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1. Introduction 
 

The protection of buildings against the effects of wind is 

essential for a wind-sensitive tall building. Liquid Column 

Vibration Absorber (LCVA) or Tuned Liquid Column 

Damper (TLCD), a special class of LCVA with uniform 

sectional area, is shown to be effective for suppressing 

vibration by a number of studies if the damper parameters 

are properly selected (Gao et al. 1997, Lee et al. 2012, Min 

et al. 2015, Bigdeli and Kim 2016). Due to its simple way 

of adjusting damper parameters, LCVA is considered to be 

one of the cost effective solutions for suppressing the 

vibration of structures. It has attracted great attention from 

researchers to improve the performance of LCVA or apply 

LCVA to different structures. To facilitate the application of 

LCVA, Wu et al. (2012) presented a set of empirical 

formulae for the determination of head loss coefficient by 

the opening ratio of orifice. Lee and Juang (2012) studied 

the feasibility of an integrated system of floating platform 

with an underwater TLCD. The underwater TLCD could 

provide buoyancy to the system and would not occupy 

additional space for installation. Diana et al. (2013)  
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developed a new methodology which allows direct linking 

of TLCD with the increased damping acting on the 

structure, facilitating the preliminary design of these 

devices. Cheng et al. (2015) studied the application of MR-

TLCD to structures by a series of experimental test with 

focus on the effects of MR-fluid viscosity. More recently, 

Di Matteo et al. (2015) and Di Matteo et al. (2016) 

developed a new formulation of TLCD based on fractional 

calculus and experimentally demonstrated that the proposed 

formulation can accurately capture structural responses and 

liquid displacements of TLCD. Bigdeli and Kim (2017) 

proposed a new Neuro-Wavelet control algorithm based on 

a cost function to actively control the vibrations of 

structures under earthquake loads. 

To maximize the performance of LCVA, a large number 

of studies have been conducted to optimize the performance 

of vibration absorbers under different type of loadings. 

Chang (1999) first derived the optimum parameters of 

LCVA for suppressing vibration of structure under white 

noise excitation. Yalla and Kareem (2000) also derived the 

optimum parameters of TLCD and developed an explicit 

formula for the optimum head loss coefficient in terms of 

the optimum parameters derived from linearized equation of 

motion for a TLCD-structure system under white noise 

excitation. Wu et al. (2005) proposed some guidelines and 

presented some numerical results in tabular form for 

designing TLCD for damped structures under a white noise 

type of wind excitation. Konar and Ghosh (2010) 

determined the optimum combination of the design 

parameters of LCVA for the most efficient control 
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Di Matteo et al. (2015) developed a pre-design simplified 

formula for choosing the optimal parameters of TLCD on 

lightly damped structures under random ground 

acceleration. Min et al. (2015) also studied the performance 

of passive TLCD with an optimally designed blocking ratio 

under wind excitation and derived some analytical formulae 

for design purposes. The effects of structural damping on 

the optimum parameters of LCVA were also studied by 

Ghosh and Basu (2007a), Shum et al. (2011) and Shum 

(2015). Although all of these previous studies were 

significant developments of the optimum parameters of 

LCVA or TLCD, each of the aforementioned studies are 

limited to the case of random type excitation, which might 

not well represent harmonic type crosswind excitation due 

to vortex shedding or galloping. Following the perturbation 

approach presented by Liu and Liu (2005), Shum (2009) 

derived the optimum parameters of TLCD for suppressing 

harmonic vibration of undamped structure and presented 

some numerically searched optimum values of TLCD 

parameters for suppressing harmonic vibration of damped 

structure. Nevertheless, the optimum damping of TLCD for 

undamped structures derived by perturbation approach is 

relatively cumbersome and the numerical results presented 

in his studies are only applicable to the case of TLCD for 

few number of structural damping. Later, Wu et al. (2009) 

also studied the optimum parameters of LCVA for 

suppressing harmonic vibration of damped structures by 

numerical method and presented some design tables for 

LCVA.  However, only few LCVA configurations were 

considered in their studies. 

In order to facilitate the design process of LCVA, 

explicit design formulas of LCVA for suppressing harmonic 

vibration of structures with small inherent structural 

damping are developed in present study. The optimum 

damping and tuning frequency ratio of a tuned vibration 

absorber system for damped structure under harmonic force 

excitation are obtained through a numerical searching  

 

 

 

approach. Explicit formulae for these optimum parameters 

are then obtained by a sequence of curve fitting techniques.  

Similar curve fitting approach was used by Tsai and Lin 

(1993) to determine explicit expressions for optimum 

parameters of TMD under harmonic support excitation.  

The effects of structural damping on the optimum 

parameters of LCVA are also investigated in this study. 

 

 

2. Problem formulation 
 

The problem being considered is shown in Fig. 1. The 

system consists of a structural mass m1, supported by a 

spring with stiffness k1 and a viscous damper with damping 

coefficient c1. The motion of structural mass relative to 

ground is denoted as x (t). A LCVA is installed on the 

structural mass. The motion of liquid inside the vertical 

column relative to the container is denoted as x (t). The 

system is subjected to a harmonic force,  ( ) . By 

considering the dynamic equilibrium condition and the 

interaction between the structural mass and the liquid in 

LCVA, the equation of motion of a structural mass 

equipped with a LCVA for lateral vibration control are 

(Hitchcock et al. 1997, Taflanidis et al. 2007) 

[
𝑚1 +𝑚𝑑 𝜌𝐴𝑣𝐵
𝜌𝐴𝑣𝐵 𝑚2

] [
𝑥̈1
𝑥̈2
] + [

𝑐1 0

0
1

2
𝜌𝐴𝑣𝛿|𝑥̇2|

] [
𝑥̇1
𝑥̇2
]

