified 

by comparing their measurements with recorded 

displacements by using dial indicators positioned at specific 

cross sections along the beam’s length. Second, deflections 

obtained from 24 additional three-point bending tests were 

concurrently recorded using the same FBG–DSM sensors to 

verify the accuracy of the beam mechanical model 

assumption. Minor displacements were imposed in the 

experiments to preserve the beam in the elastic range.  

Subsequently, the aforementioned magnification factor 

approach based on the “compression-softening” theory was 

profitably employed to detect the compressive loads by 

using one measured deflection only. All compressive forces 

maintained their original lines of action and did not vary the 

eccentricity of the force with respect to the beam axis when 

the deflected shapes were imposed. The NDT method in-

volves estimating the compressive load by measuring one 

displacement along the element’s length after applying a 

vertical load. Furthermore, knowledge of the flexural 

rigidity of the steel beam under investigation is required.  

This technique uses static parameters only. Reliable 

compressive force detection based on the accurate midspan 

measurements obtained by the FBG–DSM sensors confirms 

the robustness of the method. This method can be applied to 

generic prismatic steel members if the stiffnesses of the 

boundary conditions are known. 

 

 
2. FBG–DSM sensors 
 

Optical fibers are a transmission medium of light energy 

or signals. These intrinsic fiber sensors are based on the op-

tical properties of processed or unprocessed fibers such as 

Brillouin sensors, Raman sensors, and evanescent sensors. 

In this study, intrinsic optical fibers exposed to artificial 

ultraviolet irradiation were used to form FBGs by 

employing phase masks with the corresponding reflected 

central wavelength of the FBGs. Changes in stress (strain) 

and temperature engender changes in the central 

wavelength of FBGs, which can be analyzed using a signal-

processing device to convert the reflected signals. 

Therefore, FBGs are sensing components and have sensing 

functionality. Through a mechanical procedure, FBGs can 

be used to designate sensing devices such as strain or 

displacement sensors for various purposes. For example, 

Kim et al. (2011) and Sung et al. (2017) have designed 

FBG sensors embedded in prestressing tendons to measure 

the applied tension force and load transfer along a tendon’s 

length. 

The key process method proposed by the National 

Center for Research on Earthquake Engineering is to clamp 

the optical fiber with heat shrinkable sleeves for a total 

length of 140 mm, expressed as S1 + FBG + S2 (Fig. 1), 

which are used as connectors between the bare fiber and 

additional element to introduce external forces into the 

FBG. This innovative design enhances the stability of the 

internal component of the FBG–DSM sensors. Using these 

connectors, instrument components can exert prestress, 

which serves as the sensing origin (Fig. 1). In particular, the 

FBG–DSM sensor comprises a suspended mass, FBGs, and 

two sleeves. One sleeve is directly connected to the 

suspended float mass and the other one is connected to the 

upper fixed end of the customized container (vessel), as 

shown in Fig. 2. The layout of the FBG–DSM sensor 

system is illustrated in Fig. 3; the communicating vessels 

contain a homogeneous fluid and the elastic range of FBGs 

is governed by floating mechanics and Hooke’s law. 

According to the buoyancy principle, the magnitude of the 

buoyancy force is equal to the weight of an equal volume of 

fluid. Therefore, as the immersed volume of the suspended 

object increases, the force detected by FBG from pulling the 

suspended object changes. In particular, the maximum 

prestress force of the fiber is equal to the weight of the 

floating body (suspended mass) minus half of the volume of 

the floating body multiplied by the water density. Variations 

in water surface height do not affect the overcoming of the 

ultimate tensile strength of the optical fiber. The main 

properties of the fiber in the FBG–DSM sensors used in this 

study are listed in Table 1. 

Several FBG–DSM sensors can be linked using a con-

necting pipe. When a FBG–DSM sensor displaces 
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downward with the structure, the suspended cylindrical 

object within the sensor (with higher density than the 

liquid) also moves downward; however, its liquid surface 

moves relatively upward inside the sensor until the same 

liquid surface has been obtained within the connected FBG–

DSM  sensors. Therefore, changes in the buoyancy of the 

floats alter the force exerted on the FBG, thereby changing 

the reflective light wave length. With respect to the linear 

behavior of the FBG material, the mathematical expression 

for the FBG–DSM sensor can be expressed as follows 
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The logger can be placed on the ground, whereas the op-

tical wires run externally and internally through the FBG–

DSM sensors. Once the data logger instrument has 

measured the Δ (central wavelength of the reflective light), 

the Δ (liquid surface height) can be obtained (Eq. (1)), 

thereby enabling the corresponding vertical displacement to 

be obtained. 

