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1. Introduction 

 
Research considering verification of nonlinear system 

identification methods mainly relies on numerical 

simulation. Few researchers have conducted physical 

experiment. Nonlinearities presented in buildings are often 

caused by damages, and the damaging tests are very 

expensive for study in civil engineering. Due to the 

uncertainty contained in material, test environment and 

construction process, the behavior of the experimental 

model in different tests is unrepeatable.  

To solve this problem, many researchers have proved 

the effectiveness of identification methods by conducting 

geometrical nonlinearity model test. Geometrical 

nonlinearity is often caused by large deformation. Noël and 

Kerschen (2013) made a device that consists of two 

cantilever beams, a thick one and a much thinner one, with 

both of their free end solidly connected inline, to provide 

geometrical nonlinearity. There are also researchers like 

Aykan and Nevzat Ö zgüven (2013) and Magnevall et al. 

(2012) who have implemented similar methods to realize 

geometrical nonlinearity.  

However, in civil engineering, material nonlinearity is 

usually the main cause of structural nonlinearity. There are 

full scale tests, Moaveni and Asgarieh (2012) built a seven-

story shear wall structure to study its nonlinear behavior 

under earthquake excitation; Asgarieh et al. (2014) 

constructed a large scale three-story reinforced concrete 

frame with masonry infill. These two buildings are both 

expensive. On account of this, scale model or component 

test is also a reasonable choice. Kitada (1998) designed a 

scale five-story steel model. The fifth story of this model is  
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much weaker than the rest to reduce the effort required for 

the top story to yield. The experiments introduced tests are 

all one-off test, reproducing of the test data is statistically 

unrealistic. 

Material nonlinearity could cause unrecoverable 

damages such as yielding in steel members, crack and crush 

in concrete components, etc. Therefore, instead of steel and 

concrete, Ma et al. (2006) made twenty T-shape wooden 

specimens. Each specimen consisted of two laminated 

veneer lumber members connected with plywood gusset 

plates. Wood presents similar hysteresis constitution as steel 

and concrete do but costs less. Ortiz et al. (2013) made 

cheaper ferrocement walls. These experiments costed less, 

but still have the repeatability problem. Some studies have 

already focused on realizing nonlinearity without material 

damage. Zhou et al. (2008) came up with the idea of relying 

on a hydraulic cylinder-piston system to simulate sudden 

change of stiffness in structures. Ta and Lardiès (2006) 

devised an open-loop control system to force a cantilever 

beam to behave similarly like a single degree of freedom 

(SDOF) system with nonlinear stiffness and nonlinear 

viscous damping. In this paper, an experimental model is 

introduced in section 2, that could simulate more complex 

structures. 

Nonlinear system identification method have been 

developing rapidly in the recent half century. Some methods 

assume that the model of the structure is known before 

hand, such as reverse path method introduced by Rice and 

Fitzpatrick (1988) and nonlinear as feed-back method by 

Adams and Allemang (2000), etc. Some methods do not 

require the model of the structure. They use a universal 

model to approximate every physical model, for instance, 

Haber and Unbehauen (2010) adopted the NARMAX 

method in nonlinear system identification, Amari (1998) 

utilized the nonlinear neural network method to imitate the 

behavior of unknown nonlinear system. Methods based on  
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wavelet transform have been attracting much attention in 

civil engineering for years. Because it requires little 

knowledge about the structure, while visually presents the 

relationship between the model and the time-frequency 

variables. 

The application of wavelet transform for system 

identification has developed from linear to nonlinear, from 

simple model to more complex model. For linear system 

identification, Le and Paultre (2012) extend the use of the 

continuous wavelet transform (CWT) identification method 

to ambient excited linear structure. Some researchers have 

identified nonlinear system as linear time varying system. 