+ [
𝑘1 0
0 2𝜌𝐴𝑣𝑔

] 0
𝑥1
𝑥2
1 = ,𝐹- 

(1) 

under the condition 

𝑥2 ≤
𝐿 − 𝐵

2
−
𝑠

2
 (2) 

where md = ρAv,(Ah Av⁄ )B + (L − B)- is the total mass 

of liquid inside container; m2 = ρAv,(L − B) +
B(Av Ah⁄ )- is defined as the equivalent mass of liquid 

 
Fig. 1 Liquid column vibration absorber 
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inside LCVA; ρ is the density of the LCVA liquid; B is the 

horizontal length of liquid column; L is the total length of 

liquid column; s is the thickness of horizontal tube of 

container; Av and Ah denote the vertical and horizontal 

cross-sectional areas of liquid column, respectively; g is the 

acceleration due to gravity; δ is the head loss coefficient 

due to an orifice inside the vertical part of liquid column; 
,F- is the force vector. The mass m2 can be regarded as 

the mass of a uniform liquid column with cross-sectional 

area Av  that possesses the same kinetic energy. The 

inherent nonlinear damping force of liquid motion could be 

replaced by a linear equivalent damping force 𝑐𝑒𝑞𝑥̇2 (Gao 

et al. 1997) using equivalent linearization technique. The 

equivalent damping ratio of liquid motion ξ2 is determined 

by ξ2 = ceq/(2m2ω2) . ω2  is the circular natural 

frequency of the liquid inside LCVA. The frequency tuning 

ratio λ and the mass ratio of LCVA to structure μ are 

defined as 

λ =
𝜔2

𝜔1
;   μ =

𝑚𝑑

𝑚1
   (3) 

After replacing nonlinear damping force of liquid 

motion by linear equivalent damping force, Eq. (1) can be 

simplified into the following form 

[
(1 + 𝜇)𝑚1 𝛼𝜒1𝜇𝑚1

𝛼𝜒2𝑚2 𝑚2
] [
𝑥̈1
𝑥̈2
]

+ [
2𝑚1𝜔1𝜉1 0

0 2𝑚2𝜔2𝜉2
] [
𝑥̇1
𝑥̇2
]

+ [
𝑚1𝜔1

2 0

0 𝑚2𝜔2
2] 0

𝑥1
𝑥2
1 = ,𝐹- 

(4) 

in which ω1 is the natural frequency of structure; ξ1 is the 

damping ratio of structure;  =
 

 
; r =

  

  
;  1 =

  

 :  ;   
; 

 2 =
1

1; :   
; md =

    

 1
; m2 =

    

 2
 and ω2 = √

2g 2

 
.  

Eq. (4) can be re-written into the following matrix form. 

[
1 + 𝜇2 𝜇3
𝜇3 𝜇1

] [
𝑥̈1
𝑥̈2
] + [

2𝜔1𝜉1 0
0 2𝜇1𝜔2𝜉2

] [
𝑥̇1
𝑥̇2
] +

[
𝜔1
2 0

0 𝜇1𝜔2
2] 0

𝑥1
𝑥2
1 =

1

𝑚1
,𝐹-        

(5) 

The displacement responses of structure and liquid 

motion of LCVA determined from the linearized Eq. (5) 

would depend on a value of equivalent damping 𝜉2.  For 

a given excitation amplitude  ,̅ the equivalent damping 𝜉2 

could be achieved by adjusting the value of head loss 

coefficient. The three mass ratios  μ1, μ2, and μ3 in the 

above equation depend on the type of vibration absorber 

being considered.  For the case of LCVA-structure 

system (≠ , rA≠  for LCVA) 

     𝜇1 =
𝑚2

𝑚1
  𝜇2 =

𝑚𝑑

𝑚1
= 𝜇 

  

𝜇3 = 𝜒2𝛼𝜇1 𝑜𝑟 𝜒1𝛼𝜇2  

(6) 

For the case of TMD-structure system (1, rA=1 for 

TMD) 

𝜇1 = 𝜇2 = 𝜇3 = 𝜇 = 
𝑚2

𝑚1
  (7) 

where m2 is the mass of TMD attached to the primary 

structure. Therefore, the results derived based on Eq. (5) are 

applicable to TMD and LCVA. Eq. (5) can be considered to 

be a unified analytical model for a structure equipped with a 

tuned vibration absorber and can be converted to the 

equation of motion of TMD-structure system when 

substituting Eq. (7) into Eq. (5). In this study, results 

derived from unified analytical model for structure-tuned 

vibration absorber system under harmonic force excitation 

are generalized in terms of efficiency index. An efficiency 

index of tuned vibration absorber is defined as (Chang 

1999) 

𝛾 =
𝜇3
2

𝜇1
  (8) 

The efficiency index for TMD and LCVA is determined 

as follows 

𝛾𝑇𝑀𝐷 = 𝜇 (9) 

 

    𝛾𝐿𝐶𝑉𝐴 = 𝜇𝛼2𝜒 (10) 

in which  =  1 2 . The efficiency index for TLCD is 

determined by substituting rA=1 into Eq. (6). 

    𝛾𝑇𝐿𝐶𝐷 = 𝜇𝛼2 (11) 

 

 

3. Optimization of LCVA 
 

In this section, the closed-form optimum parameters of a 

LCVA are first determined for the case of an undamped 

primary structure subjected to a harmonic excitation. The 

steady-state responses of structure and liquid motion of 

LCVA are first obtained by solving the linearized Eq. (5). 

The frequency and damping parameters of LCVA for 

minimizing the resonant vibration amplitudes are then 

optimized based on fixed-point theory. The closed-form 

optimum parameters of a LCVA for suppressing harmonic 

vibration of damped structure are then determined through a 

numerical searching technique. After the optimum LCVA 

parameters for damped structures are found through 

numerical searching, a series of curve fitting technique is 

applied to find the explicit expressions that can best 

represent the numerically searched optimum values.  