The nominal stroke of the adopted FBG–DSM sensor 

was 40 mm. Therefore, the range of the displacement 

measurement was able to be calculated. A linear change in 

the wavelength was observed because of the internal 

dimensions of the suspended cylindrical object and 

customized volume of the packaging case of the FBG–DSM 

sensor. When the maximum stroke was 40 mm, the 

elongation of the used fiber was approximately 0.11 mm 

with a wavelength shift of 3.25 nm. The ultimate elongation 

of the fiber corresponding to its ultimate tensile strength 

was approximately 0.20 mm, corresponding to a 

wavelength shift of approximately 6 nm (value obtained 

from the uniaxial tensile test performed on the fiber). 

In long-term monitoring, one FBG–DSM sensor should 

be used in the stress-free state to determine the influence of 

temperature and eliminate the temperature effects of the 

other connected FBG–DSM sensors. In short-term monitor-

ing, the temperature effect can be rationally overlooked if 

the temperature’s level of influence does not exceed the 

critical value of 10%. More details are provided in patents 

(Lee 2014, 2015) and preliminary field tests on bridges 

using the FBG–DSM sensors are described in Chang et al. 

(2012), Lee (2013) and Lee et al. (2014). Every 

conventional electronic sensor requires individual wires 

connected to the data acquisition instrument or remote 

transmission module. Therefore, complicated wire 

connections are usually required when numerous electronic 

sensors are applied. One of the main advantages of optical 

sensing technology is the plain connection of the sensors 

enabled by FBGs with different reflection wavelengths 

connected in series by using a single transmission optical 

fiber. Fig. 3 shows a series of FBG–DSM sensors; 

additional sensors can be connected in one channel de-

pending on the wavelength band of the instrument’s input 

light as well as splice fusion for the optical fiber. With 

careful splice fusion, generally, one fiber can contain 

approximately 20 FBG-based sensors. The FBG–DSM 

sensors can be appropriately deployed in situ in structures 

such as concrete bridge decks, truss bridges, pipe racks, 

pipelines, and viaducts. Short- or long-term monitoring 

systems with a series of FBG–DSM sensors can provide 

near-simultaneous elevation profiles or structures with 

vertical deflected shapes. 

 

2.1 Numerical example of measured displacement 
using the FBG–DSM sensor 

 

The FBG–DSM sensor used in this study can provide 

settlement measurements with a tolerance of 0.01 mm from 

the change in wavelength of the fiber within the vessel (Lee 

2014, 2015). The liquid height variation of the water inside 

the tank produces a difference in the wavelength of the in-

stalled fiber. The analytical manipulations of a measurement 

example are illustrated in this section. 

 

 

   

Fig. 1 Exerting prestress and setting sensing origin 

(left). Connector introducing external force into the 

FBG (Lee 2014, 2015). Units in mm (right) 

 

 

 

Fig. 2 Internal system of the employed FBG–DSM 

sensor (Lee 2014, 2015). Units in mm 

 

 

Table 1 Main properties of the optical fiber installed inside 

the employed FBG–DSM sensor (Lee 2014, 2015) 

Fiber type 
Single-mode 

optical fiber 

Fiber coating acrylate 

Fiber grating length 15 mm 

Fiber grating width spectral  

reflectivity 
93.87% 

Center wavelength 1526.963 nm 

Strain optic coefficient 0.78×10-6/   

Ultimate tensile elongation 200. mm 

Wavelength shift 

(corresponding to the ultimate 

tensile elongation) 

6 nm 

55



 

Marco Bonopera, Kuo-Chun Chang, Chun-Chung Chen, Zheng-Kuan Lee and Nerio Tullini 

 

 

 

 

The diameter D of the cylindrical mass float inside the 

FBG–DSM sensor is equal to 48.0 mm, whereas the water 

height variation Δh is assumed to be 12.30 mm. The change 

in water volume ΔV surrounding the suspended float is 

obtained through Eq. (2). 

2 2 2 2
4 348.0

12.30 7*10 mm .
4 4

D
V h

 
      (2) 

The tensile force Δf in the fiber, expressed in gram-force 

[gW], can be subsequently obtained using Eq. (3), where Dw 

represents the water density. 

47*10 0.001 70 gW.wf V D       (3) 

The uniaxial tensile test conducted using a universal 

testing machine on the fiber installed inside the sensor 

reveals that Δλ = 1 nm wavelength shift corresponds to an 

applied tensile force of 70 gW. Thus, if the assumed water 

height variation Δh is 12.30 mm, the corresponding 

wavelength Δλ of the fiber is equal to 1 nm. Subsequently, 

from the center wavelength value, λB = 1527 nm, and strain 

optic coefficient of the fiber used, CsΔε = 0.78 × 10
-6 

/ με, the 

strain Δε in the fiber can be obtained using Eq. (4). 

6

1 1 1
840 με.