Shi et al. (2006) identified the linear time-varying 

parameters of a chain like structure with wavelet and least 

square method. Some studies have directly identified 

parameters of nonlinear system. Staszewski (1998) 

identified nonlinear damping and stiffness by extracting the 

wavelet ridge of the Morlet wavelet transformation and fit 

the extracted envelop and backbone curve with the formula 

obtain by perturbation method. In this method, nonlinear 

form of the structure should be known beforehand. Ta and 

Lardiès (2006) improved this method to identify nonlinear 

characteristics (damping and stiffness) without prior 

knowledge about the structure nonlinearity. Other 

improvements have focused on different details of the 

identification method. Dai et al. (2009) recommended a new 

algorithm for ridge detection to eliminate the frequency-

shift effect of the wavelet ridge. Wang et al. (2009) 

conducted singular value decomposition on the time-

frequency spectrum matrix to reduce the influence of noise 

when extracting the wavelet ridge. Articles written by Like 

Boltežar and Slavič (2004), Kijewski and A (2003), Slavič 

and Boltežar (2011) and Yi et al. (2006) have focused on 

tackling the edge effect caused by wavelet transformation.  

In this research, a single story steel frame with two 

adjustable rotational viscous dampers was designed to 

realize nonlinear behaviors. The rotational viscous dampers  

 

 

 

were used to imitate the plastic hinge effect of frame 

structures. With this device, costly and damaging physical 

experiment for identification method verification could be 

avoid. This device is capable of offering stable and 

repeatable response for online and offline identification. By 

adjusting the damper, different levels of nonlinearity can be 

obtained. This model is also suitable for nonlinear dynamics 

study, nonlinear structural control method, etc.  

Since the nonlinear form of the damper is unknown, it is 

a great challenge for an identification method to 

simultaneously estimate the form of nonlinearity and 

evaluate the parameters. In our research, an identification 

method based on the Morlet wavelet transform is introduced 

to solve this problem.  

The physical and mathematical model are studied in 

section 2. In section 3 and section 4, a brief introduction of 

the CWT theory and the procedure of the identification 

method are presented. In section 5, this method is 

implemented with the data acquired from the free vibration 

of the structure in the cases of different damping scale. The 

efficiency of this identified method is verified through 

earthquake tests.  

 

 

2. Description and mathematical modeling of the 
experimental model 
 

2.1 Experimental setups of the structural model 
 

The experimental model is a single story steel frame. It 

was designed to simulate the nonlinear behavior of a single 

story steel frame structure. The components of the steel 

frame are as follows, two 500 mm×150 mm×3 mm 25Mn 

steel plates function as the columns, a 500 mm×50 mm× 

5 mm steel bar as the beam. These three components are 

connected with two rotational viscous dampers by 

 

Fig. 1 Structural nonlinear vibration model 
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accessories. With each damper 2.3 Kg, the distance between 

the axis of the damper and the 25Mn steel plate is 10 cm.  

It is well known in practice that, under large horizontal 

load, such as earthquake or strong wind, the beam-column 

joint of steel frame is often damaged. This introduces 

plastic hinge effect into the structure. The dampers were 

assembled at the position of beam-column joint to imitate 

the effect of a plastic hinge. As is depicted in Fig. 1, the 

components of the frame are assembled in such a way that 

the frame can be regard as an SDOF system. The frame was 

firmly mounted on the shake table. 

The rotational viscous damper is adjustable. There is a 

screw with a mark ‗＋－‘ around it, as is shown in the 

partial enlarged figure to the left of Fig. 1. By switching this 

screw, we can increase or decrease the viscous damping. 

Different damage levels can be simulated by adjusting the 

viscous damper. In this research, we specify three 

conditions to the damper, namely large damping case, small 

damping case and medium damping case, corresponding to 

the screw position in the clockwise end, counter clockwise 

end, in the middle between both ends.  

In Fig. 1, the triangular rack was mounted on the shake 

table to fix the laser displacement sensor. This rack should 

be sufficiently stiff to ensure the collected data couldn‘t be 

interfered by the vibration of the rack. The laser 

displacement sensor is produced by Micro-Epsilon. A signal 

acquisition device produced by the National Instrument was 

used to acquire the signal output from the sensor. The 

displacements in this experiment were recorded with a 

sampling frequency of 1000 Hz. The shake table and its 

control system is produced by Quanser. 

 

2.2 Analysis of the experimental model 
 

Assume that the structure moves horizontally and 

neglect the frictions involve in the connections and the 

rotating of the damper. Moreover, due to the large bending 

stiffness difference between the steel columns and other 

parts of the frame in the x-y plane, except for the steel plate, 

the rest part of the frame can be regarded as rigid bodies. 

