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1. Introduction 
 

Functionally graded materials (FGMs) are 

microscopically inhomogeneous composites often 

fabricated from a mixture of metals and ceramics. The 

mechanical characteristics of FGM vary gradually and 

continuously within the thickness direction in the material 

depending on a function. Because of this feature, the FGMs 

have some advantages such as avoiding the material 

discontinuity and decreasing the delamination failure, 

diminishing the stress levels and deflections. Combination 

of these properties attracts practical application of FGMs in 

many engineering areas such as aircraft, aerospace, 

naval/marine, construction and mechanical engineering 

(Bourada et al. 2012, Bessaim et al. 2013, Bouderba  et al. 

2013, Ait Amar Meziane et al. 2014, Akbaş 2015, Arefi 

2015a, b, Arefi and Allam 2015, Attia et al. 2015, 

Bouguenina et al. 2015, Bennai et al. 2015, Bakora and 

Tounsi 2015, Ait Atmane et al. 2015, Barati and Shahverdi 

2016, Boukhari et al. 2016, Barka et al. 2016, Akbarov et 

al. 2016, Aizikovich et al. 2016, Abdelbari et al. 2016, 

Abdelhak et al. 2016, Ahouel et al. 2016, Benferhat et al. 

2016, Celebi et al. 2016, Darabi and Vosoughi 2016, 

Ebrahimi and Jafari 2016, Ebrahimi and Shafiei 2016, Trinh 

et al. 2016, Turan et al. 2016). 

Given the widespread employ of engineering structures  
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including FGM, many computational models have been 

proposed to assess its structural response. Reddy and Chin 

(1998) performed a thermo-mechanical investigation of 

FGM cylinders and plates. Kashtalyan (2004) presented a 

three dimensional elasticity solution for a simply supported 

FG plate under transverse loading. Birman and Bird (2007) 

proposed a system of FGM-structural modeling. Matsunaga 

(2009) used a two-dimensional higher-order theory for 

analyzing the displacement and stresses in FG plates under 

to thermal and mechanical loadings. Zhao et al. (2009) 

investigated the free vibration behavior of FG plates that 

utilizes the element-free kp-Ritz method. The FSDT is 

employed to consider the transverse shear strain and rotary 

inertia, and mesh-free kernel particle functions are 

employed to approximate the two-dimensional 

displacement fields. Other works where we can find the use 

of FSDT can be consulted in references of Meksi et al. 

(2015), Adda Bedia et al. (2015), Hadji et al. (2016), 

Bouderba et al. (2016) and Bellifa et al. (2016). Baferani et 

al. (2011) discussed the vibration response of FG 

rectangular plate resting on two parameter elastic 

foundation by employing the third-order shear deformation 

plate theory. Tounsi et al. (2013) proposed a refined 

trigonometric shear deformation theory for thermoelastic 

bending of FG sandwich plates. Taj and Chakrabarti (2013) 

studied FG skew plates subjected to static and dynamic 

loadings. Zhang et al. (2014) presented a 3D elasticity 

solution for static bending of thick FG plates using a hybrid 

semi-analytical approach-the state-pace based differential 

quadrature method. Hosseini-Hashemi et al. (2011) 
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proposed an exact analytical solution for transverse 

vibration investigation of Lévy-type rectangular plates 

based on the Reddy‘s third-order shear deformation plate 

model. Hasani Baferani et al. (2011) studied the vibration 

behavior of a FG rectangular plate resting on elastic 

foundation by employing the third-order shear deformation 

plate theory. Sheikholeslami and Saidi (2013) analyzed the 

free vibration response of FG plates resting on two-

parameter elastic foundation by utilizing a higher-order 

shear and normal deformable plate theory. The authors 

expanded the displacement components in the thickness 

direction via the Legendre polynomials. Taibi et al. (2015) 

proposed a simple shear deformation theory for thermo-

mechanical behaviour of FG sandwich plates on elastic 

foundations. Ait Yahia et al. (2015) studied the wave 

propagation in FG plates with porosities applying various 

higher-order shear deformation plate theories of four 

unknowns. Mahmoud et al. (2015) examined the problem of 

wave propagation in magneto-rotating orthotropic non-

homogeneous medium. Kar and Panda (2015) studied the 

free vibration responses of temperature dependent FG 

curved panels under thermal environment.  Bounouara et 

al. (2016) presented a nonlocal zeroth-order shear 

deformation theory for free vibration of FG nano-plates 

resting on elastic foundation. Many investigations are 

reported in literature to present HSDTs for composite 

structures as well as graded CNT structures such as (Mehar 

et al. 2017a, b, c, Mehar and Panda 2017a, b, Hirwani et al. 