1527 0.78 10B sC 




 



 



    (4) 

Eq. (5) can be used to obtain the tensile elongation in 

the fiber, where L0 = 40.0 mm is the initial length of the 

fiber. 

6

0 0 840 10 40.0 0.0336 mm.L L L L         (5) 

The numerical example shows that corresponding to a 

water height variation Δh of 12.30 mm, the tensile 

elongation of the fiber ΔL = 0.0336 mm, which is lower 

than 0.20 mm (ultimate elongation). 

 

 

 

 

The FBG deformation (tensile elongation) does not 

represent the settlement of the FBG–DSM sensor. Notably, 

even if the water flows beneath the bottom surface of the 

float mass (as depicted in the left sensor in Fig. 4), the fiber 

does not attain the ultimate tensile strength. 

 

 

3. Accuracy of measured displacements achieved 
using the FBG–DSM sensors 

 

A total of 33 three-point bending tests were performed 

on a compressed steel beam (see Section 3.1) to verify the 

accuracy of the displacements measured using the FBG–

DSM sensors. A comparison of the deflected shape 

measurements was conducted by positioning a series of dial 

indicators at the aforementioned cross sections of the FBG–

DSM sensors along the beam’s length. The tolerance of the 

dial indicators was identical to that of the FBG–DSM 

sensors (i.e., 0.01 mm). In the test combinations presented, 

denoted as Case I, no relaxation occurred in the FBGs 

inside the sensors because the magnitudes of the prestress 

forces (in the fiber) were moderate. Corresponding to the 

maximum obtained displacement of v3 = 7.07 mm, the 

tensile elongation of the fiber was approximately 0.0193 

mm, which was considerably lower than its ultimate tensile 

elongation of approximately 0.20 mm. No FBG–DSM 

sensors were used for temperature compensation because 

the temperature in the indoor laboratory space was 

reasonably assumed to be homogenous. The effect of 

temperature variation on wavelength changes in the FBG–

DSM sensors was almost constant. Therefore, wavelength 

variations among the FBG–DSM sensors were caused only 

by vertical deformations (displacements) of the steel beam. 

 

 

 

Fig. 3 Layout of the employed FBG–DSM sensor system 

 

Fig. 4 FBG–DSM sensor system. Water beneath the bottom surface of the float mass (left) 
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3.1 Static test layout of Case I 
 

A steel beam of 150 mm × 350 mm × 9 mm in a 

rectangular box cross section was adopted (Fig. 6). The 

beam was subjected to compressive forces exerted by a 

strand post-tensioning system. The strand had an 

eccentricity of 80 mm with respect to the cross section 

centroid and comprised four tendons with “seven wire 

strands” of 15.2-mm diameter inserted into four distinct 

plastic ducts and inside of the box. The plastic ducts were 

not injected. The ultimate yield strength of the tendons was 

1860 MPa. Two supports were placed at the beam ends 

(Figs. 7(a) and 7(b)) to create pinned-end restraints, 

resulting in a clear span L equal to 7.1 m, as shown in Fig. 

6. Several steel stiffeners were inserted by welding into the 

box cross section (Fig. 11(c)) to avoid buckling phenomena  

 

 

 

 

 

 

 

in the serviceability state. The cross-sectional second 

moment of area for the box cross section Iexact was 1.334 × 

10
8
 mm

4
 and the slenderness ratio was equal to 57. All 

geometric dimensions were verified using measuring 

systems with 0.01-mm tolerance (laser rangefinder and 

caliper) once the steel beam had been positioned on the 

supports. Experimental evaluations revealed that the elastic 

modulus E = 235 GPa, yielding stress fyk = 470 MPa, and 

ultimate stress fuk = 675 MPa of the C45 steel grade. Based 

on the tensile tests, the parameters were determined as mean 

values for three hourglass specimens in accordance with the 

standards of ASTM International. The employed hydraulic 

universal machine had a wedge grip, 1000-kN force 

capacity, and 70-MPa maximum pressure. 

 

  

(a) Test rig of the static tests 
(b) FBG–DSM sensors and dial indicators along the beam’s 

length 

Fig. 5 Case I: Steel beam specimen 

 

Fig. 6 Scheme of the steel beam specimen. Units in m 

   
(a) Hinge support used for pinned-end 

constraints 
(b) Roller support used for pinned-end 

constraints 
(c) Hydraulic actuator at the midspan 

Fig. 7 Steel beam specimen 
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The steel beam was inserted into a test frame by using a 

test rig (Fig. 5(a)). At one beam end, a hydraulic oil jack of 

4000-kN force capacity was used to apply a compressive 

force to pull the strand outward. At the other end, a 1000-

kN load cell with 2-mV/V accuracy was positioned to 

measure the applied compressive force. In total, four 

compressive loads Nx with values of approximately 299, 

370, 448, and 482 kN were assigned. For every assigned 

compressive force Nx, an additional vertical load F was 

applied using a hydraulic actuator at the midspan of the 

beam. The initial value was approximately 20.0 kN, which 

gradually increased to approximately 22.5 and 25.0 kN 

(Fig. 7(c)). The latter test condition was repeated three 

times, yielding a total of 33 tests. 