Then the physical model can be simplified as is illustrated 

in Fig. 2. In Fig. 2, two identical cantilever columns, which 

consist of an elastic part of length l and a rigid part of 

length l1, are connected with a rectangular rigid beam 

through two round axles. The rigid beam couples the 

translational degree of freedoms of the column tips; and the 

two axles offer resistance against the rotation of the column 

tips. Since these two columns are identical and connected in 

parallel, it can be considered as a single thicker cantilever 

beam with a rigid part on the top, as illustrated in Fig. 3. 

The direction of the forces and displacement are 

illustrated in Fig. 3. As is shown in this diagram at the tip of 

the beam, the resistance moment M is the resultant of 

damping moment. The equivalent force F in x direction is 

the combination of inertia force and equivalent damping 

force generated in the steel columns. Since the form of the 

resistance moment M is unknown, we use       ̇   to 

represent the relationship between M and the tip angle    

and its rotational velocity  ̇ .  

 

 

 
Fig. 2 Simplified model of the test frame 

 

 

 
Fig. 3 Calculation model of the test frame 

 

 

 

 (1) 

 

e eF mx cx    (2) 

An assumption of small deformation theory is used in 

the derivation of the equation of motion (EOM). The inertia 

of the steel beam as well as the inertia in y direction and 

rotation is omitted. 

Firstly, the geometrical and physical relationships 

between the free end and elastic end is derived, which is 

marked by the subscript e and z respectively. xe and    

(resp. 𝑥𝑧 and  𝑧) respectively stands for the displacement 

in x direction and the rotation angle of the free end (resp. 

elastic end.). 𝐹𝑧  and 𝑀𝑧  represent the equivalent force 

applied on the elastic end. 

e z   (3) 

 

1e z zx x l   (4) 
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zF F  (5) 

 

1zM Fl M   (6) 

The rotational and translational displacement of the tip 

can be found in Mechanics of Materials written by Gere and 

Timoshenko (1991). The relationships between 

displacement and force of the structure are derived as 

follows. In the following equations, E stands for Young‘s 

modulus of the steel plate, I stands for the moment of inertia 

of the cross section.  

To obtain the displacement of the elastic end with 

respect to the free end force, it can be derived 

2 2

1

2

1

=
2 2

( 2 )

2

z z
z

F l M l Fll MlFl

EI EI EI EI

F l ll Ml

EI EI




  


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 (7) 

 

3 2 2 23

1

3 2 2

1

3 2 3 2

(2 3 )

6 2

z z
z

F l M l Fl l MlFl
x

EI EI EI EI

F l l l Ml

EI EI


   


 

 (8) 

Substituting (7), (8) to (3) and (4) gives 

2

1( 2 )
=

2
e

F l ll Ml

EI EI



  (9) 

 

3 2 22

1 1
1

3 2 2 2

1 1 1

(2 3 ) ( 2 )

6 2 2

(2 6 6 ) ( 2 )

6 2

e

F l l l F l llMl Ml
x l

EI EI EI EI

F l l l ll M l ll

EI EI

  
    

 

  
 

 (10) 

Through the rearrangement of Eqs. (9) and (10), Eqs. 

(11) and (12) can be obtained. 

2

12
=

2
e

l ll l
F M

EI EI



  (11) 

 

3 2 2 2

1 1 12 6 6 2

6 2
e

l l l ll l ll
x F M

EI EI

  
   (12) 

Solving this equations, we get F and M with respect to 

   and 𝑥 . 

2 2 2

1

4

1

3 3

2 12

2

6( 2 ) 12

e e

e e

l ll l E I
F x

EI EI l

l l EI EI
x

l l





 
   
 


  

 (13) 

 

3 2 2 2 2 2

1 1 1

4

2 2

1 1 1

3 3

2 6 6 2 12

6 2

4( 3 3 ) 6( 2 )

e e

e e

l l l ll l ll E I
M x

EI EI l

l ll l EI l l EI
x

l l





   
   
 

  
  

 (14) 

Substituting (1), (2), into (13) and (14) gives 

1
e 3 3

6( 2 )12
0e e e

l l EIEI
mx cx x

l l



     (15) 

 

2 2

1 1 1

3 3

4( 3 3 ) 6( 2 )
( , )e e e e

l ll l EI l l EI
g x

l l
  

  
    (16) 

( , )e eg    may consists of polynomial with respect to 
e ,

e  or other nonlinear forms. From the performance of the 

experiments in this research, ( , )e eg    is relevant to e , 

which makes 1

3

6( 2 )
e

l l EI

l



 in (15) a nonlinear 

restoring force term. For example, if ( , )e eg    linearly 

relates to the angular velocity, i.e. ( , )e e eg     (  is 

a constant), the damper will form another dynamic system 

that offer resistance against the rotation of the free end. 

