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1. Introduction 
 

Nanocomposite materials are composed of different 

functional components such as polymer, nanoparticle and 

ligands, with at least one component having nanometer 

dimensions. Typically, the dispersion of nanoparticles in 

polymer matrices is problematic and the nanoparticles tend 

to phase separate or aggregate in the polymer matrix. 

Nanoparticle agglomeration and phase separation from the 

host polymer usually results in poor process ability of films 

and a high defect density. Moreover, physical properties of 

the composite material are very sensitive to particle 

dispersion within the nanocomposite (Mori and Tanaka, 

1973). 

Mechanical analysis of nano\micro plates were taken up 

by several researchers lately. A finite element model based 

on an improved higher order zigzag plate theory was 

developed by Pandit et al. (2009) for bending and vibration 

response of soft core sandwich plates. Buckling and free 

vibration of magneto-electro-elastic nanoplate resting on 

Pasternak foundation was presented by Li et al. (2014) 

based on nonlocal Mindlin theory. Applying different 

nonlocal shear deformable plate theories, Kiani (2014) 

carried out the free vibration of conducting nanoplates  
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exposed to unidirectional in-plane magnetic fields. Ke et al. 

(2015) presented free vibration of nonlocal piezoelectric 

nanoplates using differential quadrature method (DQM). 

Asimple four-variable trigonometric shear deformation 

theory considering the effects of transverse shear 

deformation and rotary inertia was evaluated by 

Atteshamuddin  and Yuwaraj (2017) for the free vibration 

analysis of antisymmetric laminated composite and soft 

core sandwich plates. The magneto-rheological visco-

elastomer (MRVE) was used by Ying et al. (2017) as a 

smart core to control the stochastic micro-vibration of a 

sandwich plate with supported mass.  

With respect to the developed works for nanocomposite 

structures, there are many works in recent years. Nonlinear 

bending of FG-CNTRC plates was presented by Shen 

(2009), who considered the size-dependent and temperature 

dependent material properties of single-wall CNTs. The 

bending and free flexural vibration behavior of sandwich 

plates with CNT reinforced face sheets were investigated by 

Natarajan et al. (2014). Abdollahzadeh Shahrbabaki and 

Alibeigloo (2014) studied the three-dimensional free 

vibration of CNT reinforced composite rectangular 

orthotropic plates with various boundary conditions. Four-

unknown quasi-3D shear deformation theory for advanced 

composite plates was investigated by Mantari and Guedes 

Soares (2014). Rafiee et al. (2014) worked on non-linear 

dynamic stability of piezoelectric FG-CNTRC plates with 

initial geometric imperfection. Wattanasakulpong and 

Chaikittiratana (2015) carried out the exact solutions for 

static and dynamic analyses of CNTRC plates with 
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Pasternak elastic foundation. Phung-Van et al. (2017) 

presented the iso-geometric analysis of FG-CNTRC plates 

using higher-order shear deformation theory. Chetan et al. 

(2017) studied modelling of the interfacial damping due to 

nanotube agglomerations in nanocomposites. 

However, to date, no report has been found in the 

literature on dynamic stability of viscoelastic 

nanocomposite micro plates. Motivated by these 

considerations, in order to improve optimum design of 

nanostructures, we aim to present a realistic model for 

temperature-dependent dynamic instability of micro plates 

reinforced with FG-CNTs. The structural damping effects 

are assumed by Kelvin–Voigt model. The surrounding 

elastic medium is simulated by orthotropic visco-Pasternak 

foundation. The mixture rule is applied for obtaining the 

equivalent material properties of structure. The motion 

equations are obtained using SSDT and energy method 

considering size effects. DQ method is used to calculate the 

resonance frequency and DIR of structure. The effects of 

different parameters such as volume percent of CNTs, 

distribution type of CNTs, temperature, nonlocal parameter 

and structural damping on the dynamic instability of visco-

system are elucidated. 