Seven FBG–DSM sensors and seven dial indicators 

were positioned along the beam’s length corresponding to 

the cross sections i = 0, ..., 6, based on the test layout 

depicted in Figs. 5(a) and 8. Steel plates were used to locate 

each sensor corresponding to the beam axis (Fig. 5(b)). The 

dial indicators were connected to a data logger located on a 

desk close to the test rig. The FBG–DSM sensors were 

connected by optical wires along the beam span and linked 

by a connecting pipe. Two additional reference FBG–DSM 

sensors, labeled “R.F.” in Fig. 8, were placed on two 

distinct tables on the ground (Fig. 5(a)). A static full 

spectrum optical interrogator positioned on the ground was 

used as the data logger to acquire the FBG–DSM signals. 

Similarly, the ground floor was used as the reference for  

 

 

dial indicator measurements. 

All test measurements were recorded every second for 

nearly 200 seconds by a data acquisition unit. The average 

measurements of the compressive forces Nx and loads F for 

each test combination are listed in Table 2. 

 

3.2 Comparison of measured displacements 
 

Using the FBG–DSM sensors and dial indicators, the short-

term displacements vi for i = 0, ..., 6 were measured at the 

seven cross sections (Fig. 8) every second for nearly 200 

seconds by a data acquisition unit. Table 2 shows the 

displacement measurements obtained from one test 

combination. The repetition of each test combination 

provided favorable repeatability, yielding a relative error of 

less than 0.5% between all (repeated) measures. In 

particular, the displacements vi were recorded after applying 

the vertical load F and considering the assigned 

compressive force Nx as the initial displacement reference 

condition. The test combination with Nx = 299 kN and F = 

25.0 kN was neglected for a temporary lack of accuracy in 

the load F measurement. Notably, every single combination 

of compressive force Nx and load F preserved the steel 

beam in the elastic range. 

The absolute mean error between the measured 

displacements v2, v3, and v4, excluding the test combination 

with Nx = 482 kN and F = 22.3 kN, was equal to 0.04 mm 

corresponding to a relative error of 0.8%. The measured  

Table 2 Case I: Comparison of measured displacements corresponding to the test layout depicted in Fig. 8 

         Nx       F       v0       v1       v2       v3      v4      v5   v6 

 (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

Dial indicator 300 19.9 0.63 3.47 4.79 5.48 4.70 2.82 0.37 

FBG–DSM   0.69 2.98 4.78 5.43 4.72 2.86 0.47 

Dial indicator 300 22.3 0.72 3.85 5.38 6.17 5.30 3.17 0.41 

FBG–DSM   0.76 3.33 5.37 6.10 5.31 3.20 0.51 

Dial indicator 371 19.8 0.59 3.42 4.81 5.50 4.75 2.81 0.35 

FBG–DSM   0.67 3.00 4.81 5.48 4.76 2.89 0.42 

Dial indicator 371 22.3 0.67 3.81 5.39 6.16 5.32 3.15 0.38 

FBG–DSM   0.75 3.35 5.39 6.14 5.33 3.23 0.46 

Dial indicator 371 24.8 0.63 4.15 5.97 6.86 5.92 3.51 0.44 

FBG–DSM   0.77 3.68 6.15 6.86 5.90 3.58 0.51 

Dial indicator 447 19.8 0.73 3.50 4.89 5.59 4.84 2.90 0.41 

FBG–DSM   0.72 3.05 4.86 5.55 4.83 2.96 0.47 

Dial indicator 447 22.3 0.90 3.95 5.56 6.35 5.50 3.31 0.50 

FBG–DSM   0.84 3.47 5.53 6.29 5.49 3.38 0.57 

Dial indicator 448 24.8 1.02 4.48 6.26 7.21 6.22 3.79 0.60 

FBG–DSM   0.87 3.84 6.19 7.07 6.16 3.83 0.72 

Dial indicator 482 19.8 0.61 3.46 4.74 5.43 4.67 2.78 0.32 

FBG–DSM   0.71 3.05 4.81 5.47 4.79 2.92 0.44 

Dial indicator 482 22.3 0.61 3.46 4.74 5.43 4.67 2.78 0.32 

FBG–DSM   0.78 3.41 5.40 6.14 5.39 3.27 0.49 

Dial indicator 482 24.7 0.74 4.22 5.92 6.79 5.84 3.48 0.41 

FBG–DSM   0.84 3.75 5.98 6.80 5.98 3.62 0.53 

Mean error 

(mm) 
  0.05 -0.44 0.07 0.03 0.08 0.11 0.10 

Mean relative 

error (%) 
  0.09 -0.12 0.02 0.01 0.02 0.04 0.25 
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displacements v1 exhibited a systematic error equal to a 

