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1. Introduction 

 
In most thermoelastic problems, physical material 

properties of structures are considered to be constants. It is 

obvious that material properties of different structures are 

sensitive to presence of thermal filed. Most material 

properties like Young’s modulus, thermal conductivity, etc. 

are no longer remaining constants at high temperature. In 

addition, temperature-dependent material properties affect 

thermo-mechanical behavior of structures (Noda 1991). 

Therefore, temperature dependency of material properties 

should be taken under consideration to obtain more accurate 

and efficient solutions of thermoelasticity problems. 

Uma et al. (2001) investigated effect of grain structure 

on thermal conductivities of undoped polysilicon layers at 

high temperatures and electrical-resistance thermometry. 

They found that the layer thermal conductivities depend 

strongly on the details of deposition process through grain 

size distribution. These results are considered useful for 

thermal design of microelectronic and micro-electro-

mechanical devices that use polycrystalline silicon layers. 

Along similar lines, studies on the temperature and pressure 

dependence of thermal conductivity and thermal capacity 

are also relevant to modern technology. Also, the study may 

find applications in design and improvement of resonator 

devices under loading environment. 

The fields of micro-electro-mechanical systems 

(MEMS) have become quickly and gone into many 

resistances and correspondence applications (Younis 2011). 

It is essential for MEMS designers to estimate mechanical  

properties of flexible micro- or nano-components keeping  
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in mind end goal for predicting amount of deflection due to 

applied mechanical or thermal loads and the other way 

around to forestall cracking-fracture, improve performance 

and to increase lifetime of MEMS gadgets (Allameh 2003). 

The definition of stress is considered as a basic 

difference between classical and nonlocal elasticity 

theories. In classical elasticity theory the stress at a point is 

a function of strain at the same point. Whereas in nonlocal 

elasticity theory of Eringen (2002), the stress at any point is 

a function of strains at all points. Therefore, nonlocal 

elasticity theory (Eringen 1983) has many applications in 

various fields of physics and engineering (Zenkour and 

Abouelregal 2014, Ebrahimi et al. 2015a,b, Ebrahimi and 

Salari 2015a,c). 

Lord and Shulman (1967) (LS) presented the 

generalized theory of thermoelasticity with one relaxation 

time for isotropic materials. The heat equation is of 

hyperbolic type and consequently ignores the paradox of 

infinite velocity of propagation inherent in both coupled 

(CTE) and uncoupled thermoelasticity theories. Tzou 

(1995a,b, 1996) presented a connection between heat flux 

and temperature gradient in his dual-phase-lags (DPLs) 

theory. 

Yanping and Yilong (2010) considered static deflections 

of micro-cantilever beams subjected to transverse loading 

using neural network method. Thai (2012) investigated the 

bending, buckling, and vibration responses of nanobeams 

using Eringen’s nonlocal differential constitutive relations 

based on nonlocal shear deformation beam theory. Sharma 

and Kaur (2015) investigated dynamic response of 

thermoelastic microbeam resonators under time-varying 

transverse loads using thermoelasticity theory. Ebrahimi 

and Salari (2015b) discussed thermal effect on vibration 

analysis of functionally graded size-dependent nanobeams 

under various types of thermal loads. Radebe and Adali  
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(2015) studied deflection of a nanobeam subject to load and 

material uncertainties by convex modeling.  

Ebrahimi and Shafiei (2016) investigated the size 

dependent vibration of a rotating functionally graded 

nanobeam based on Eringen's nonlocal theory. Ebrahimi 

and Shaghaghi (2016) investigated both the small scale and 

thermal effects on vibration of preloaded nanobeams with 

non-ideal boundary conditions. Akbas (2016) used the 

modified couple stress theory to present forced vibration of 

a simply-supported viscoelastic nanobeam excited by a 

transverse triangular force impulse modulated by a 

harmonic motion. Barretta et al. (2016) discussed the 

application of an enhanced version of the nanotechnology 

model of Eringen differential. Ghafarian and Ariaei (2016) 

investigated the analysis of free vibration of a rotating 

multiple nanobeams using the nonlocal theory proposed by 

Eringen. Recently, Arefi and Zenkour (2017a,b,c) discussed 

the thermoelastic vibration and bending analyses of 

piezomagnetic three-layer nanobeams and magneto-electro 

nanobeams rest on visco-Pasternak foundation. 