Since the real model of the damper ( , )e eg    is 

unknown, a nonlinear mapping with respect to 𝑥  and 𝑥̇  

is used to approximate the nonlinear response of the damper. 

Restrict the rotation of the damper, the first order frequency 

of this linear counterpart shows little difference from that of 

the nonlinear counterpart. The influence of nonlinearity in 

this structure is small relative to its linear counterpart. To 

simplify analysis of these weak nonlinear system, a small 

parameter 𝜖 is added before the nonlinear restoring force 

term. Eq. (17) can be used as a universal nonlinear term. 

1

3

6( 2 )
( , )e e e e

l l EI
cx f x x

l
 


   (17) 

where   means ‗approximate by‘.  

The EOM of this structure is approximated by 

2

e 0 ( , ) 0e e ex x f x x     (18) 

where 

2

0 3

12
=

EI

ml
  (19) 

In section 4, it will be studied to use this EOM to imitate 

the behavior of the steel frame. 

 

3. The complex Morlet wavelet transform and the 
ridge of scalogram  

 

3.1 Theory of complex Morlet wavelet transform 
 

In this section, we introduce the theory of complex 
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Morlet wavelet transform, details of the proof and 

derivation can refer to the book: a wavelet tour of signal 

processing by Mallat (1999). Wavelet analysis is mainly 

discussed in 
2 ( )L R  space. 

2 ( )L R  is a function space, 

consisting of square integrable functions defined over 

rational number space R   

22( ) ( ) ( )
R

f t L R f t dt     (20) 

In signal processing, Eq. (20) shows that ( )f t is an 

energy limited signal and 
2 ( )L R

 
is called energy limited 

signal space. | |  returns the modulus of a function. In the 

theory of wavelet transform, we define ( )t  as the basic 

wavelet or mother wavelet and generally 
2( ) ( )t L R  . 

Let‘s define the Fourier transformation of ( )t  as ˆ ( )  . 

ˆ ( )   should satisfy the admissible condition 

1 2
ˆ ( ) d   

 


  (21) 

The continuous wavelet transform of the signal ( )f t  

is defined as 

, ,

1
( , ) , ( ) ( )f a b

t b
W a b f f t dt

aa
  







    (22) 

a is the scale factor and b is the shift factor, ,a b R . 

( )t 
is the complex conjugate of ( )t .   calculates 

the inner product in 
2 ( )L R space. One of the most widely 

used wavelet is the Morlet wavelet, which is defined in the 

time domain as 

22 /1
( ) c bj f t t f

b

t e e
f





  (23) 

bf  is the bandwidth parameter, and
cf  is the wavelet 

center frequency. It is worth noting that the complex Morlet 

wavelet does not satisfy the admissibility condition. 

However, when 2c bf f  , the complex Morlet wavelet 

approximately satisfies the admissible condition. Under this 

condition, it is able to serve as a wavelet as is stated by Yan 

et al. (2006). The complex Morlet wavelet is selected 

because of its good locality in both time and scale 

(frequency) domain.  

There is a correspondence between the frequency f in 

time-frequency domain and scale a the time-scale space. 

c
s

f
f f

a
  (24) 

where
sf  is the sample frequency of the signal f(t). 

The complex Morlet wavelet transformation of the 

signal, which is called the scalogram of the signal, can be 

represented as follows 

2( ( ) 2 )

( )4( , ) ( )
2

b cf a b f

j ba
W a b A b e e

 


 

  (25) 

 

3.2 The ridge of scalogram 
 

The wavelet ridge curve is usually extracted by finding 

the extremum at each time point of ( , )uW a b . However, 

Delprat et al. (1992) argued that a frequency-shift 

phenomenon is discovered in the magnitude of the 

scalogram. This will affect the precision of the parameter 

identification. In order to eliminate the influence of this 

phenomenon, we adopt a method given by Dai et al. (2009). 

In this method, the position of wavelet ridge is searched in 

( , )uW a b a  .  