2017a, b, Kar and Panda 2017, Kar et al. 2017, Sahoo et al. 

2017, Kar et al. 2016, Singh et al. 2016, Houari et al. 2016, 

Bousahla et al. 2016, Kar and Panda 2016a, b, Mahi et al. 

2016, Katariya and Panda 2016, Sahoo et al. 2016, Mehar et 

al. 2016, Singh and Panda 2015, Belkorissat et al. 2015, 

Larbi Chaht et al. 2015, Bourada et al. 2015, Panda and 

Katariya 2015, Nguyen et al. 2015, Zemri  et al. 2015, 

Zidi et al. 2014, Merazi et al. 2015, Mouaici et al. 2016, 

Laoufi et al. 2016, Beldjelili et al. 2016, Raminnea et al. 

2016, Saidi et al. 2016, El-Hassar et al. 2016, Ghorbanpour 

Arani et al. 2016, Bellifa et al. 2017, Bouafia et al. 2017, 

Benahmed et al. 2017, Zidi et al. 2017, El-Haina et al. 

2017, Mouffoki et al. 2017, Klouche et al. 2017, Sekkal et 

al. 2017).        

Jin et al. (2014) proposed a 3D exact solution for the 

free vibrations of thick FG plates with general boundary 

conditions. Akavci (2014) studied the free vibration 

response of FG plates on elastic foundation using a non-

polynomial HSDT and an optimization procedure. Alijani 

and Amabili (2014) studied the nonlinear forced vibrations 

of moderately thick FG rectangular plates by using higher-

order shear deformation theories that consider the thickness 

deformation effect. Belabed et al. (2014) proposed an 

efficient and simple higher order shear and normal 

deformation theory for FG plates. Hebali et al. (2014) 

presented a new quasi-3D hyperbolic shear deformation 

theory for the static and free vibration analysis of FG plates. 

Fekrar et al. (2014) developed a new five-unknown refined 

theory based on neutral surface position for bending 

analysis of exponential graded plates. Bousahla et al. (2014) 

studied the bending of advanced composite plates using a 

novel higher order shear and normal deformation theory 

based on neutral surface position. Akavci and Tanrikulu 

(2015) presented 2D and quasi-3D shear deformation 

theories for bending and free vibration analysis of single-

layer FG plates using a new hyperbolic shape function. 

Hamidi et al. (2015) presented a sinusoidal plate theory 

with 5-unknowns and stretching effect for thermo-

mechanical bending of FG sandwich plates. Meradjah et al. 

(2015) proposed a new higher order shear and normal 

deformation theory for FG beams. Akavci (2016) presented 

a new hyperbolic shear and normal deformation plate theory 

to study the static, free vibration and buckling analysis of 

the simply supported FG sandwich plates on elastic 

foundation. Draiche et al. (2016) presented a refined theory 

with stretching effect for the flexure analysis of laminated 

composite plates. Bennoun et al. (2016) presented a novel 

five variable quasi-3D plate theory for vibration analysis of 

FG sandwich plates.  

The present article presents a generalized quasi-3D 

hybrid-type higher order shear deformation theory for the 

vibration analysis of FG plates on elastic foundation. The 

highlight of this model is that, in addition to introducing the 

thickness stretching effect ( 0z ), the displacement field 

is modeled with only 5 unknowns by considering 

undetermined integral terms. Thus the number of unknowns 

is even less than the FSDT and do not need shear correction 

factor. The displacement field is modeled based on a 

hybrid-type (sinusoidal and parabolic) shear strain shape 

functions. The mechanical properties of the plates are 

supposed to vary in the thickness direction according to a 

power law variation in terms of the volume fractions of the 

constituents. The equations of motion of FG plates resting 

on elastic foundation are derived by using the Hamilton‘s 

principle. These governing equations are then solved via 

Navier method. As a result, fundamental frequencies are 

obtained by solving eigenvalue problem. The accuracy of 

the present theory is verified by comparing the obtained 

results with those of HSDT‘s solutions available in 

literature. 