 

 

2. Mixture rule 
 

As shown in Fig. 1, a CNTRC visco-plate with length 
a , width b  and thickness h is considered. The CNTRC 

plate is surrounded by an orthotropic elastomeric 

temperature-dependent medium which is simulated by WK

, gK  and gK  correspond Winkler foundation 

parameter, shear foundation parameters in ξ and η 

directions, respectively. Four types of CNTRC plates 

namely as uniform distribution (UD) along with three types 

of FG distributions (FGA, FGO, FGX) of CNTs along the 

thickness direction of a CNTRC plate is considered. 

In order to obtain the equivalent material properties two-

phase Nanocomposites (i.e., polymer as matrix and CNT as 

reinforcer), the rule of mixture is applied. According to 

mixture rule, the effective Young and shear moduli of 

CNTRC plate can be written as (Shen 2009) 

 

 

 

Fig. 1 Configurations of the SWCNT distribution in 

a CNTRC plates. (a) UD CNTRC plate, (b) FG-A 

CNTRC plate, (c) FG-O CNTRC plate and (d) FG-

X CNTRC plate 
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where 11rE , 22rE  and 11rG indicate the Young’s moduli 

and shear modulus of SWCNTs, respectively, and mE , mG  

represent the corresponding properties of the isotropic 

matrix. The scale-dependent material properties, j  (j= 1, 

2, 3), can be calculated by matching the effective properties 

of CNTRC obtained from the MD simulations with those 

from the rule of mixture. CNTV and mV are the volume 

fractions of the CNTs and matrix, respectively, which the 

sum of them equals to unity. The uniform and three types of 

FG distributions of the CNTs along the thickness direction 

of the CNTRC plates take the following forms 
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where CNTw , m  and CNT are the mass fraction of the 

CNT, the densities of the matrix and CNT, respectively. 

Similarly, the thermal expansion coefficients in the 

longitudinal and transverse directions respectively ( 11 and 

22 ) and the density (   ) of the CNTRC plates can be 

determined as 

,,,

*

mmrCNT VV    (9) 
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where 12r and m are Poisson’s ratios of the CNT and 

matrix, respectively. In addition, 11r , 22r  and m  are 

the thermal expansion coefficients of the CNT and matrix, 

respectively. It should be noted that 12  is assumed as 

constant over the thickness of the FG-CNTRC plates. 

 

 

3. Visco-nonlocal-sinusoidal theories 
 

In the Eringen's nonlocal elasticity model, the stress 

state at a reference point in the body is regarded to be 

dependent not only on the strain state at this point but also 

on the strain states at all of the points throughout the body. 

The constitutive equation of the nonlocal elasticity is 

(Eringen 1983) 
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where the parameter ae0  denotes the small scale 

parameter, and 2  is the Laplace operator. The 

constitutive equation for stresses σ and strains ε  matrix 

in thermal environment may be written as follows 
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where ijC  denotes temperature-dependent elastic 

coefficients. Noted that 
ijC  and 

2211, may be obtained 

using rule of mixture (i.e., Eqs. (1)-(7)).All materials 

exhibit some viscoelastic response.According to Kelvin–

Voigt (Lei et al. 2013) at real life, nano structure 

mechanical properties depend on the time variation. This 

model represents,as the stress is released, the material 

gradually relaxes to its undeformed state. By considering 

this model,we have 
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t
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where g is structural damping constant. Based on the SSDT, 

the displacement field can be writtenas (Thai and Vo 2013) 
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4. Motion equations 
 

Fig. 1 depicts a viscoelastic micro plate reinforced with 

SWCNTs of length a, width b and thickness h. The origin of 

the reference coordinate system is selected at the corner of 

the micro plate on the middle plane. The potential energy of 

structure can be written as 
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Substituting Eqs. (18)-(22) into Eq. (23) leads to 
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where N , M and Q are the stress resultant–

displacement can be defined by 
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The kinetic energy of nano-composite micro platecan be 

written as 
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where  is the density of structure.  