Assume that the magnitude at the position of wavelet 

ridge is in the form of 

( )
( )

( ( ), ) ( )
2

r j b

r

a b
W a b b A b e   (26) 

( )A b is the instantaneous amplitude of the signal, and

( )b is the instantaneous phase of the signal.   , rb a b  

is the coordinates of the wavelet ridge in the scalogram.  

Then, according to Eq. (26), we can obtain 

2 ( ( ), )
( )

( )

u r

r

W a b b
A b

a b
  (27) 

 

 ( ) ( ( ), )u rb Ang W a b b   (28) 

𝐴𝑛𝑔() is a function returns the argle of the complex 

number. The instantaneous angular frequency of the signal 

is defined as follows 

 ( ( ), )
( ) ( )

u rd Ang W a b b
b b

db
    (29) 

In the next section, we will find the relationship between 

the coefficients of the nonlinear terms and the three time-

frequency variables in (27), (28) and (29). 

 

 

4. Theoretical analysis of the time-frequency 
variables 
 

In this section, for the sake of simplicity, we use x 

instead of 𝑥 . Assume that the weak nonlinearity has the 

form 

1 1

( , ) sgn( ) sgn( )
p q

i j

i j

i j

f x x x x x x  
 

    (30) 

where 
i  is the i -th damping coefficient normalized to 

the mass, and j  is the j -th stiffness coefficient 

normalized to the mass. p and q are the orders considered in 
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the damping and the stiffness system.  

The free vibration response x(t) can be represented as  

0( ) ( )cos( ( )) ( )cos( ( ))x t A t t t A t t      (31) 

where
0( ) ( )t t t    , ( )A t  and ( )t are the 

amplitude and phase of x(t). According to the article of Ta 

and Lardiès (2006), the relationship between the time-

frequency variables and the nonlinear parameters is given as 

follows 

1

0

0

1 ( / 2 1)
( ) ( )

( / 2 3 / 2)

( )

p
i i

i n

i

p
i

i

i

i
A t A t

i

c A t










 
 

 







 (32) 

 

0

1 1

0 1 2

0

1

0

( ) ( ) ( )

( 1)
1 ( 1) ( )

2 2 ( ( / 2 3 / 2))

( )

q q q

q

q

q

t t t

q
A t

q

r A t

   








 





  

  
          

 

 
(33) 

where 

1

0

1 ( / 2 1)

( / 2 3 / 2)

i

i i

i
c

i




  


 
 (34) 

 

1

1 2

0

( 1)
1 ( 1)

2 2 ( ( / 2 3 / 2))

q q

q q

q
r

q









  
         

 (35) 

and ( )  is the gamma function. 

From Ta Minh-Nghi‘s article, the nonlinearity of the 

damping only affects the envelope of the signal, while the 

nonlinearity of the stiffness only relates to phase. This gives 

us a chance to identify the structure of the model separately. 

These relationships mentioned above are significant in 

determining the model and evaluating the parameters in 

nonlinear models. 

The basic steps of identification are summarized as 

follows:  

Step 1: The instantaneous frequency is calculated 

according to Eq. (29). 

Step 2: The instantaneous amplitude is calculated 

according to Eq. (27).  

Step 3: The coefficient 
i  and q  are obtained 

according to Eqs. (32)-(35). 

 

 

5. Experimental study of nonlinear system 
identification 
 

5.1 The procedure of the experiment 
 

This experiment was divided into four steps. The first 

step consisted of free vibration tests with different damping 

cases, i.e., large damping case, medium damping case and 

small damping case. To realize free vibrations, a process of 

push-stable-release of the upper story was adopted.  

The second step was parameter identification. Data 

collected in the first step was used to identify the 

mathematical model of the structure in different cases.  

The third step included the verification of the 

mathematical model with the identified parameters. A 

Simulink block diagram was built with the parameters 

identified in the second part, and the simulation results were 

compared with the collected data. 

In the fourth step, the structure was excited by the El-

Centro earthquake. The experimental data was compared 

with the numerical simulation results to further examine the 

identified model. 