mean value of –0.44 mm d u e  t o  a dial indicator 

malfunction. The symmetric displacement v5 was 

characterized by a mean error of 0.11 mm and corresponded 

to a relative error of 3.8%. The measured displacements v0 

and v6 close to the end constraints and characterized by few 

tenths of a millimeter   yielded an absolute mean error of 

0.09 mm. Nonetheless, excluding the measured 

displacement v1, the absolute mean error of all measures 

was lower than 0.08 mm, irrespective of the rotation to 

which the bases of the FBG–DSM sensors were subjected.  

The mean errors of each vi for i = 0, ..., 6 in Case I are 

summarized at the bottom of Table 2. 

 

 

4. Static NDT method for compressive force 
detection 

 

The formulation of the new static NDT method is 

illustrated in Fig. 9, and considers a simply supported 

compressed beam of length L. The prismatic member is 

subjected to an eccentrically compressive force N (with 

eccentricity e) with respect to the cross section centroid (Fig. 

9(a)) and a vertical load F located at the midspan (Fig. 9(b)).  

The compressive force N is assumed to be externally 

applied. The elastic modulus E of steel and cross-sectional 

second moment of area I are assumed to be known 

constants. 

The initial deflection curve v
(0)

 (Fig. 9(a)) after the 

eccentrically compressive load N has been applied is 

expressed as follows (Timoshenko and Gere 1961, Bazant 

and Cedolin 1991) 

(0) 1
( ) 1 cos cos( 2) ,

2

x
v x e n n

L

  
    

  

 (6) 

where n = NL
2 

/ EI is the nondimensional axial force. 

Subsequently, a point load F is applied to the initial 

deflection curve v
(0)

; the corresponding bending moments in 

the left and right portions of the beam in Fig. 9(b) are 

respectively expressed as follows 

M = F x / 2 + N (v
(1)

 – e)  for  0  x  L / 2 (7a) 

 

M = F (L – x) / 2 + N (v
(1)

 – e)
  

for  L / 2  x  L (7b) 

 

 

 

Substituting Eqs. 7(a) and 7(b) in the expression for the 

curvature of the beam axis M = –EI d
2
v

(1) 
/ dx

2
 yields the 

solution v
(1)

 = v
(0)

 + ( )

tot

av , where ( )

tot

av  is the deflection curve 

of the beam under the concentric axial load N and vertical 

load F (Fig. 9(c); Timoshenko and Gere 1961, Bazant and 

Cedolin 1991, Tullini 2013), expressed as follows 


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1
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for 0  x  L / 2 

(8a) 

 

( )

tot
3

1
( ) sin 1 1

cos 22

a x x
v x n n

L Lnn

       
        

      
  

for L / 2  x  L 

(8b) 

 = FL
3 
/ EI is the load parameter with a length dimension.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Reference model of the compressed steel beam. 

Deflection curve v
(0)

 after eccentric compressive load 

N has been applied (a), deflection curve v
(1)

 after load 

F has been applied to deflection curve v
(0)

 (b), and 

deflection curve ( )

tot

av  after load F (c) has been applied. 

The dashed lines correspond to the initial deflection 

curves 
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Fig. 8 Case I: Test layout with locations of the instrumented sections of the FBG–DSM sensing system. Units in mm 

59



 

Marco Bonopera, Kuo-Chun Chang, Chun-Chung Chen, Zheng-Kuan Lee and Nerio Tullini 

The measured deflections in the experiments conducted 

in this study were compared with the analytical solution 
( )

tot

av  = v
(1)

 – v
(0)

 generated by Eqs. 8(a) and 8(b). As n 

approaches zero, the limit of Eq. (8) yields the first-order 

displacement )(
I
av (neglecting the effect of the external 

compressive load), expressed as follows 




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
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
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3

12
)(

L

x

L

x
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a    for 0  x  L / 2 (9a) 
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(9b) 

The total vertical displacement in Eq. (8) is well 

approximated by the first-order deflection reported in Eq. 

(9) multiplied by the magnification factor of the second-

order effects 1 / (1 – N / NcrE) (Timoshenko and Gere 1961, 

Bazant and Cedolin 1991), expressed as follows 

( )
( ) I
tot

crE

( )
( )

1

a
x v x

v x
N N




 (10) 

where NcrE = π
2
EI / L

2
 is the first Euler buckling load for a 

simply supported beam. Thus, the magnification factor of 

the second-order effects coincides with the ratio ( )

I ( )av x /

( )

tot ( )xv x . During the execution of preliminary design 

computations, an approximation of Eq. (10) can be 

performed to determine the displacements in the 

compressed steel beams. 