 

3.1 Undamped structure  
 

In case of forced motion, there is only one external 

harmonic force  ( )  acting on the structural mass. The 

corresponding force vector is 

,𝐹- =  0
𝑓(𝑡)
0
1  (12) 

where  ( ) =  e̅iω̃t;   ̅ is the amplitude of harmonic force 

and ω̃  is the frequency of external applied force.  
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Considering the feasible range of head loss coefficient in 

practice, the liquid motion due to quadratic damping 

induced by orifice can be assumed to be weakly nonlinear.  

The steady-state responses of the structure and liquid 

motion of LCVA under harmonic force excitation are also 

harmonic (Gao et al. 1997) and are given by  

   ,𝑥1 𝑥2-𝑇 = ,𝑋̅1 𝑋̅2-
𝑇𝑒𝑖𝜔̃𝑡   (13) 

Substituting Eqs. (12) and (13) into Eq. (5) with some 

manipulation, it yields the steady-state response amplitudes 

of structure and liquid. 

|
𝑋̅1

𝑓̅ 𝑘1⁄
|
2

=

 
,(𝜆2;𝛽2)-2:(2𝜆𝛽𝜉2)

2

*,(1:𝜇2);𝛾-𝛽
4;,1:(1:𝜇2)𝜆

2-𝛽2:𝜆2+2:*2𝜆𝛽𝜉2,1;(1:𝜇2)𝛽
2-+2

 

  

(14) 

 

|
𝑋̅2

𝑓̅ 𝑘1⁄
|
2

=

   
.
𝜇3
𝜇1
𝛽2/

2

*,(1:𝜇2);𝛾-𝛽
4;,1:(1:𝜇2)𝜆

2-𝛽2:𝜆2+2:*2𝜆𝛽𝜉2,1;(1:𝜇2)𝛽
2-+2

  

(15) 

in which  β = ω̃ ω1⁄ . Fig. 2 shows the variation of the 

steady-state response amplitude of structure with frequency 

ratio under different values of equivalent damping of LCVA. 

It can be observed from Fig. 2 that all four curves intersect 

at the two points irrespective of the values of equivalent 

damping. Similar findings were first reported by the 

classical work on tuned mass dampers by Ormondroyd and 

Den Hartog (1928). The optimum parameters can be 

obtained by having zero gradients and equal amplitudes at 

these two fixed points. As the ordinates of the two fixed 

points are independent of the equivalent damping 𝜉2, their 

ordinates can be determined by considering two extreme 

conditions of the equivalent damping, i.e., when the 

equivalent damping is zero and infinitely large. Therefore, 

the locations of the fixed-points can be determined by the 

following condition.  

        |
𝑋̅1

𝑓̅ 𝑘1⁄
|
𝜉2<0

= |
𝑋̅1

𝑓̅ 𝑘1⁄
|
𝜉2<∞

  (16) 

corresponding to 

λ2;β2

,(1:μ2);γ-β
4;,1:(1:μ2)λ

2-β2:λ2
= ±

1

1;(1:μ2)β
2

  
(17) 

Use of the plus sign leads to the root β = 0, which is 

considered to be the static case. Use of the minus sign leads 

to the following quadratic equation in β2. 

,2(1 + 𝜇2) − 𝛾-𝛽4 − 2,1 + (1 + 𝜇2)𝜆
2-𝛽2 − 2𝜆2 = 0    

  
(18) 

The roots of this quadratic equation correspond to the 

ordinates of the fixed points, namely βP and βQ, in Fig. 2.   

Their sum is determined by 

      𝛽𝑃
2 + 𝛽𝑄

2 = 
2[1:(1:𝜇2)𝜆

2]

,2(1:𝜇2);𝛾-
  (19) 

 

The optimum value of the ordinates of points P and Q 

can be determined by letting 𝜉2 → ∞ in Eq. (14) and then 

setting |
𝑋̅1

𝑓̅ 𝑘1⁄
|
𝑃

= |
𝑋̅1

𝑓̅ 𝑘1⁄
|
𝑄

.  Therefore 

    
1

1;(1:𝜇2)𝛽𝑃
2 =

;1

1;(1:𝜇2)𝛽𝑄
2 (20) 

which yields 

   βP
2 + βQ

2 = 
2

1:μ2
 (21) 

Substituting Eq. (21) into Eq. (19), the optimum 

frequency tuning ratio is determined by 

    𝜆 =
√1:𝜇2;𝛾

1:𝜇2
 (22) 

The location of the two invariant points can be 

determined by solving the quadratic equation in Eq. (18) 

with the substitution of Eq. (22). 

     𝛽𝑃
2 =

1

1:𝜇2
[1 − √

𝛾

2(1:𝜇2);𝛾
]  (23) 

      𝛽𝑄
2 =

1

1:𝜇2
[1 + √

𝛾

2(1:𝜇2);𝛾
]  

Substituting (λ, βP) or (λ, βQ) into Eq. (14) and letting 

ξ2 → ∞, one would obtain the common ordinate at the 

frequency ratios of βP and βQ. 

       |
𝑋̅1

𝑓̅ 𝑘1⁄
|
𝑃,𝑄

= √
2(1:𝜇2);𝛾

𝛾
  (24) 

The optimum damping of LCVA can be determined by 

having zero gradients at points P and Q. 

    
𝑑

𝑑𝛽2
(|

𝑋̅1

𝑓̅ 𝑘1⁄
|
2

) = 0 (25) 

or 

     
𝑑𝑝

𝑑𝛽2
𝑞 −

𝑑𝑞

𝑑𝛽2
𝑝 = 0 (26) 

where p is the numerator of |
X̅1

f̅ k1⁄
|
2

, p = (λ2 − β2)2 +

(2λβξ2)
2  and q is the denominator of |

X̅1

f̅ k1⁄
|
2

, q =

*,(1 + μ2) − γ-β4 − ,1 + (1 + μ2)λ
2-β2 + λ2+2 +

*2λβξ2,1 − (1 + μ2)β
2-+2. 