 

 

2. Analytical modeling 
 

2.1 Functionally graded plates 
 

We consider in this work, a rectangular plate of uniform 

thickness ― h ―, length ― a ―‘, and the width ― b ―, fabricated 

from FGM and supported by an elastic foundation. The 

rectangular Cartesian coordinate system x, y, z, has the 

surface 0z , coinciding with the mid-plane of the plate.  

The material characteristics change across the thickness 

according to a power law distribution, which is defined 

below 
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where P  represents the effective material property, 
tP  

and 
bP  represent the property of the top and bottom faces 
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of the plate, respectively, and ‗‗ k ‘‘ is the exponent that 

specifies the material distribution profile within the 

thickness. The effective material characteristics of the plate, 

including Young‘s modulus, E , and shear modulus, G , 

vary according to Eq. (1), and Poisson ratio, ‗‗ ‘‘ is 

considered to be constant (Qian et al., 2004). 

 
2.2 Kinematic relations and constitutive relations 
 

In this work, the conventional quasi-3D HSDT is 

modified by considering some simplifying suppositions so 

that the number of unknowns is reduced. The displacement 

field of the conventional quasi-3D HSDT is defined by   
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where 0u , 0v , 0w , x , y  and z  are six unknown 

displacements of the mid-plane of the plate, )(zf  

represents shape function defining the variation of the 

transverse shear strains and stresses within the thickness.  

By considering that  dxyxx ),(  and 

 dyyxy ),(  (Merdaci et al. 2016, Benbakhti et al. 

2016, Bourada et al. 2016, Hebali et al. 2016, Chikh et al. 

2016, Benchohra et al. 2017, Chikh et al. 2017, Fahsi et al. 

2017, Meksi et al. 2017, Khetir et al. 2017, Besseghier et 

al. 2017, Menasria et al. 2017), the Kinematic of the 

proposed theory can be expressed in a simpler form as 
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In this study, the hybrid type shear strain shape 

functions are 
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The necessary equations are obtained by assuming small 

strains are assumed (i.e., displacements and rotations are 

small, and obey Hooke‘s law). The linear strain relations 

determined from the kinematic of Eqs. (3(a)- 3(c)), valid for 

thin, moderately thick and thick plate under consideration 

are as follows 
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The integrals appearing in the above expressions shall 

be resolved by a Navier type solution and can be expressed 

as follows 
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where the coefficients 'A  and 'B  are defined according 

to the type of solution adopted, in this case via Navier. 

Therefore, 'A  and 'B  are expressed as follows 
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2
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where   and   are defined in expression (24). 

For the FG plates, the stress–strain relationships for 

plane-stress state can be written as 
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in which, ( x , y , z , xy , yz , xz ) and ( x , y , 

z , xy , yz , xz ) are the stresses and the strain vectors 

with respect to the plate coordinate system. The ijQ  

expressions in terms of engineering constants are given 

below 
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2.3 Hamilton’s principle 
 

Hamilton‘s principle is employed herein to obtain the 

equations of motion appropriate to the displacement field 

and the constitutive equations. The principle can be stated 

in analytical form as 

 

t

e dtKVU

0

 )   (0   (11) 

where U   is the variation of strain energy; eV   is the 

variation of the potential energy of elastic foundation; and 

K   is the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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where A  is the top surface and the stress resultants N , 

M , and S  are defined by 
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The variation of the potential energy of elastic 

foundation can be expressed by 

dAwfV

A
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where ef  is the density of reaction force of foundation. 

For the Pasternak foundation model: 
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in which wK  and sK  are the Winkler foundation 

stiffness and the shear stiffness of the elastic foundatio

n. 

The variation of kinetic energy of the plate can be 

written as 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; )(z  

is the mass density given by Eq. (1); and ( iI , iJ , iK ) are 

mass inertias expressed by 
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Employing the generalized displacement–strain 

expressions (Eqs. (5) and (6)) and stress–strain relations (9), 

and applying  integrating by parts and the fundamental 

lemma of variational calculus and collecting the coefficients 

of 0 u , 0 v , 0 w ,    and z    in Eq. (11), 

the equations of motion are obtained as 
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Substituting Eq. (5) into Eq. (9) and the subsequent 

results into Eq. (13), the stress resultants can be expressed 

in terms of generalized displacements ( 0u , 0v , 0w , , z ) 

as 
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where 
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Substituting Eqs. (19) into Eqs. (18), the equations of 

motion of the proposed quasi-3D hybrid-type HSDT can be 

expressed in terms of displacements ( 0u , 0v , 0w ,  , z ) 

as 
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where ijd , ijld  and ijlmd  are the following differential 

operators 
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3. Solution procedure 
 

For the analytical solution of the partial differential Eqs. 