It has been observed that many investigators studied 

transverse vibrations, thermoelastic damping and frequency 

shift in nanobeams due to mechanical shocks, laser heating, 

electrostatic loads and moving loads. In this work, an 

attempt has been made to study dynamic response of 

homogeneous, isotropic, thermoelastic nanobeam resonators 

under time-varying mechanical transverse loads excited by 

harmonically varying heat. The nonlocal thermoelastic 

model based on dual-phase-lags (Zenkour et al. 2013, 

Abbas and Zenkour 2014, Abouelregal and Zenkour 2014a, 

Zenkour and Abouelregal 2015, Ezzat and El-Bary 2016, 

Zenkour 2016) is produced to solve a generalized 

thermoelastic problem of nanobeam with variable thermal 

conductivity. The boundary first end of the nanobeam is 

subjected to both thermal and mechanical loads. The effects 

due to nonlocal, the point load and angular frequency of 

thermal vibration parameters will be studied. Numerical 

results are presented to discuss small-scale effect on 

nanobeam resonator.  

 

 

2. Nonlocal basic equations 
 

General nonlocal constitutive relations of Eringen 

(1972) for a nanobeam may be written as 
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The stress-strain relations are represented as 
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The heat conduction equation which includes dual 

phase-lag effects takes the form (Tzou 1995a, b, Ozisik and 

Tzou 1994) 

(    

 

  
) (    )  

 (    

 

  
 

 

 
  

 
  

   ) 

(   

  

  
    

  

  
   ) 

(3) 

where 0 ≤   <   . 

In case of thermo-physical properties  ,    and   

depend on the space coordinates only, Eq. (3) will be 

appeared as linear partial differential equation. However, if 

one of these thermo-physical properties is temperature-

dependent, Eq. (3) will be appeared as a nonlinear partial 

differential equation. 

Eq. (3) describes different thermoelasticity theories 

according to values of    and    as 

 nonlocal CTE theory:       0. 

 nonlocal LS theory with one relaxation time (Lord 

and Shulman 1967):    0,      . 

 nonlocal DPL theory (Tzou 1995a,b 1996): 

  ≥   > 0. 

The corresponding local thermoelasticity theories are 

recovered by setting     0 in the above equations. It 

should be noted that to obtain the other material properties 

of isotropic, linear thermoelastic materials the following 

relations maybe used 

  
  

(   )(    )
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3. Problem formulation 
 

A schematic diagram of a thin elastic nanobeam is 

illustrated in Fig. 1. In equilibrium, the nanobeam is 

considered to be unstrained, unstressed and at reference 

temperature   . Bending vibrations of nanobeam about 𝑥-

 
Fig. 1 Schematic diagram for a nanobeam 
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axis of small amplitude is consistent with linear Euler-

Bernoulli theory. In this theory, any plane cross-section in 

the beginning perpendicular to axis of nanobeam remains 

plane and perpendicular to neutral surface through the 

bending. Hence, the displacement field of any point of 

nanobeam can be expressed as 

      𝑧
  

 𝑥
         0          (𝑥  ) (5) 

According to Eringen’s nonlocal theory of 

thermoelasticity (Eringen 1972, 1983), with the aid of Eq. 

(1), one-dimensional constitutive relation can be simplified 

to 

    
    

 𝑥 
   (𝑧

   

 𝑥 
 𝛼  ) (6) 

It can be observed that that when the parameter   is 

neglected, i.e., elements of a medium are considered to be 

continuously distributed, then   0, and Eq. (6) is reduced 

to constitutive equation of the classical case. 

The flexural moment of cross-section is expressed as 

  ∫ 𝑧   𝑧
   

    

 (7) 

Upon using Eqs. (6) and (7), we obtain 
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where 

   
  

  
∫ 𝑧 (𝑥 𝑧  ) 𝑧

   

    

 (9) 

If the nanobeam is transversely loaded by 𝑞(𝑥  ), then 

equation of transverse motion will be the following form 

(Zhang et al. 2005) 
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The flexural moment can be determined from Eqs. (8) 

and (10) as 
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Eliminating the moment   from Eq. (10) with the aid 

of Eq. (11), we obtain equation of motion of nanobeam as 
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4. Temperature dependency of thermal conductivity 
 

Let us assumed that   is linearly varying with 

temperature according to the relation (Berman 1953) 

   ( )    (     ) (13) 

In case of temperature-independent material properties, 

we take    0. Using Kirchhoff's transformation (Berman 

1953) 
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and substituting of Eq. (13) into Eq. (14) gives (Berman 

1953) 
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It follows from Eq. (14) that 
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Using Eqs. (16) and (17) into Eq. (3) gives 
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Substituting Eq. (5) into Eq. (18) in absence of heat 

sources (  0) yields 
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Eqs. (12) and (19) describe the nonlocal thermoelasticity 

theory with DPLs.  