Differentiating p and q with respect to β2, we have 

   
𝜕𝑝

𝜕𝛽2
= 2(𝛽2 − 𝜆2) + 4𝜆2𝜉2

2 (27) 

 

𝜕𝑞

𝜕𝛽2
= 2,(1 + 𝜇2 − 𝛾)𝛽4 − (1 + 𝜆2 + 𝜇2𝜆

2)𝛽2

+ 𝜆2-,2(1 + 𝜇2 − 𝛾)𝛽2

− (1 + 𝜆2 + 𝜇2𝜆
2)-

+ 4𝜆2𝜉2
2,1 − (1 + 𝜇2)𝛽

2-,1
− 3(1 + 𝜇2)𝛽

2- 

(28) 
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Eq. (26) can be re-written as follows. 

   
𝜕𝑝

𝜕𝛽2
=

𝑝

𝑞

𝜕𝑞

𝜕𝛽2
 (29) 

Under the optimum condition of LCVA 

    
𝑝

𝑞
= |

𝑋̅1

𝑓̅ 𝑘1⁄
|
𝑃,𝑄

2

=
2(1:𝜇2);𝛾

𝛾
  (30) 

Substituting Eqs. (27), (28) and (30) into Eq. (29), Eq. 

(29) becomes 

2(𝛽2 − 𝜆2) + 4𝜆2𝜉2
2 =

2(1 + 𝜇2) − 𝛾

𝛾
 *2,(1 + 𝜇2 − 𝛾)𝛽4

− (1 + 𝜆2 + 𝜇2𝜆
2)𝛽2 + 𝜆2-,2(1 + 𝜇2 − 𝛾)𝛽2

− (1 + 𝜆2 + 𝜇2𝜆
2)-

+ 4𝜆2𝜉2
2,1 − (1 + 𝜇2)𝛽

2-,1 − 3(1 + 𝜇2)𝛽
2-+ 

(31) 

 

Rearranging Eq. (31), the damping of LCVA is given by 
 𝜉2
2

= 
,2(1 + 𝜇2) − 𝛾-,(1 + 𝜇2 − 𝛾)𝛽4 − (1 + 𝜆2 + 𝜇2𝜆

2)𝛽2 + 𝜆2-,2(1 + 𝜇2 − 𝛾)𝛽2 − (1 + 𝜆2 + 𝜇2𝜆
2)- − 𝛾(𝛽2 − 𝜆2)

2𝛾𝜆2 − 2𝜆2,2(1 + 𝜇2) − 𝛾-,1 − (1 + 𝜇2)𝛽
2-,1 − 3(1 + 𝜇2)𝛽

2-
 

 (32) 

Substituting Eqs. (22) and (23) into Eq. (32), the 

optimum damping of LCVA at points P and Q is given by 

  𝜉𝑃
2 =

𝛾

8(1:𝜇2)
[3 − √

𝛾

2(1:𝜇2);𝛾
]          

𝜉𝑄
2 =

𝛾

8(1:𝜇2)
[3 + √

𝛾

2(1:𝜇2);𝛾
]   

(33) 

The optimum damping ratio of LCVA can be taken as 

the average value of ξP
2 and ξQ

2 , which is given as 

  𝜉2
2 =

3𝛾

8(1:𝜇2)
 (34) 

 

 

 

 

Substituting (λ, βP, ξP) or (λ, βQ, ξQ) into Eq. (15), 

one would obtain the common ordinate of the displacement 

response of tuned vibration absorber at the frequency ratios 

of βP and βQ. 

    |
𝑋̅2

𝑓̅ 𝑘1⁄
|
𝑃,𝑄

=
𝜇3

𝜇1

1:𝜇2

𝛾
  (35) 

It should be noted that the approach with substitution of 

Eq. (30) into Eq. (29) saves an undue amount of labor work. 

The determination of stationary point by a direct solving of 

Eq. (25) could lead to a prohibitive complexity as indicated 

by Liu and Liu (2005). Eq. (24) shows that the displacement 

response of structure decreases as the efficiency index γ 

increases. This suggests that the performance of LCVA is 

enhanced if increasing the value of the efficiency index. If 

the same amount of mass is used for TMD, TLCD and 

LCVA and the same length ratio is adopted for TLCD and 

LCVA, the following inequality always holds regardless of 

the area ratio rA of LCVA (Wu and Shen 2004, 

Taflanidis et al. 2007). 

   𝛾𝐿𝐶𝑉𝐴 < 𝛾𝑇𝐿𝐶𝐷 < 𝛾𝑇𝑀𝐷 (36) 

As indicated by the above inequality relation, if the same 

mass and length ratios are used for TLCD and LCVA, the 

control performance of TLCD is always better than non-

uniform LCVA.  On the other hand, the above inequality 

relation also indicates that TMD always performs better 

than TLCD under the same mass ratio.  

By substituting the efficiency index of TMD γTMD into 

Eqs. (22), (33) and (34), the optimum frequency tuning ratio 

and the optimum damping ratio of TMD can be determined 

by the following expressions. 

 

 

 

 

Fig. 2 Steady state response of structure with LCVA installed under harmonic forced motion (=0.02, =1, rA =0.8, 

rA=0.5) 
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  𝜆 =
1

1:𝜇
 (37) 

 

 𝜉𝑃,𝑄
2 =

𝜇

8(1:𝜇)
[3 ± √

𝜇

2:𝜇
]   𝜉2

2 =
3𝜇

8(1:𝜇)
  (38) 

which are same as the classic results obtained by Brock 

(1946). 

The derived formulae are verified through a comparison 

with results obtained from numerical method. The optimum 

tuning ratio λ and damping ratio ξ2  of LCVA are 

numerically determined for specified mass ratio μ, length 

ratio  , area ratio rA, and structural damping ratio ξ1. The 

response curves as a function of excitation frequency are 

first computed by substituting a set of λ and ξ2 into Eq. 