(21(a)-21(e)), the Navier method, based on double Fourier 

series, is employed under the specified boundary 

conditions. Using Navier‘s procedure, the solution of the 

displacement variables satisfying the above boundary 

conditions can be expressed in the following Fourier series 
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 (23) 

where ( mnU , mnV , mnW , mnX , mn ) are unknown 

functions to be determined and   is the natural frequency. 

  and   are expressed as 

am /   and bn /   (24) 

Substituting Eq. (23) into equations of motion (21) we 

get below eigenvalue equation for any fixed value of m  

and n , for free vibration problem 
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4. Numerical results and discussions 
 

The results of various numerical analyses are  

presented in this section for vibration analysis of a  

simply supported FG plates with various indexes that  

specify the material distribution profile within the thick

ness and several values of the thickness ratio /a h   

 

 

 

 

and aspect ratio /a b . Typical mechanical characteristic

s for metal and ceramics employed in the FG plates ar

e given in Table 1. For the validation of the proposed

 quasi-3D hybrid-type HSDT, both, homogeneous isotro

pic plates and FG plates are investigated.  

 

4.1 Investigation of homogeneous isotropic plates 
 

In this part of study, homogeneous isotropic materia

l is investigated. Unless otherwise stated, the following

 expressions to compute the non-dimensional natural fr

equencies and foundation parameters were used 

0

2ˆ Dha   , 0

4 / DaKk ww  , 

0

2 / DaKk ss  ,   )1(12/ 23

0  EhD  

(27) 

Table 2 shows the first eight non-dimensional 

fundamental frequencies. These values are compared with 

the solutions of different researchers: 3D exact solutions by 

Leissa (1973), Zhou et al. (2002), Nagino et al. (2008), 

FSDT results obtained using differential quadrature element  

method (DQM) by Liu and Liew (1999), and HSDTs by 

Shufrin and Eisenberger (2005), Hosseini-Hashemi et al.  

Table 1 Material properties used in the FG plates 

Material Properties 

Young‘s modulus (GPa) Poisson‘s ratio Mass density kg/m3 

Aluminium (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2) 200 0.3 5700 

Table 2 Non-dimensional fundamental frequencies 
0

2ˆ Dha   for simply supported isotropic square plates 

/a h  Theory 
Mode 

(1,1) (1,2) (2,1) (2,2) (1,3) (3,1) (2,3) (3,2) 

1000 Leissa (1973) 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960 128.3021 128.3021 

Zhou et al. (2002) 19.7115 49.3470 49.3470 78.9528 98.6911 98.6911 128.3048 128.3048 

Akavci (2014) 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3020 128.3020 

Mantari (2015) 19.7395 49.3483 49.3483 78.9568 98.6957 98.6957 128.3037 128.3037 

Present 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3019 128.3019 

100 Liu and Liew (1999) 19.7319 49.3027 49.3027 78.8410 98.5150 98.5150 127.9993 127.9993 

Nagino et al. (2008) 19.7320 49.3050 49.3050 78.8460 98.5250 98.5250 128.0100 128.0100 

Akavci (2014) 19.7322 49.3045 49.3045 78.8456 98.5223 98.5223 128.0346 128.0346 

Mantari (2015) 19.7326 49.3056 49.3056 78.8477 98.5253 98.5253 128.0160 128.0160 

Present 19.7323 49.3049 49.3049 78.8466 98.5239 98.5239 128.0143 128.0143 

10 Liu and Liew (1999) 19.0584 45.4478 45.4478 69.7167 84.9264 84.9264 106.5154 106.5154 

Nagino et al. (2008) 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350 

Akavci (2014) 19.0850 45.5957 45.5957 70.0595 85.4315 85.4315 107.3040 107.3040 

Mantari (2015) 19.0909 45.6242 45.6242 70.1176 85.5096 85.5096 107.4092 107.4092 

Present 19.0908 45.6251 45.6251 70.1214 85.5164 85.5164 107.4222 107.4222 

5 Shufrin et al. (2005) 17.4524 38.1884 38.1884 55.2539 65.3130 65.3130 78.9864 78.9864 

Hosseini et al. (2011) 17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865 