 

 

5. General solution 
 

To solve governing system equations, we let the solution 

of temperature increment is sinusoidal varying as 

*   +(𝑥 𝑧  )  *   +(𝑥  )    .
 𝑧

 
/ (20) 

Using Eq. (20) in governing Eqs. (11), (12) and (19), we 

obtain 
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We will present the following dimensionless variables 
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Upon introducing the dimensionless quantities (24) in 

the governing Eqs. (21)-(23), we can obtain (dropping the 

primes for convenience) 
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Now, special form of external transverse load is 

considered. We consider exponential decaying time varying 

load as 

𝑞   𝑞 (       ) (28) 

The case of   0 gives the uniformly distributed load. 

 

 

6. Solution in Laplace transforms space 
 

The initial conditions in their dimensionless form are 

taken as 
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 0 

(29) 

The nanobeam is assumed to be clamped-clamped at its 

axial ends, therefore it satisfies the following non-

dimensional boundary conditions 

 (0  )   (   )      
  (𝑥  )

 𝑥
|
     

 0 (30) 

In addition, let us consider the boundary 𝑥  0  of 

nanobeam is thermally loaded by harmonically varying 

incidents, 

 (0  )       (  )        > 0 (31) 

The case of   0 for a thermal shock problem. Using 

Eqs. (15) and (20), then one gets 
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Also, the temperature at 𝑥    should satisfy the 

relation 
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 0 (33) 

If we apply Laplace transform method to both sides of 

Eqs. (25)-(27), we get 
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Eliminating  ̅ from Eqs. (34) and (35), we get the 

differential equation for  ̅ as 

(
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where 
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    (       )             
  

(39) 

The general solutions of  ̅ can be obtained from Eq. 

(38) as follows 
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where    and      are integration constants,    

   ̅( )   and 𝑚 
 , 𝑚 

  and 𝑚 
  are roots of the 

characteristic equation 
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Substituting Eq. (34) into Eq. (35), leads to 
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The general solutions appeared in Eq. (42) with the help 

of Eq. (40) can be simplified as 
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Using Eq. (43) into Eq. (20), we get 
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Solving Eq. (15) in Laplace domain and using Eq. (20) 

gives the temperature  ̅ as 
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The expressions of  ̅ and  ̅ from Eqs. (40) and (46) 

are used into Eq. (36) to get the solution for  ̅ in Laplace 

domain as follows 
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where      ̅( )     
   . In addition, axial 

displacement after employing Eq. (38) becomes 
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Boundary conditions (30)-(33) in Laplace transform 

domain reduces to 
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Substituting Eqs. (40) and (43) into above boundary 

conditions, one gets six linear equations in the form 
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It is easy to get    and      by solving the above 

system of six linear equations which complets the solutions 

of the problem in Laplace transform domain. 
 

 

7. Numerical results 
 

The Riemann-sum approximation method is used to 

obtain the numerical results for lateral vibration, thermal 

temperature, displacement, and stress distributions in the 

time domain. In this method, any function 𝑓(̅𝑥  ) in the 

Laplace domain can be inverted to the time domain 𝑓(𝑥  ) 

as 

𝑓(𝑥  )  
   

 
[
 

 
  {𝑓̅(𝑥  )}    {∑(  ) 𝑓̅ (𝑥   

 𝑛 

 
)

 

   

}] (51) 

where   is an arbitrary real number (experimentally, 

 ≈  .7  ) (Tzou 1996),    is the real part and   √  . 

In this current section, some numerical results and 

graphs are presented to illustrate thermoelastic behavior of 

nanobeams based on nonlocal generalized thermoelasticity. 