A three-point bending test with assigned compressive 

force N can be conducted to measure the vertical 

displacement ( )

tot ( )xv x . Consequently, the ratio ( )

I ( )av x /

( )

tot ( )xv x  and definition of the magnification factor can be 

used to identify the compressive load Na in steel beam 

columns with the following relation (Bonopera et al. 2018) 

( )

I
crE ( )
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( )
1

( )

a

a x

v x
N N

v x

 
  
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(11) 

By substituting the nondimensional axial force na = Na 

L
2 
/EI, Eq. (11) can be reduced to 

( )
2 I
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tot

( )
1

( )

a

a x

v x
n

v x

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  

 

 
(12) 

When the point load F is applied at the midspan, Eq. 9 

(a) yields the first-order displacement at a quarter of the 

span, )(
I
av (L / 4) = 11/768, as well as the first-order 

midspan deflection by using the expression, )(
I
av (L / 2) = 

. In this cases, Eq. (12) can be reduced to 

2

( )

tot

2

( )

tot

11
1 or

768 ( / 4)

1 .
48 ( / 2)

a x
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v L

n
v L
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(13a,b) 

In summary, load identification must conform to the 

following steps: 

(1) Measure the displacement at the quarter cross 

section ( )

tot ( 4)xv L  along the beam’s length following the 

application of load F, or alternatively, measure the 

corresponding displacement at the midspan ( )

tot ( 2)xv L . 

(2) Solve Eqs. 13(a) or 13(b) for the unknown constant 

na by using the displacement ( )

tot ( 4)xv L  or ( )

tot ( 2)xv L , as 

well as the expression for  

(3) Determine the analytical value Na = na EI / L
2
 of the 

compressive force. 

Notably, the additional load F can be located at various 

cross sections, thereby underlining that the first-order 

displacement ( )

I ( )a

iv x  and experimental displacement 

( )

tot ( )x

iv x  must be in reference to the same cross section. 

Various boundary conditions can be considered by 

assuming the appropriate Euler buckling load NcrE in Eq. 

(10). The end constraints of a steel beam are often known, 

and the end stiffness of these elements can be measured 

experimentally in situ or obtained from the construction 

project drawings. With respect to space roof trusses where 

the internal joint stiffness is extremely difficult to identify, 

investigations on unloaded space structures will be 

conducted in subsequent studies. 

 

4.1 Static test layout of Case II 
 

The steel beam described in Section 3.1 was adopted 

(Fig. 6) with consideration of the test layout depicted in 

Figs. 10 (Case II) and 11(a). In this case, two additional 

reference FBG–DSM sensors labeled “R.F.” in Fig. 10 were 

positioned at the beam ends (Fig. 11(b)) to form a reference 

line for the displacement measurement system between the 

pinned-end constraints. Steel plates were utilized to locate 

each FBG–DSM sensor corresponding to the beam length 

(Fig. 11(b)). Similar to Case I, none of the FBG–DSM 

sensors were used for temperature compensation. 

A preliminary three-point bending test was conducted to 

measure the first-order midspan displacement v3. The load F 

at the midspan was equal to 2.5 kN, whereas a compressive 

force Nx of approximately 21 kN was applied to preserve 

the steel beam without second-order effects. Using the 

expression v3 = / 48, the same elastic modulus E of the 

tensile tests was gained. Cases I and II were concurrently 

performed. Notably, all test measurements were recorded 

every second for nearly 200 seconds by a data acquisition 

unit. The average measurements of the corresponding 

compressive forces Nx, loads F, and displacements vi for 

each test combination are shown in Table 3. Corresponding 

to the maximum measured displacement v3 = 6.39 mm, the 

tensile elongation of the fiber was approximately 0.0175 

mm. In addition,  favorable repeatabil i ty of the 

measurements was obtained for each test combination of 

Case II, yielding a relative error of less than 0.5% between 

all measures (repeated three times). The repetitions resulted 

in a total of 24 tests. The experiments with Nx = 482 kN 

were neglected because of contact between the tendons and 

steel stiffeners, which modified the original horizontal 

action line of the compressive load Nx. The steel beam was  

60



 

Axial load detection in compressed steel beams using FBG–DSM sensors 

 

 

 

preserved in the elastic range throughout the 

aforementioned experiments. 

The Euler buckling load of the beam NcrE = π
2
E Iexact / L

2
 

= 6138 kN. Thus, the maximum compressive force of Nx = 

448 kN, assigned in Case II, was only 7.3% of NcrE. 