(14). For a fixed value of λ, the maximum amplitudes of 

response curves for different values of ξ2 are found, and 

the minimum value of these maximum amplitudes is 

selected, which is the minimax amplitude for that value of  

 

 

 

 

 

λ. Then, the above process is repeated for different value of 

λ to find the minimax of each λ. The set of λ and ξ2 
corresponding to the smallest value of the minimaxes is the 

optimum parameters of LCVA. The optimum parameters of 

LCVA for various mass ratios, liquid column and length 

ratios are tabulated in Table 1. It is found that the difference 

between the results derived in this study and the results 

from numerical method is less than 0.01%. This indicates 

that the formulae derived in this study are of the same order 

of accuracy as those from numerical method. Verifications 

are carried out further by investigating the frequency 

response curve of an undamped structure equipped with 

LCVA under harmonic forced motion. The parameters of  

LCVA are taken as μ = 0.02,   = 0.8, rA= 0.5. The 

frequency tuning and the damping of LCVA are adjusted to 

the optimum values as given by Eqs. (22) and (34) for 

forced motion. It can be seen in Fig. 3 that the frequency 

response curve of undamped structure equipped with LCVA 

under harmonic forced motion has two equal peaks, whose 

amplitude match very well with the results given by Eq.  

 

 

Fig. 3 Steady state response of structure with optimum LCVA installed (=0.02, rA =0.8, rA=0.5, =0.9844, 2=0.0660) 

Table 1 Optimal parameters of LCVA for various mass ratios, liquid column length ratios, and area ratios 

  rA 
Explicit Formulas Numerical Method Maximum 

Difference (%)  2  2 

0.02 0.7 0.5 0.9858 0.0571 0.9858 0.0571 0.00% 

0.02 0.7 1.0 0.9854 0.0600 0.9854 0.0600 0.01% 

0.02 0.9 0.5 0.9826 0.0755 0.9826 0.0755 0.01% 

0.02 0.9 1.0 0.9823 0.0772 0.9823 0.0772 0.01% 

0.05 0.7 0.5 0.9655 0.0890 0.9655 0.0890 0.00% 

0.05 0.7 1.0 0.9644 0.0935 0.9644 0.0935 0.00% 

0.05 0.9 0.5 0.9577 0.1176 0.9577 0.1177 0.01% 

0.05 0.9 1.0 0.9569 0.1203 0.9569 0.1203 0.01% 
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(24). The locations of the two peaks (βP, βQ) also match 

very well with the results given by Eq. (23). 

 

3.2 Damped structure 
 

For the case of damped primary structure, invariant 

points no longer exist. The closed-form solution of the 

optimal parameters for damped structures cannot be 

obtained using fixed-point theory as used for undamped 

structures. Nevertheless, the optimal condition of a 

vibration absorber for the case of a damped primary 

structure can still be achieved numerically when the two 

resonant peaks in the frequency response curve of structural 

displacement are of equal amplitude. Numerical searching 

can be conducted to determine the optimum parameters of 

tuned vibration absorber. Explicit formulae for these 

optimum parameters are then obtained by a series of curve 

fitting techniques. In this study, the optimal parameters of 

tuned vibration absorber are numerically determined for the 

case of ξ1 = 0, 0.005, 0.010, 0.020 and 0.050 and μ2 = 

0.005, 0.010, 0.020 and 0.050 and   = 0.7, 0.9, and 1.0. 

For  ≠1, rA= 0.2, 0.5 and 1.0. Hence, numerical search of 

the optimal parameters of tuned vibration absorber are 

conducted for a total of 140 cases and the range of the 

corresponding efficiency index γ is from 0.0015 to 0.0500. 

These set of parameters cover three types of tuned vibration 

absorbers, TMD, TLCD and LCVA with various mass ratio  

 

 

 

or U-shaped container geometry considered. 

For a damped primary structure without tuned vibration 

absorber subjected to force excitation, the frequency ratio at 

resonant is √1 − 𝜉1
2. The optimal tuning ratio should be 

very close to this value when the mass ratio of a tuned 

vibration absorber-structure system is very small. When the 

damping of primary structure is equal to zero, the optimal 

tuning ratio should be given by Eq. (22). Therefore, the 

optimal tuning ratio of tuned vibration absorber for damped 

primary structure can be approximately determined by the 

following expression. 

λ =
√1:μ2;γ

1:μ2
+√1 − 2ξ1

2 − 1 + λ1  (39) 

where λ1  is the differences between the optimal tuning 

ratio of LCVA for undamped structure and damped structure 

and is function of structural damping and efficiency index. 

The variation of λ1 with the efficiency index is plotted in 

Fig. 4(a) and the variation of λ1 with structural damping 

ξ1 for some fixed value of efficiency index is plotted in 

Fig. 4(b). It is found that λ1  has a linear relation with 

structural damping ξ1  for same efficiency index and 

therefore the following equation holds for tuned vibration 

absorber with same efficiency index. 

  λ1 = ao + a1ξ1  (40) 

As shown in Fig. 4(b), regression analysis of λ1  on 

  

(a) Variation of 1with  (b) Variation of 1 with  

  

(c) Fitting curve of a1 (d) Error of explicit formula 

Fig. 4 Curve fitting of optimal tuning ratio 
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ξ1 indicate that values of ao are negligible, generally having 

an order of 10
-5

. The value of a1 is the slope of the linear 

relation of 1 with structural damping ξ1 for same value of 

γ. This process is repeated for a range of γ. The variation of 

a1 with ξ1 is then fitted by a polynomial of γ
1
2, as shown in 

Fig. 4(c). It is found that the parameter a1 is function of 

efficiency index γ and the relation can be determined by a 

curve fitting technique. Combining Eqs. (39) and (40) 

together with the fitted relation of a1 with γ
1
2, the optimal 

tuning ratio of LCVA for damped structure is given by 

λ =
√1:μ2;γ

1:μ2
+ √1 − 2ξ1

2 − 1 + (0.6213γ − 1.4184γ0.5)ξ1  (41) 

The differences between Eq. (41) and the numerical 

searched values are shown in Fig. 4(d). It can be seen that 

the maximum error is less than 0.04%. Eq. (41) is also 

applicable to the case of TMD, TLCD and LCVA for 

different values of absorber parameters with efficiency 

index γ up to a value of 0.05.  