In addition, results are obtained to establish the effect of 

variability thermal conductivity, the point load, nonlocal 

parameter and angular frequency of thermal vibration on the 

behavior of nanobeam. The following physical parameters 

for silicon (Si) at     9  K are employed in calculating 

the numerical results: 

    9            0.             0 kg/m3 

         (𝑚K)  
(52) 

   7   J (kg K)     . 9 ×  0    (K) 
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(a) Transverse deflection   versus 𝑥 (b) Temperature   versus 𝑥 

  
(c) Displacement   versus 𝑥 (d) bending moment   versus 𝑥 

Fig. 2 The transverse deflection, temperature, displacement and thermal stress distributions of the nanobeam for 

different values of the variability thermal conductivity parameter   . 

  
(a) Transverse deflection   versus 𝑥 (b) Temperature   versus 𝑥 

  
(c) Displacement   versus 𝑥 (d) Bending moment   versus 𝑥 

Fig. 3 The transverse deflection, temperature, displacement and thermal stress distributions of the nanobeam for 

different values of the nonlocal thermoelastic parameters   ̅
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The magnitude 𝑞  has been taken as ( ×  0 8) and 

the nonlocal parameter   ̅ ( ̅   0  ) is also considered. In 

addition, the following parameters are fixed here:   0. , 

Ω  0. ,      0,     0. ,    , 𝑧     . To get 

the solutions lateral vibration, temperature, displacement 

and bending moment in physical domain, we have applied 

Laplace inversion formula appeared in Eq. (51) to Eqs. (40), 

(45)-(48). Numerical code has been obtained using 

Mathematica programming language. Numerical results are 

illustrated for some cases as: 

In Figs. 2(a)-2(d), the dimensionless lateral vibration  , 

temperature  , displacement   and bending moment   

is plotted against variability thermal conductivity parameter 

   varying from    to 0, when    ,    0.0  and 

   0.0 . The thermal conductivity   is temperature-

independent when we take    0. It is also clear from the 

plotted figures that the parameter    acts to decrease the 

magnitude of the vertical deflection   and attains its 

maximum value at 𝑥  0. . This variation is shown in Fig. 

2(a). The non-dimensional the temperature   is plotted in 

Fig. 2(b) against distance 𝑥  varying, when    
0  0.    . Fig. 2(b) shows the dimensionless temperature 

  decreases sharply with the increase in 𝑥 and attains its 

maximum value at the boundary 𝑥  0  and finally 

vanishes. It is also seen from Figure 2b that   in case 

temperature-independent (   0) is larger than the case of 

variability thermal conductivity (    0.    ). From Fig. 

2(c), it can be noticed that magnitude of   decreases as    

decreases. This figure shows negative values for 

displacement in the range 0 ≤ 𝑥 ≤ 0.   and positive 

values for the displacement in the range 0.  ≤ 𝑥 ≤  . 
Fig. 2(d) depicts the variation of the bending moment 

  versus distance 𝑥 for    0  0.    . It is observed 

from this figure that the parameter    acts to decrease the 

magnitude of the bending moment distribution. From Fig. 2 

we have noticed that,    has a significant effect on all 

fields, which add an importance to our consideration about 

the thermal conductivity to be variable. 

Figs. 3(a)-3(d) shows the dimensionless field quantities 

 ,  ,   and   against distance 𝑥 for various values of 

the angular frequency of thermal vibration coefficient   in 

the case of    is fixed to  0.  and also the parameters 

   and    remain constants (   0. ,    0. ). Putting 

  0, for thermal shock problem, and setting    ,  0 

for harmonically varying heat. It is observed from the 

plotted results 3(a)-(d) that the coefficient   has a great 

influence on all fields. 
Figs. 4(a)-4(d) are plotted to compare between the 

results of the nonlocal thermoelastic model (Eringen’s 

theory) ( ̅     ) theory and local thermoelastic theory 

( ̅  0) when     and     0. . In both of the cases 

temperature distribution decreases with distance and finally 

goes to zero but rate of decay for  ̅      is slower than 

the rate of decay for  ̅  0. From the figures we can see 

that the amplitudes of lateral vibration   temperature, 

displacement, and moment decrease as nonlocal parameter 

 ̅  increase. The figures show that this parameter has 

significant effect on all fields indicating the difference 

between the generalized local and nonlocal thermoelasticity 

theories. 