Akavci (2014) 17.5149 38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637 

Mantari (2015) 17.5294 38.5079 38.5079 55.8561 66.1060 66.1060 80.0589 80.0589 

Present 17.5303 38.5169 38.5169 55.8817 66.1471 66.1471 80.1296 80.1296 
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 (2011) Akavci (2014) and Mantari (2015). From these 

results it can be deduced that for the thickness ratio 

‗‗ / 1000a h  ‘, the computed results are very close to the 

results reported by Leissa (1973) and have proximity with 

the ones given by Akavci (2014), for the first eight modes 

of free vibration. For the thickness ratio ‗‗ / 100a h  ‘‘, the 

obtained results have also proximity with those computed 

by Akavci (2014) and Nagino et al. (2008). By reducing the 

thickness ratio ‗‗ /a h ‘‘ the obtained results demonstrate 

good agreement with the other models presented in Table 2. 

 

4.2 Investigation of FG Plates 
 

In this part of study, FG plates are investigated. Two 

types of FG plates (Al/Al2O3 and Al/ZrO2) are employed 

(see mechanical properties in Table 1). Unless otherwise has 

been stated, for this section, the following relations of non-

dimensional natural frequencies and foundation parameters 

was used 

mm Eh /  , cc Eh /  , (28a) 

mm Eha /)/ (~ 2   , 
cc Eha /)/ ( 2   , 

DaKk ww /4 ,  DaKk ss /2  

where 

 /E)pp(E)pp(p)v(/hD cm
2223 2338112   (28b) 

 )3)(2)(1( ppp   

 

In Table 3, non-dimensional fundamental frequencies of 

simply supported plate are calculated for four different 

gradient indexes and compared with the 3D exact solution 

developed by Jin et al. (2014) and the theory proposed by 

and Mantari (2015). The results obtained demonstrate good 

accuracy for square plates. In rectangular plates, the results 

are close to the referential value in the cases when the 

thickness ratio 5/ ha .  

In Table 4, non-dimensional natural frequencies for 

different gradient indexes are calculated and compared with 

the 3D exact solution by Vel and Batra (2004), the quasi-3D 

sinusoidal and hyperbolic HSDTs by Neves et al. (2012a,b); 

and the HSDTs by Akavci (2014), Hosseini-Hashemi et al. 

(2011), Mantari (2015) and Matsunaga (2008). It can be 

observed that the results computed by the proposed theory 

agree with the HSDTs, quasi-3D and 3D exact results. 

Table 5 shows the non-dimensional fundamental 

frequencies of FG plates resting on elastic foundations for 

different values of the thickness ratio /a h . The results 

computed using the present model, are compared with the 

FSDT‘s results by Hosseini-Hashemi et al. (2010), and the 

HSDTs by Akavci (2014) and Mantari (2015). From this 

table can be observed that the results of the proposed theory 

are closer to the results reported by Akavci (2014) 

(optimized shear deformation theory for the dynamic 

analysis of FG plates). 

 

 

Table 3 Comparison of non-dimensional fundamental 

frequencies  
mm Eh /    of Al/Al2O3 FG plates 

ab /  /a h  p  Theory 

Jin et al. 

 (2014) 

Mantari 

(2015) 

Present 

1 10 0 0.1135 0.1135 0.1135 

1 0.0870 0.0882 0.0882 

2 0.0789 0.0806 0.0806 

5 0.0741 0.0755 0.0755 

5 0 0.4169 0.4169 0.4196 

1 0.3222 0.3261 0.3261 

2 0.2905 0.2962 0.2961 

5 0.2676 0.2722 0.2720 

2 0 1.8470 1.8510 1.8526 

1 1.4687 1.4778 1.4789 

2 1.3095 1.3223 1.3230 

5 1.1450 1.1557 1.1547 

2 10 0 0.0719 0.0718 0.0718 

1 0.0550 0.0557 0.0557 

2 0.0499 0.0510 0.0509 

5 0.0471 0.0479 0.0479 

5 0 0.2713 0.2713 0.2713 

1 0.2088 0.2115 0.2115 

2 0.1888 0.1926 0.1926 

5 0.1754 0.1786 0.1785 

2 0 0.9570 1.3044 1.3049 

1 0.7937 1.0348 1.0352 

2 0.7149 0.9296 0.9297 

5 0.6168 0.8241 0.8231 

 