 

 
(a)  = 0.02 

 
(b) = 0.05 

Fig. 5 Structural damping effects on optimal tuning 

ratio of tuned vibration absorber 

The accuracy of Eq. (41) would gradually decrease 

when the efficiency index γ is increased beyond value of 

0.05. The structural damping effect on the optimal tuning 

ratio of a tuned vibration absorber is shown in Fig. 5 for 

mass ratios of 0.02 and 0.05. 

The optimal tuning ratio decreases as the structural 

damping ratio is increased from 0 to 0.05. In reality, the 

inherent structural damping is unlikely to exceed a value of 

0.02. To better demonstrate the accuracy of Eq. (41), the 

upper bound of structural damping is extended to 0.05 and 

results from Eq. (41) are in good agreement with the 

searched values from the numerical method. The same 

numerical optimization method described in section 3 was 

used to determine the optimum parameters of LCVA for 

damped structures. A comparison of results from Wu et al. 

(2009) is presented in Table 2. It is found that the results 

from Eq. (41) are in good agreement with those from Wu et 

al. (2009). 

Table 3 compares the optimal tuning ratio of a TMD for 

suppressing displacement induced by harmonic excitation. 

The comparison includes the results from the numerical 

method and Eq. (41) as well as the results found in the 

literature. As there is no previous study on the explicit 

optimum damping of LCVA for the case of a damped 

primary structure, the results obtained from Eq. (41) could 

only be compared with the results from the previous studies 

on tuned mass damper (TMD). By substituting γ = μ and 

μ2 = μ into Eq. (41), the optimum tuning ratio of TMD is 

obtained.  It can be seen from Table 3 that the deviations 

between the results from Eq. (41) and those from the 

numerical method are very small for the range of mass 

ratios and damping ratios considered. The number in the 

bracket represents the relative difference between the result 

from the method of that column and the result from 

numerical method. The maximum deviation between the 

results from Eq. (41) and those from the numerical method 

is found to be about 0.02% when the mass ratio is 0.05 and 

the damping ratio of primary structure is 0.05. The 

maximum deviation for the empirical formula proposed by 

Ioi and Ikeda (1978) is about 0.41% when the mass ratio is 

0.02 and the damping ratio of primary structure is 0.05. The 

discrepancy between the results from numerical method and 

the results from the empirical formula proposed by Ioi and 

Ikeda (1978) apparently decreases with the increasing mass 

ratio. The maximum deviation of the explicit formula 

derived by Ghosh and Basu (2007b) is about 1.32% when 

the mass ratio is 0.05 and the damping ratio of primary 

structure is 0.05. The discrepancy between the results from 

numerical method and the results from the explicit formula 

derived by Ghosh and Basu (2007b) apparently increases 

with the increasing mass ratio. Table 3 also shows that the 

optimum tuning ratio of TMD decreases as the structural 

damping is increased. Eq. (41) provides a better estimation 

of optimum tuning ratio of TMD when comparing with the 

formulas available in the existing literatures. 

The optimal damping ratio of LCVA for damped 

primary structure at each optimized resonant peak can be 

approximated by the following expression. 
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𝜉𝑃,𝑄
2 =

𝛾

8(1 + 𝜇2)
[3 ± √

𝛾

2(1 + 𝜇2) − 𝛾
] + 𝜀𝑃,𝑄 (42) 

where εP,Q  are the differences between the optimal 

damping ratio of LCVA for undamped structure and damped 

structure and are functions of structural damping and 

efficiency index. It is found that the functions εP,Q also 

have a linear relation with the structural damping for tuned 

vibration absorber with same efficiency index and therefore 

the following equation holds. 

𝜀𝑃 = 𝑏𝑜,𝑃 + 𝑏1,𝑃𝜉1      𝜀𝑄 = 𝑏𝑜,𝑄 + 𝑏1,𝑄𝜉1
  

(43) 

 

 

 

 

 

 

 

 

Regression analysis indicated that the values of bo,P 

and bo,Q are negligible, with an order of 10
-5

. The variation 

of b1,P and b1,Q with γ
1
2 is shown in Fig. 6. Combining 

Eq. (42) and Eq. (43) together with the relation of b1,P and 

b1,Q with γ
1
2  determined by curve fitting technique, the 

optimal damping ratio of LCVA for damped structure is 

given by 

𝜉𝑃
2 =

𝛾

8(1:𝜇2)
[3 − √

𝛾

2(1:𝜇2);𝛾
 ] + (0.1674𝛾0.5 +

0.2702𝛾 − 0.7387𝛾1.5)𝜉1  

(44a) 

 

Table 2 Comparison of optimum tuning ratio of a LCVA under harmonic excitation 

  rA  Wu et al. (2009) Eq. (41) 

0.02 0.7 1 0.02 0.9823 0.9825 (0.02%) 

0.02 0.9 1 0.02 0.9783 0.9786 (0.04%) 

0.05 0.7 1 0.02 0.9599 0.9601 (0.02%) 

0.05 0.9 1 0.02 0.9512 0.9515 (0.03%) 

0.02 0.7 2 0.02 0.9829 0.9831 (0.02%) 

0.02 0.9 2 0.02 0.9788 0.9791 (0.03%) 

0.05 0.7 2 0.02 0.9612 0.9614 (0.02%) 

0.05 0.9 2 0.02 0.9521 0.9524 (0.03%) 

Table 3 Comparison of optimum tuning ratio of a TMD under harmonic excitation 

  numerical Eq. (41) Ioi et al. (1978) Basu et al. (2007b) 

0.02 0.000 0.9804 0.9804 (0.00%) 0.9804 (0.00%) 0.9804 (0.00%) 