 

 
(a) Transverse deflection   versus 𝑥 

 
(b) Temperature   versus 𝑥 

 
(c) Displacement   versus 𝑥 

 
(d) Bending moment   versus 𝑥 

Fig. 4 The transverse deflection, temperature, 

displacement and thermal stress distributions of the 

nanobeam for different values of the angular 

frequency of thermal vibration   
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(a) Transverse deflection   versus 𝑥 

 
(b) Temperature   versus 𝑥 

 
(c) Displacement   versus 𝑥 

 
(d) Bending moment   versus 𝑥 

Fig. 5 The transverse deflection, temperature, 

displacement and thermal stress distributions of the 

nanobeam for different values of the the point load 𝑞  
 

In last case, three different values of the dimensionless 

magnitude of the point load q  are considered. We put 

  0  for the uniformly distributed load and for 

exponential decaying time varying load, we take    .  

For a comparison purpose, lateral vibration, temperature, 

displacement, and bending moment of nanobeam are shown 

in Figs. 5(a)-5(d). The effect of point load 𝑞  (harmonic 

and uniform) plays significant role on lateral vibration, 

temperature, and displacement fields. 
 
 
8. Conclusions 

 

The dynamic response of an isotropic thermoelastic 

nanobeams with finite length subjected to harmonically 

varying heat and transverse loads is investigated in context 

of nonlocal theory of thermoelasticity. The effects of the 

dynamic loads 𝑞 , the nonlocal parameter  ,̅ the variability 

thermal conductivity parameter    and angular frequency 

of thermal vibration   on the field variables are 

investigated and presented graphically. From the above 

section, we can arrive at the following conclusions. 

 The study can discover applications in design and 

development of resonator devices under loading 

environment. 

 Non-dimensional studied fields depend on various 

material parameters. 

 Thermoelastic stress, displacement and temperature 

have a strong dependency on variability thermal 

conductivity parameter. 

 The nonlocal parameter   ̅ has significant effects on 

all studied fields. 

 The effects of dynamic loads on all studied fields are 

very significant. 

 Significant differences in physical quantities are 

observed between exponential decaying time varying 

load and the uniformly distributed load. 

 The effects of angular frequency of thermal vibration 

parameter on all studied fields are very significant. 

 The vibration of nanotubes is important subject in 

study of nanotechnology since it relates to the 

electronic and optical properties of multi-walled 

carbon nanotubes. 

 This study may find requests and applications in 

design and development of resonator devices under 

loading environment. 
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Nomenclature 
 
  internal characteristic length 

     area of beam cross-section 

  width of nanobeam (    ≤ 𝑦 ≤    ) 

   specific heat at constant strain 

  Young’s modulus 

    v  ⃗  volumetric strain 

   a constant appropriate to each material in 

nonlocal theory 

   flexural rigidity 

  thickness of nanobeam (    ≤ 𝑧 ≤   
 ) 

         inertia moment of beam cross-section 

  thermal conductivity 

        thermal diffusivity 

   thermal conductivity at reference 

temperature    

   slope of thermal conductivity-temperature 

curve divided by    

𝑙 external characteristic length 

  length of nanobeam (0 ≤ 𝑥 ≤  ) 

  flexural moment 

   thermal moment of beam 

  Laplace’s variable 

  time 

  Temperature field 

   environment temperature 

  heat source 

𝑞(𝑥  ) external load 

𝑞  dimensionless magnitude of point load 

 ⃗  displacement vector 

  axial displacement 

  lateral deflection 

𝑥 𝑧 axial and normal coordinates 

𝛼  thermal expansion 

  new function expressing heat conduction 

𝛹 heat conduction function in terms of 𝑥 

and   

  (   )  nonlocal parameter 

  parameter appeared in Eq. (28) 

    Kronecker’s delta function 

 
  𝛼 

 (    ) 

stress-temperature modulus 

  and   Lamé’s constants 

  Poisson’s ratio 

𝛻  Laplacian operator 

       thermodynamical temperature 

  material density 

    classical (Cauchy) or local stress tensor 

   nonlocal normal stress 

    nonlocal stress tensor 

   phase-lag of gradient of temperature 

   phase-lag of heat flux 

  thermal function in terms of 𝑥 and   

   thermal constant 

𝛺 dimensionless frequency of applied load 

  angular frequency of thermal vibration 
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