The external work due to surrounding orthotropic visco-

Pasternak medium can be written as 
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where angle θ describes the local ξ direction of orthotropic 

foundation with respect to the global x-axis of the plate; k, 

G and G  are Winkler foundation parameter, shear 

foundation parameters in ξ and η directions, respectively. 

Finally, applying Hamilton’s principle, the motion equations 

can be obtained as 
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where the mass inertias can be defined as  
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By substituting Eq. (13)-(22) into Eqs. (25)-(28) the 

stress resultants are obtained as 
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By substituting Eqs. (32)-(35) into Eqs. (37)-(47), the 

equations of motion can be expressed as 
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5. GDQM 
 

In this method, the differential equations are changed 

into a first order algebraic equation by employing 

appropriate weighting coefficients. Because weighting 

coefficients do not relate to any special problem and only 

depend on the grid spacing. In other words, the partial 

derivatives of a function (say w  here) are approximated 

with respect to specific variables (say x and y ), at a 

discontinuous point in a defined domain ( xLx 0 and 

yLy 0 ) as a set of linear weighting coefficients and the 

amount represented by the function itself at that point and 

other points throughout the domain. The approximation of 

the 
thn  and 

thm derivatives function with respect to x

and y , respectively may be expressed in general form as 

(Lei et al. 2013) 
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where xN and yN , denotes the number of points in x  

and y directions, )y,x(f is the function and jlik BA , are 

the weighting coefficients defined as 
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where M and P are Lagrangian operators defined as 
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The weighting coefficients for the second, third and 

fourth derivatives are determined via matrix multiplication 
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Using the following rule, the distribution of grid points 

in domain is calculated as 
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 (63) 

Let the in-plane load P be periodic and may be 

expressed as 

( ) cos( t),cr crP t P P     (64) 

where is the frequency of excitation, crP  is the static 

buckling load,   and   may be defined as static and 

dynamic load factors, respectively. However, the motion 

equations can be written as 

  ],0[]][[]][[]][)cos([  dMdCdKtPKPK GcrGcr
  (65) 

 

5.1 Bolotin’s method 
 

In order to determinate the boundaries of dynamic 

instability regions, the method suggested by Bolotin is 

applied. Hence, the components of  d can be written in the 

Fourier series with period T2  as 

     
1,3,...

sin cos  ,
2 2k k

k

k t k t
d a b

 



 
  

 
  (66) 

According to this method, the first instability region is 
usually the most important in studies of structures. It is due 

to the fact that the first DIR is wider that other DIRs and 

structural damping in higher regions becomes neutralize. 

Substituting Eq. (66) into Eq. (65) and setting the 

coefficients of each sine and cosine as well as the sum of 

the constant terms to zero, yields 
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 

 (67) 

Solving the above equation based on eigenvalue 

problem, the variation of   with respect to   can be 

plotted as DIR. 
 
 
6. Results and discussion 
 

A computer program is prepared for the numerical 

solution of nonlinear buckling of CNTRC sandwich micro 

plates resting on an orthotropic elastomeric temperature-

dependent foundation. Here, Poly methyl methacrylate 

(PMMA) is selected for the matrix which have constant 

Poisson’s ratios of 340.m  , temperature-dependent 

thermal coefficient of   K/T.m
610000501  , and 

temperature-dependent Young moduli of 

 GPaT..Em 00340523   in which TTT  0  and 

KT 3000   (room temperature). In addition, (10, 10) 

SWCNTs are selected as reinforcements with the material 

properties listed in Table 1 (Shen 2009).  

The elastomeric medium is made of Poly dimethylsiloxa

ne (PDMS) which the temperature-

dependent material properties of which are assumed to be 

48.0s  and  GPaT..Es 00340223   in which 

TTT  0
 and KT 3000   (room temperature). 