Consequently, first-order displacements were magnified by 

a factor lower than 1 / (1 – 0.073) = 1.08. This small 

magnification factor requires highly accurate displacement 

measurements because second-order effects are usually 

neglected when the magnification factor is lower than 1.10. 

Table 3 compares the average displacement 

measurements vi of the instrumented sections with the 

corresponding numerical values ( )

tot ( )av x  from Eq. (8) and 

the elastic modulus of E = 235 GPa. Moreover, Table 3 lists 

the average measurements of the applied compressive 

forces Nx and loads F. The absolute mean error between the 

analytical and measured displacements v2, v3, and v4 was 

0.03 mm, corresponding to a relative error of 0.5%. The 

measured displacements v5 exhibited a mean difference of –

0.10 mm, whereas the symmetric displacement v1 was 

characterized by a mean error of –0.05 mm, corresponding 

to a relative error of –1.2%. The measured displacement v6 

close to the end support exhibited a mean difference of –

0.20 mm, whereas the mean error of the symmetric 

displacement v0 was equal to –0.03 mm, corresponding to a 

relative error of –1.6%. Excluding the measured 

displacement v6, the absolute mean error of all measures 

was lower than 0.04 mm. The mean errors of each vi for i = 

0, ..., 6 in Case II are summarized at the bottom of Table 3. 

The FBG–DSM sensor system was effective in the 

present study. Fig. 12 shows the factor ( )

tot1 /a

iv v  for i = 1,  

 

 

 

2, and 3. A maximum error of –4.1% was recorded for the 

nine tests with Nx = 371 kN. The values ( )

tot ( )av x  were 

similarly obtained from Eq. (8). The errors decreased 

considerably in the larger compressive loads Nx and 

displacements v2 and v3 close to and at the midspan, 

respectively. 

 

 

 
Fig. 12 Error 1 – vtot

(a) 
/ vi versus test number for all 

test combinations and displacements v1, v2, and v3 

depicted in Fig. 10 
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Fig. 10 Case II: Test layout with locations of the instrumented sections based on the FBG–DSM sensing system. Units in m 

   
(a) Layout of FBG–DSM sensors (b) Reference FBG–DSM sensor at 

one beam end 

(c) PVC ducts of tendons crossing one 

steel stiffener 

Fig. 11 Case II: Steel beam specimen 
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4.2. Compressive force detections 
 

Evaluations of the compressive nondimensional forces 

na are presented in Table 4. In particular, the detections 

were obtained by using the experimental values of  = FL
3 

/ EIexact and v1 in Eq. (13(a)) or the same parameter  and v3 

in Eq. (13(b)) for each test combination. Table 4 shows the 

experimental and estimated parameters of the load 

identification procedure by the quarter displacement v1 and 

midspan displacement v3. The elastic modulus of E = 235 

GPa was utilized as a parameter in the procedure. The 

percentage errors Δ = ( Na  Nx / Nx are also illustrated.  

The tests exhibited excellent compressive load Na 

detections when Nx > 371 kN, particularly when the beam 

was subjected to compressive forces Nx, yielding second-

order effects greater than 6% of the total displacements.  

 

 

 

 

 

When the quarter displacements v1 were used, the 

estimates Na deteriorated for all experiments. 

Sensitivity analyses were performed to verify the test 

results. The values v1 and v3 obtained by Eq. (8) and 

parameter  were modified to reproduce possible 

experimental errors. In particular, the values v1, v3, and  

were alternatively multiplied by 0.99 and 1.01, resulting in 

seven combinations of simulated values for seven distinct 

assumed compressive loads Nx. The maximum load of F = 

25.0 kN in the experiments was assumed in the process 

because the load estimations calculated using Eqs. (13(a) 

and 13(b)) did not depend on the vertical load magnitude. 

Figs. 13(a) and 13(b) exhibited the comparison between the 

worst estimated Na and assumed Nx values by using 

displacements v1 and v3; both cases yielded a constant error 

of approximately 60 kN. The comparison between the  

Table 3 Case II: Comparison between the analytical and measured displacements corresponding to the test layout 