 

5.2 Nonlinear system identification 
 

5.2.1 Large damping case 
The displacement response of the free vibration test is 

shown in Fig. 5, and its wavelet scalogram of complex 

Morlet wavelet transform is shown in Fig. 6. According to 

the method introduced in Section 4, the curve of the 

instantaneous angular frequency vs. time, the curve of the 

instantaneous amplitude vs. time and the curve of the 

instantaneous amplitude vs. its derivative could be obtained 

and are shown in Figs. 7-9. In Fig. 7, excluding the 

influence of the edge effect, the slope of the effective 

middle part of the curve is almost constant. In Fig. 10, a 

quadratic function 
2

0 1 2( ) ( ) ( )A t c c A t c A t   fits the 

curve well. Therefore, the mathematical model of the 

structure in the large damping case can be formed as 

follows 

2 2

0 0 1 2sgn( ) sgn( ) 0x x x x x x         (36) 

And 

0( )t   (37) 

 

0
0

0

2
c






  (38) 

 

 

 
Fig. 4 El-Centro wave 
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1
1

2
c


  (39) 

 

2 0
2

4

3
c

 




  (40) 

We obtained
0 by averaging the angular frequency on 

the ridge from 1 s to 3 s. Based on the data between 2 s and 

5 s from the data in Fig. 9, we calculated coefficients 

,( 0,1,2)ic i   by the least square method. From Fig. 10, 

we could see that the identified curve fits well with the 

experimental data. Then, ,( 0,1,2)i i  by Eqs. (38)-(40) 

was calculated as shown in Table 1. 

The mathematical model of the structure with large 

damping was identified as follows 

2 217.79 11.08sgn( ) 1.01 0.0032 sgn( ) 0x x x x x x      (41) 

 

 

 

 
Fig. 5 Displacement response of free vibration under 

large damping case 

 

 

 

 
Fig. 6Wavelet transforms scalogram 

 

 

 
Table 1 Identified parameters under large damping case 

Parameters 0  
0  

1  
2  

values 17.79 11.08 1.01 0.0032 

 
 

 
Fig. 7 Instantaneous angular frequency 

 
 

 
Fig. 8 Instantaneous amplitude 

 
 

 
Fig. 9 Instantaneous amplitude vs. its derivative 
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Fig. 10 The fitting results of the experimental data 

 

 

 
Fig. 11 Comparison of simulation and experimental 

results of free vibration 

 

 

 
Fig. 12 Comparison of simulation and experimental 

results under earthquake excitation 

 

 

Based on the mathematical model in Eq. (41), we built a 

Simulink model to proceed with the second step. As is 

shown in Fig. 11, the simulation result was compared with 

the experimental data.  

For further verification, El-Centro earthquake record 

was exerted to both the SIMULINK model and the 

experiment model. It is clear in Fig. 12 that the simulation 

result fits well with the experimental data. The quantitative 

comparison of simulation and experimental data will be 

discussed in Section 5.2.4.  

 

5.2.2 Medium damping case 

The analysis procedure of this section is similar to the 

large damping case. Remove the influence of the edge-

effect part, the angular frequency is almost as steady as a 

constant, as is expressed in Fig. 15. In Fig. 17, the 

instantaneous amplitude exhibits linear correlation with its 

derivative. Assume that 0 1( ) ( )A t c c A t  , the 

mathematical model could be written as 

2

0 0 1sgn( ) 0x x x x       (42) 

and 

0( )t   (43) 

 

0
0

0

2
c






  (44) 

 

1
1

2
c


  (45) 

Similar with the large damping case, the analysis 

process are exhibited in the Figs. 13-20. The identified 

parameters of Eq. (42) are listed in Table 2. 

Finally, the mathematical model of the structure with the 

medium damping is 

217.67 3.48sgn( ) 1.87 =0x x x x    (46) 

 
Table 2 Identified parameters under medium damping case 

Parameters 0  
0  

1  

values 17.67 3.48 1.87 

 
 

 
Fig. 13 Displacement response of free vibration under 

medium damping case 
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Fig. 14 Wavelet transform scalogram 

 
 
 

 
Fig. 15 Instantaneous angular frequency 

 
 
 

 
Fig. 16 Instantaneous amplitude 

 
 
 

Comparison of the simulated result with the experimental 

data in Figs. 19 and 20 also indicate good match of the 

identified model and its experimental counterpart. 