 
 
Table 1 Temperature-dependent material properties of (10, 

10) SWCNT (L= 9.26 nm, R= 0.68 nm, h= 0.067 nm, 

175012 .CNT  ) 

T (K) 

)(

11

TPa

ECNT

 )(

22

TPa

ECNT

 
)(

12

TPa

GCNT

 )/10( 6

12

K

CNT





 

)/10( 6

22

K

CNT





 

300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 
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To the best of the authors’ knowledge no published 

literature is available for viscoelastic nanocomposite 

sandwich micro plate based on SSDT. Since, no reference 

to such a work is found to-date in the literature; its 

validation is not possible. However, in an attempt to 

validate this work as far as possible, a simplified analysis of 

this paper is carried out without considering the nonlocal 

parameter, orthotropic visco-Pasternak foundation, 

viscoelastic property and SWCNTs as reinforcer. Present 

results are compared with the work of Lanhe et al. (2007) 

based on First-order shear deformation theory (FSDT). 

Considering the material properties the same as Lanhe et al. 

(2007) and dimensionless frequency as 

mm E/)()h/a( 22 1   , the results of comparison are 

shown in Fig. 2. As can be seen, present results are in good 

agreement with Lanhe et al. (2007), indication validation of 

this work. Noted that the little difference between this work 

and Lanhe et al. (2007) is due to considering thermal load 

in Lanhe et al. (2007). 

The convergence and accuracy of the DQM in 

calculating the excitation frequency of the CNTRC 

sandwich micro plates is shown in Fig. 3. Fast rate of 

convergence of the method are quite evident and it is found 

that 15 DQ grid points can yield accurate results. 

In realizing the influence of CNTs as reinforce, Fig. 4 is 

plotted. This figure shows the effects of CNTs volume 

fraction on the dimensionless excitation frequency (

mm E/)()h/a( 22 1   ) with respect to dynamic load 

amplitude. In these figure, the regions inside and outside the 

boundary curves correspond to unstable (parametric 

resonance) and stable regions, respectively. As can be seen, 

with increasing the CNTs volume fraction, the DIR shifts to 

higher frequencies. In other words, increasing the CNTs 

volume fraction leads to higher resonance frequency which 

is due to increase in the stiffness of structure. 
Depicted in Fig. 5 is the dimensionless excitation 

frequency versus dynamic load factor for the UD and three 

types of FG CNTRC sandwich micro plates. 
 
 

 

Fig. 2 Comparison of present work with Lanhe et 

al. (2007) 
 
 

 

 

Fig. 3 Convergence of proposed method (DQM) 
 
 

 

Fig. 4 CNT Volume percent effects on the DIR of 

FG-CNT-reinforced micro plate 
 
 

 

Fig. 5 CNT distribution type effects on the DIR of 

FG-CNT-reinforced micro plate 
 

 

It should be noted that the mass fraction ( CNTw ) of the 

UD and FG distribution of CNTs in polymer are considered 
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equal for the purpose of comparisons. As can be seen, the 

dimensionless excitation frequency of FGA- and FGO- 

CNTRC sandwich micro plates are lower than those of UD-

CNTRC sandwich micro plates while the FGX- CNTRC 

sandwich micro plate have higher dimensionless excitation 

frequency with respect to three other cases. It is due to the 

fact that the stiffness of CNTRC sandwich micro plates 

changes with the form of CNT distribution in matrix. 

However, it can be concluded that CNT distribution close to 

top and bottom are more efficient than those distributed 

nearby the mid-plane for increasing the stiffness of plates. 
The effect of different boundary conditions is presented 

in Fig. 6 on the dimensionless excitation frequency versus 

dynamic load factor. It can be found that the CCCC 

boundary condition yields to higher resonance frequency. In 

other words, comparing the assumed boundary conditions, 

the DIR of structure moves to right for the case of micro 

plate with CCCC boundary conditions. 
Fig. 7 demonstrates the effects of nonlocal parameters 

on the dimensionless excitation frequency versus dynamic 

load factor. As can be seen, the frequency of the system 

decreases with considering nonlocal theory. It means that 

with considering nonlocal parameter, DIR of system 

happens in lower frequencies. This is because increasing the 

nonlocal parameter implies decreasing interaction force 

between micro plate atoms leads to a softer structure.  