0.02 0.005 0.9794 0.9794 (0.00%) 0.9790 (-0.04%) 0.9803 (0.10%) 

0.02 0.010 0.9783 0.9784 (0.01%) 0.9776 (-0.08%) 0.9802 (0.19%) 

0.02 0.020 0.9761 0.9762 (0.01%) 0.9745 (-0.16%) 0.9796 (0.36%) 

0.02 0.050 0.9683 0.9685 (0.02%) 0.9643 (-0.41%) 0.9755 (0.75%) 

0.05 0.000 0.9524 0.9524 (0.00%) 0.9524 (0.00%) 0.9524 (0.00%) 

0.05 0.005 0.9509 0.9509 (0.01%) 0.9508 (-0.01%) 0.9523 (0.15%) 

0.05 0.010 0.9493 0.9494 (0.01%) 0.9491 (-0.02%) 0.9522 (0.30%) 

0.05 0.020 0.9461 0.9463 (0.02%) 0.9456 (-0.05%) 0.9516 (0.59%) 

0.05 0.050 0.9354 0.9356 (0.02%) 0.9341 (-0.13%) 0.9477 (1.32%) 

  
(a) Fitting curve of a1 for P (b) Fitting curve of a1 for Q 

Fig. 6 Curve fitting of optimal damping ratio 
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𝜉𝑄
2 =

𝛾

8(1 + 𝜇2)
[3 + √

𝛾

2(1 + 𝜇2) − 𝛾
 ]

+ (0.1539𝛾0.5 + 0.2021𝛾
− 0.6787𝛾1.5)𝜉1 

(44b) 

When applying Eq. (44), it should be noted that Eq. (44) 

is applicable to the case of TMD, TLCD and LCVA for 

different values of absorber parameters with efficiency 

index γ up to a value of 0.05. The accuracy of Eq. (44) 

would gradually decrease when the efficiency index γ is 

beyond value of 0.05. 

Fig. 7 compares the optimal damping ratio of a TMD for 

suppressing displacement induced by harmonic excitation. 

The comparison includes the results from the numerical 

method and Eq. (44) as well as the results from the 

empirical formula proposed by Ioi and Ikeda (1978). By 

substituting γ = μ and μ2 = μ into Eq. (44), the optimum 

damping ratio of TMD is obtained by taking the average of 

ξP and ξQ. Fig. 7 shows that the optimal damping ratios of 

a TMD can be predicted quite well by either Eq. (44) or by 

the empirical formula proposed by Ioi and Ikeda (1978). It 

can also be seen from Fig. 7 that the discrepancy between 

the results from numerical method and the results from Eq. 

(44) is very small. For the range of mass ratios and damping 

ratios being considered, the maximum deviation between 

the results from Eq. (44) and those from the numerical 

method is found to be about 0.21% when the mass ratio is 

0.02 and the damping ratio of primary structure is 0.02. The 

maximum discrepancy of the empirical formula proposed 

by Ioi and Ikeda (1978) is about 0.73%. Fig. 7 also shows 

that the optimum damping ratio of TMD increases as the 

structural damping is increased. 

The explicit formulas for the ordinates of two resonant 

peaks in the frequency response curve and the 

corresponding maximum response at two resonant peaks are 

determined by the same curve fitting technique described 

above and are given by the following expressions. 

𝛽𝑃
2 =

1

1:𝜇2
[1 − √

𝛾

2(1:𝜇2);𝛾
 ] − (0.395 + 3.119𝛾0.5 − 6.1957𝛾)𝜉1       

  
(45a) 

 

𝛽𝑄
2 =

1

1:𝜇2
[1 + √

𝛾

2(1:𝜇2);𝛾
 ] + (0.4952 − 0.7812𝛾0.5 − 3.057𝛾)𝜉1 −

(6.0086 − 23.467𝛾0.5 + 49.346𝛾)𝜉1
2          

(45b) 

 

|
𝑋̅1

𝑓̅ 𝑘1⁄
|
𝑃,𝑄

=
1

2𝜉1:√
𝛾

2(1+𝜇2)−𝛾

− .9.7136 −
4.6648

𝛾0.5
+

0.0168

𝛾
/ 𝜉1 +

.250.32 −
79.91

𝛾0.5
−

0.0153

𝛾
/ 𝜉1

2            

(46) 

Regression analysis indicated that the ordinate of the 

second resonant peak βQ and the maximum response at 

two resonant peaks have a quadratic relation with the 

structural damping. For the range of efficiency index being 

included in this study, the maximum error of Eq. (45(a)) or 

Eq. (45(b)) is about 0.06% while the maximum error of Eq. 

(46) is about 2.4%. 

 

 
(a)  = 0.02 

 
(b) = 0.05 

Fig. 7 Comparison of optimal damping of a TMD 

under harmonic excitation 

 

 

3.3 Optimal head loss coefficient 
 

Energy dissipation due to quadratic damping of liquid 

motion is governed by head loss coefficient induced by an 

orifice placed in the container of LCVA. In order to 

maximize the energy dissipation, it is essential to estimate 

the optimal head loss coefficient under a given loading 

condition. However, as the damping of LCVA is nonlinear, 

the optimal damping derived from linearized equation of 

LCVA-structure system could not be applied directly. An 

equivalent damping coefficient is then introduced by using 

equivalent linearization method and the equivalent damping 

coefficient ceq could be determined by equating energy 

dissipated by nonlinear damping force with energy 

dissipated by linear equivalent damping force in a cycle and 

it is given by (Gao et al. 1997) 

  𝑐𝑒𝑞 =
4

3𝜋
𝜌𝐴𝑣𝛿𝜔̃|𝑋̅2| (47) 

where |X̅2| is the steady state response amplitude of liquid 

displacement; 𝜔̃ is the frequency of external applied force  
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or support motion. Eq. (47) indicates that when the level of 

external excitation is decreased, a smaller liquid 

displacement response is induced and a larger head loss 

coefficient is required to achieve the optimal condition. Re-

arranging Eq. (47) with some manipulation, the head loss 

coefficient at the two fixed points is given by 

𝛿𝑃,𝑄 =
3𝜋𝑔

𝜆𝜔1
2

𝜉𝑃,𝑄

𝛽𝑃,𝑄|𝑋̅2|𝑃,𝑄
  (48) 