depicted in Fig. 10 

 Nx F v0 v1 v2 v3 v4 v5 v6 

 (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

Analytical 300 19.9 1.83 3.42 4.55 4.97 4.55 3.42 1.83 

FBG–DSM   1.77 3.35 4.48 4.90 4.47 3.27 1.60 

Analytical 300 22.3 2.05 3.84 5.10 5.57 5.10 3.84 2.05 

FBG–DSM   1.98 3.75 5.03 5.52 5.03 3.69 1.81 

Analytical 371 19.8 1.84 3.45 4.58 5.01 4.58 3.45 1.84 

FBG–DSM   1.83 3.44 4.58 5.02 4.58 3.38 1.67 

Analytical 371 22.3 2.08 3.88 5.16 5.64 5.16 3.88 2.08 

FBG–DSM   2.05 3.85 5.14 5.63 5.15 3.79 1.87 

Analytical 371 24.8 2.31 4.32 5.74 6.27 5.74 4.32 2.31 

FBG–DSM   2.25 4.26 5.73 6.28 5.74 4.22 2.09 

Analytical 447 19.8 1.87 3.50 4.64 5.07 4.64 3.50 1.87 

FBG–DSM   1.86 3.47 4.63 5.06 4.63 3.42 1.70 

Analytical 447 22.3 2.10 3.94 5.23 5.72 5.23 3.94 2.10 

FBG–DSM   2.10 3.91 5.22 5.71 5.21 3.85 1.91 

Analytical 448 24.8 2.34 4.38 5.81 6.36 5.81 4.38 2.34 

FBG–DSM   2.32 4.32 5.83 6.39 5.84 4.34 2.20 

Mean error (mm)   -0.03 -0.05 -0.02 -0.01 -0.02 -0.10 -0.20 

Mean relative 

error (%) 
  -0.02 -0.01 0.00 0.00 0.00 -0.03 -0.10 

Table 4 Case II: Compressive force detections. The superscript * and subscript a refer to the measured and estimated 

parameters using displacements v1 and v3, respectively 

   Displacements v1  Displacements v3 

Nx
* F 

*  /v1
*
 na Na Δa  /v3

*
 na Na Δa 

(kN) (kN)    (kN) (%)    (kN) (%) 

300 19.9  67.8 0.28 176 -41.5  46.4 0.34 209 -30.4 

300 22.3  67.9 0.27 169 -43.6  46.1 0.39 240 -20.0 

371 19.8  65.7 0.58 361 -2.8  45.0 0.61 380 2.3 

371 22.3  66.1 0.52 324 -12.6  45.2 0.57 355 -4.3 

371 24.8  66.5 0.47 295 -20.6  45.1 0.60 373 0.4 

447 19.8  65.1 0.66 411 -8.1  44.7 0.68 425 -4.9 

447 22.3  65.1 0.66 413 -7.5  44.6 0.70 436 -2.4 

448 24.8  65.5 0.60 376 -16.1  44.3 0.76 472 5.3 
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measured Nx and estimated Na values generated in the 

experiments (Table 4) is detailed in Figs. 13(a) and 13(b). 

Favorable correspondence between the analytical and 

experimental identifications was gained when the midspan 

displacement v3 was considered because of its greater 

second-order effects. 

The method proposed by Tullini et al. (2012) was 

adopted to identify the prestress forces Na by using the 

measured displacements in Case II (Fig. 10). This method is 

able to detect the axial force in externally loaded elements 

with known geometric and elastic properties, idealized as 

simply supported Euler–Bernoulli beams. The application 

of an additional load F at the midspan of the element is 

necessary for measuring the displacements at three given 

cross sections along the beam axis. Two test configurations 

were considered, both of which had a substructure length 

of L = 7.1 m (Fig. 10). One test employed the three sensors 

located at cross sections i = 1, 3, and 5. By contrast, the 

other test considered the short-term displacements v2, v3, 

and v4 (Table 3). The estimation errors ∆ = (Na – Nx) / Nx 

were unsatisfactory for both configurations. 

 

 

5. Conclusions 
 

This paper presents the performance of a novel static 

NDT method that can detect the compressive load in steel 

members. If the beam’s flexural rigidity is identified, the 

compressive force can be deduced using the midspan 

displacement recorded accurately in a three-point bending 

test. Therefore, the deflected shape of a compressed steel 

beam was short-term measured using a series of FBG–DSM 

sensors in several laboratory tests. The high accuracy of the 

midspan deflections using the FBG–DSM sensor measuring 

system yielded excellent load detection. Compressive forces 

that induce a magnification factor greater than 1.06 are 

required to obtain identification errors lower than 10%. The 

method proposed by Tullini et al. (2012) yielded 

unsatisfactory approximations of the compressive forces, 

even when accurate measurements from the FBG–DSM 

sensors were used. These results confirm the applicability  

 

 

of the method proposed by Tullini et al. (2012) for members 

with high slenderness only. The new static method enables 

reliable load identification in steel beams with low 

slenderness. Moreover, in contrast to Bonopera et al. (2018), 

evaluation of the first-order displacement through use of the 

magnification factor formula (Eq. (11)) is not required. 

Finally, the new method can be applied in situ to generically 

compressed steel beams after the stiffness of the 

corresponding boundary conditions had been investigated. 

Thus, the FBG–DSM sensors (Lee 2014, 2015) have the 

potential for easy measurement system installation along 

the top chords of space trusses. 
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