 

 

Fig. 6 Boundary condition effects on the DIR of 

FG-CNT-reinforced micro plate 
 

 

Fig. 7 Nonlocal parameter effects on theDIR of FG-

CNT-reinforced micro plate 

 

 

Fig. 8 Structural damping effects on theDIR of FG-

CNT-reinforced micro plate 
 

 

Fig. 9 Temperature effects on theDIR of FG-CNT-

reinforced micro plate 
 

 

Fig. 8 demonstrates the DIR for different structural 

damping constant. As can be seen, the DIR and frequency 

of viscoelastic sandwich micro plate are lower than those of 

non-visco structure (i.e., G=0). This remarkable difference 

show that considering the nature of nanocomposite micro 

plate as viscoelastic can yield the accurate results with 

respect to non-visco micro plate. The reason is that 

assuming viscoelastic micro plate means induce of damping 

force which results in more absorption of vibration energy 

by the micro plate. 

The effect of temperature on the dimensionless 

excitation frequency of the CNTRC sandwich micro plate 

with respect to the dynamic load factor is demonstrated in 

Fig. 9. It can be found that the dimensionless excitation 

frequency of structure decreases with increasing 

temperature which is due to the higher stiffness CNTRC 

micro plate with lower temperature. 
The effect of different viscoelastic mediums is 

demonstrated in Fig. 10 for four cases which are without 

viscoelastic medium, visco-Winkler medium, visco-

Pasternak medium and orthotropic visco-Pasternak medium.  
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Fig. 10 Viscoelastic medium type effects on the DIR 

of FG-CNT-reinforced micro plate 
 

 

It can be seen that considering viscoelastic medium 

increases the excitation frequency of structure and DIR 

shifts to higher frequencies. It is due to the fact that 

considering viscoelastic medium leads to stiffer structure. 

Furthermore, the excitation frequency which leads to DIR 

for the case of visco-Pasternak medium is higher than the 

visco-Winkler medium. It is because in the visco-Pasternak 

medium indeed the normal loads, the shear forces are 

considered. In addition, the DIR of orthotropic visco-

Pasternak medium is behind the DIR of visco-Pasternak one 

since the shear layer is considered with the angle of 30 

degree. 

 
 
7. Conclusions 
 

Considering different distribution type for CNTs, the 

dynamic buckling of viscoelastic temperature-dependent 

nanocomposite sandwich micro plates was presented. The 

sandwich micro plate is reinforced with SWCNTs which the 

equivalent material properties were obtained by mixture 

model. Orthotropic viscoelastic foundation was used for 

simulating the surrounding elastic medium. The SSDT was 

applied for mathematical modeling of structure considering 

size effects using Eringen’s nonlocal theory. DQ method in 

conjunction with the Bolotin’s method was applied for 

obtaining the DIR of structure so that the effects of different 

parameters such as volume percent of SWCNTs, 

distribution type of CNTs, temperature, volume percent of 

SWCNTs in volume, nonlocal parameter and structural 

damping were shown. Results depict that considering the 

nature of structure as viscoelastic can yield the accurate 

results with respect to non-visco one. Furthermore, the 

frequency of the system decreases considering the nonlocal 

parameter. In addition, with increasing the CNTs volume 

fraction, the DIR shifts to higher frequencies. Furthermore, 

FGX distribution of CNTs leads to higher frequency. The 

results of this study were in good agreement with those 

reported by Lanhe et al. (2007). The results presented in 

this work can be useful for the study and design of the next 

generation of nanocomposite structures that make use of the 

nonlocal dynamic instability of viscoelastic microplate. 
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