The optimal head loss coefficient can be taken as the 

average value of δP
2  and δQ

2 , which is given as 

 δ2 =
1

2|
𝑋̅2
𝑓̅ 𝑘1⁄

|
𝛽𝑃,𝑄

2 .
3𝜋

𝜆𝐶
/
2
(
𝜉𝑃
2

𝛽𝑃
2 +

𝜉𝑄
2

𝛽𝑄
2  
) 

(49) 

where the excitation force amplitude is expressed in term of 

fraction of the weight of structure, 𝐹̅ = 𝐶𝑚1𝑔 for the case 

of forced motion. For an undamped structure, the optimum 

head loss coefficient of LCVA can be determined by the 

following expression with the substitution of Eqs. (23), (33) 

and (35) into Eq. (49). 

𝛿 =
3𝜋

2√2𝐶

𝜇𝛼𝜒1√,3(1:𝜇);2𝜇𝛼
2𝜒-𝜇𝛼2𝜒 

(1:𝜇;𝜇𝛼2𝜒)
  (50) 

Solving the linearized equation of motion of liquid 

displacement, the amplitude of liquid displacements |𝑋̅2| 
is determined by the following equation. 

 |
𝑋̅2

𝑓̅ 𝑘1⁄
| =

𝜒2𝛼𝛽
2

√(𝜆2;𝛽2)2:4𝜆2𝛽2𝜉2
2
|
𝑋̅1

𝑓̅ 𝑘1⁄
| (51) 

 

 

 

The expression for estimating the optimal head loss 

coefficient of LCVA is verified with the results obtained 

from numerical method. The response curves as function of 

excitation frequency were numerically determined by 

solving the original nonlinear equation in time domain 

using Wilson- method. The time step and the total time 

duration used in time domain analysis were 0.005 sec and 

500 sec. The optimal parameters of λ and δ were then 

determined by searching the corresponding smallest 

minimaxes. Table 4 summarizes the optimal head loss 

coefficient of LCVA for various mass ratios, liquid column 

length ratios, and area ratios. It is found that the difference 

between the optimal head loss coefficient determined by the 

explicit formulas and by numerical method is less than 

1.5% when damping ratio is 0.02. For the case of undamped 

structure, the results from explicit expressions are in good 

agreement with those from numerical optimization method, 

with the maximum difference less than 0.3%. This indicates 

that the developed explicit formulae are accurate for 

designing LCVA for suppressing harmonic vibration of 

damped structures. Table 4 also shows that the optimum 

head loss coefficient increases as the structural damping is 

increased. 

 

 

4. Conclusions 
 

Explicit formulae for determining the optimum absorber 

parameters for a linear damped primary structure under 

harmonic force excitation were developed in this study 

using a series of curve fitting technique. The formulae are 

applicable to the design of tuned mass damper (TMD), 

Table 4 Optimal head loss coefficient of LCVA for various mass ratios, liquid column length ratios, and area  

ratios 

   rA C 
Explicit Formulas Numerical Approach 

Maximum  

Difference    

0.00 0.02 0.7 0.5 0.00025 0.9858 17.83 0.9859 17.83 0.03% 

0.00 0.02 0.7 0.5 0.00050 0.9858 8.92 0.9859 8.93 -0.20% 

0.00 0.02 0.9 0.5 0.00025 0.9826 27.24 0.9828 27.27 -0.10% 

0.00 0.02 0.9 0.5 0.00050 0.9826 13.62 0.9825 13.64 -0.17% 

0.00 0.02 0.7 1.0 0.00025 0.9854 31.88 0.9855 31.97 -0.28% 

0.00 0.02 0.7 1.0 0.00050 0.9854 15.94 0.9855 15.95 -0.06% 

0.00 0.02 0.9 1.0 0.00025 0.9823 52.93 0.9826 52.96 -0.05% 

0.00 0.02 0.9 1.0 0.00050 0.9823 26.47 0.9825 26.51 -0.18% 

0.02 0.02 0.7 0.5 0.00025 0.9829 30.79 0.9830 31.19 -1.27% 

0.02 0.02 0.7 0.5 0.00050 0.9829 15.40 0.9830 15.58 -1.16% 

0.02 0.02 0.9 0.5 0.00025 0.9789 41.90 0.9791 42.48 -1.37% 

0.02 0.02 0.9 0.5 0.00050 0.9789 20.95 0.9790 21.20 -1.17% 

0.02 0.02 0.7 1.0 0.00025 0.9823 53.84 0.9824 54.55 -1.31% 

0.02 0.02 0.7 1.0 0.00050 0.9823 26.92 0.9824 27.31 -1.42% 

0.02 0.02 0.9 1.0 0.00025 0.9784 80.76 0.9787 81.60 -1.03% 

0.02 0.02 0.9 1.0 0.00050 0.9784 40.38 0.9787 40.82 -1.08% 
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tuned liquid column damper (TLCD), and liquid column 

vibration absorber (LCVA) for abating the vibration of 

damped structure under harmonic excitation. It was 

demonstrated the control performance of TLCD for 

reducing harmonic vibration of undamped structure is 

always better than that of non-uniform LCVA for same 

mass and length ratios. As for the effects of structural 

damping on the optimum parameters, it was found that the 

optimum tuning ratio decreases and the optimal damping 

ratio increases as the structural damping is increased. 

Furthermore, the optimum head loss coefficient is inversely 

proportional to the amplitude of excitation force and 

increases as the structural damping is increased. Numerical 

verification of the developed explicit design expressions 

was also conducted and the developed expressions were 

found to be reasonably accurate for design purposes. 
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