 

Table 4 Comparison of non-dimensional fundamental 

frequencies
mm Eh /  of Al/ZrO2 FG square plates 

(a/h = 5) 

Theory 2p  3p  5p  

Vel and Batra  

(2004) 
0.2197 0.2211 0.2225 

Neves et al.  

(2012a) 0z  
0.2189 0.2202 0.2215 

Neves et al.  

(2012a) 0z  
0.2198 0.2212 0.2225 

Neves et al.  

(2012b) 0z  
0.2191 0.2205 0.2220 

Neves et al.  

(2012b) 0z  
0.2201 0.2216 0.2230 

Matsunaga  

(2008) 
0.2264 0.2270 0.2280 

Hosseini-Hashemi  
et al. (2011) 

0.2264 0.2276 0.2291 

Akavci (2014) 0.2264 0.2269 0.2278 

Mantari (2015) 0.2285 0.2290 0.2295 

Present 0.2285 0.2290 0.2295 

 

 

4.3 Parameter studies 
 

Fig. 1 presents the variation of non-dimensional  

natural frequency of a simply supported FG plate  

versus the gradient index ‗‗ k ‘‘ for different values of  

the thickness ratio ‗‗ ha / ‘‘. It can be noticed from  

this figurethat for a given value of ‗‗ k ‘‘, as the  

thickness ratio increase, the natural frequency increase,  
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Table 5 Comparison of non-dimensional fundamental frequencies
CC Eh   of Al/ZrO2 FG rectangular plate 

( / 1.5a b  ) 

( wk , sk ) /a h  p  Theory 

Akavci (2014) Hosseini-Hashemi et al. (2010) Mantari (2014) Present 

(0, 0) 20 0 0.02393 0.02392 0.02393 0.02397 

0.25 0.02309 0.02269 0.02312 0.02315 

1 0.02202 0.02156 0.02217 0.02220 

5 0.02244 0.02180 0.02260 0.02262 

∞ 0.02056 0.02046 0.02057 0.02060 

10 0 0.09203 0.09188 0.09207 0.09224 

0.25 0.08895 0.08603 0.08909 0.08925 

1 0.08489 0.08155 0.08549 0.08564 

5 0.08576 0.08171 0.08638 0.08651 

∞ 0.07908 0.07895 0.07911 0.07927 

5 0 0.32471 0.32284 0.32498 0.32583 

0.25 0.31531 0.31003 0.31591 0.31670 

1 0.30152 0.29399 0.30349 0.30425 

5 0.31860 0.29099 0.29990 0.30053 

∞ 0.27902 0.27788 0.27925 0.28001 

(250, 25) 20 0 0.03422 0.03421 0.03417 0.03419 

0.25 0.03312 0.03285 0.03309 0.03311 

1 0.03213 0.03184 0.03220 0.03222 

5 0.03277 0.03235 0.03283 0.03285 

∞ 0.02940 0.02937 0.02936 0.02939 

10 0 0.13375 0.13365 0.13302 0.13315 

0.25 0.12959 0.12771 0.12895 0.12907 

1 0.12585 0.12381 0.12557 0.12568 

5 0.12778 0.12533 0.12755 0.12764 

∞ 0.11492 0.11484 0.11430 0.11443 

5 0 0.50044 0.49945 0.48945 0.49020 

0.25 0.48594 0.48327 0.47535 0.47610 

1 0.47298 0.46997 0.46401 0.46468 

5 0.47637 0.47400 0.46838 0.46880 

∞ 0.43000 0.43001 0.42057 0.42129 

0 10 20 30 40 50 60 70 80 90 100
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Fig. 1 Variation of non-dimensional fundamental frequency 
cc Eha /)/ ( 2   of Al/Al2O3 FG square plates with 

gradient index 
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increment ratio decreases for high values of ‗‗ k ‘‘.  