 

 
Fig. 17 Instantaneous amplitude vs. its derivative 

 

 
Fig. 18 The fitting results of the experimental data 

 

 
Fig. 19 Comparison of simulation and experimental 

results of free vibration 

 

 
Fig. 20 Comparison of simulation and experimental 

results under earthquake excitation 
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5.2.3 Small damping case 
In this case, although the data shows fluctuate of the the 

instantaneous angular frequency in Fig. 23, we first suppose 

it to be constant for the convenience of calculation. From 

the data trend depicted in Fig. 25, we assumed that

0 1( ) ( )A t c c A t  . Then, the mathematical model of the 

structure was set as 

2

0 0 1sgn( ) 0x x x x       (47) 

and 

0( )t   (48) 

 

0
0

0

2
c






  (49) 

 

1
1

2
c


  (50) 

The identified parameters are presented in Table 3. 

The mathematical model of the structure with small 

damping is 

216.86 10.80sgn( ) 1.97 0x x x x     (51) 

The comparison results are demonstrated in Figs. 27 and 28.  

The results imply that the assumption of a constant 

instantaneous angular frequency acquire sufficiently good 

estimation of the structure. 

 

 

Table 3 Identified parameters under small damping case 

Parameters 0  
0  1  

values 16.86 -10.80 1.97 

 

 

 
Fig. 21 Displacement response of free vibration under 

small damping case 

 

 
Fig. 22 Wavelet transform scalogram 

 

 
Fig. 23 Instantaneous angular frequency 

 

 
Fig. 24 Instantaneous amplitude 

 

 
Fig. 25 Instantaneous amplitude vs. its derivative 
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Fig. 26 The fitting results of the experimental data 

 
 

 
Fig. 27 Comparison of simulation and experimental 

results of free vibration 

 
 

 
Fig. 28 Comparison of simulation and experimental 

results under earthquake excitation 

 
 

5.2.4 Error analysis 
The maximum error and standard deviation error of the 

displacement response between experimental measurement 

and numerical simulation of the structure under earthquake 

excitation serve as a criteria to manifest the difference 

between the mathematical model and experiment model in 

different cases. These two criterion are shown in (52) and 

(53). 

1 2

1

max( ( )) max( ( ))
 =

( )

abs x abs x
Maximum error

abs x


 (52) 

 

1 2

1

std( ) std( )
  =

std( )

x x
Standard deviation error

x


 (53) 

𝑎𝑏𝑠   returns the absolute value of the input variable, 

𝑠𝑡𝑑   returns the standard deviation of the input variable, 

𝑚𝑎𝑥   returns the maximum value of the input variable. 

1x is the displacement responses of the experimental 

measurement and 
2x  is the numerical simulation of the 

structure under earthquake excitation. 

The results in three different cases are provided in Table 

4. In this Table, it is apparent that the identified model 

basically match the experiment model. As the nonlinearity 

increase with the damping, the error increased with the 

nonlinearity.  

The error might be caused by inaccuracy of the assumed 

form of the mathematical model, the polynomial model 

cannot explain every behavior of the tested frame. Though 

error exists, this method showed good efficiency in 

recovering the behavior of the test experimental model. 

This existing problem would be studied in further research. 

 
 
6. Conclusions 

 

In this paper, a nonlinear experimental model was proposed 

to imitate nonlinear behavior of one story steel frame under 

horizontal excitation. The plastic hinge effect was offered by 

two adjustable viscous dampers. With this experimental model, 

experiments can be operated repeatedly, and nearly identical 

vibration records can be reproduced as many as required. With 

the aforementioned benefits, this experimental model could be 

used as a benchmark for the verification of nonlinear analysis, 

control and identification methods. 

 
Table 4 Error analysis under different cases 

Large damping 

Maximum error (%) 8.77 

Standard deviation error 

(%) 
14.17 

Medium damping 

Maximum error (%) 8.45 

Standard deviation error 

(%) 
10.79 

Small damping 

Maximum error (%) 7.09 

Standard deviation error 

(%) 
8.45 
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A time frequency method based on wavelet transform is 

introduced to identify the mathematical model of the structure. 

Three cases under the condition of different damping levels 

were studied. The model structure and parameters were 

identified with free vibration data. The simulation result fits 

well with the observed data. Earthquake excitation tests were 

conducted to further verify the identified model. The results are 

compared in Table 4 indicating good performance of the 

identified model and effectiveness of the identification method.  

In the future research, the mathematical model would be 

improved to better describe the behavior of the physical model 

and the identification method would be improved to adapt it to 

large nonlinear cases. 
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