For but the high values of the gradient index ‗‗ k ‘‘  

and thesame thickness ratio ‗‗ ha / ‘‘, the natural  

frequency does not change too much. Fig. 2 presents  

 

 

 

 

 

the variation of natural frequency of FG plates versus  

the aspect ratio ‗‗ ba / ‘‘ for different values of  

gradient index ‗‗ k ‘‘. From these results, it can be  

observed that for a given value of ‗‗ ba / ‘‘ as the  
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Fig. 2 Variation of non-dimensional fundamental frequency  

cc Eha /)/ ( 2    of Al/Al2O3 FG square plates versus 

aspect ratio ( / 10a h  ) 
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Fig. 3 Variation of non-dimensional fundamental frequency 
cc Eh /  of Al/Al2O3 FG square plates resting on 

elastic foundation with gradient index ( / 5a h  ) 
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gradient index ‗‗ k ‘‘ increases, the natural frequency  

decrease. It can be also seen that for a fixed value  

of the gradient index ‗‗ k ‘‘, as the aspect ratio ‗‗ ba / ‘‘

increases, the nominal frequency increases.  

Fig. 3 indicates the variation of non-dimensional natural 

frequency of FG plates resting on elastic foundation versus 

the gradient index ‗‗ k ‘‘ for different values of ‗‗ wk ‘‘ and ‗‗

sk ‘‘. From this figure, it can be observed that for a given 

value of ‗‗ k ‘‘ and one coefficient of Pasternak, as the other  

 

 

 

 

 

coefficient increase, the natural frequency increase. Again, 

it can be noticed that for high values of the gradient index ‗‗

k ‘‘ the natural frequency does not change too much. Fig. 4 

presents the variation of the natural frequency versus the 

aspect ratio ‗‗ ba / ‘‘ of FG plate ( 1k ) for different 

values of foundation parameters ‗‗ wk , sk ‘‘. It can be 

observed that for a given value of aspect ratio ‗‗ ba / ‘‘ and 

Winkler coefficient ‗‗ wk ‘‘, as the Parameter coefficient 
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Fig. 4 Variation of non-dimensional fundamental frequency 

cc Eh /  of Al/Al2O3 FG square plates resting on 

elastic foundation versus aspect ratio ( / 10a h  , 1p  ) 
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Fig. 5 Variation of non-dimensional fundamental frequency 
mm Eha /)/ (~ 2   of Al/ZrO2 FG square plates 

resting on elastic foundation versus the Winkler parameter ( 10sk  , 1p  ) 
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Fig. 6 Variation of non-dimensional fundamental frequency 
mm Eha /)/ (~ 2   of Al/ZrO2 FG square plates 

resting on elastic foundation versus the Pasternak parameter ( 10wk  , 1p  ) 
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‗‗ sk ‘‘ increases, the natural frequency increases. Also it is 

observed that for small values of ‗‗ ba / ‘‘ and ‗‗ wk ‘‘ 

constant, the curves tend to approach to the same value, this 

can be seen more clearly for large values of ‗‗ wk ‘‘. When ‗‗

sk ‘‘ is constant for a given value of ‗‗ ba / ‘‘, as the value 

of the Winkler coefficient ‗‗ wk ‘‘ increases, the value of 

natural frequency increases. It is also remarked that the 

curves approach each other as the ratio ‗‗ ba / ‘‘ increases. 

Figs. 5 and 6 present the variation of the natural 

frequency versus the Winkler parameter ‗‗ wk ‘‘ and the 

Pasternak parameter ‗‗ sk ‘‘, respectively. In Fig. 5 can be 

observed that the natural frequency vary linearly with the 

Winkler parameter ‗‗ wk ‘‘. The curves presented in Fig. 6 

have a greater slope than the curves in Fig. 5, i.e., the  

 

 

 

Pasternak parameter ‗‗ sk ‘‘ has greater effect in the natural 

frequency than the Winkler parameter ‗‗ wk ‘‘. 

The non-dimensional frequency-gradient index plots of 

FG plates are shown in Figs. 7(a)-(d) for different FGMs 

and different values of foundation parameters. It can be 

seen the foundation coefficients have a great effect on 

vibration response of FG plate. Also, 
 
 
4. Conclusions 
 

This work presents a dynamic analysis for FG plates 

resting on elastic foundation by employing a new quasi-3D 

hybrid type HSDT. The theory is developed by making 

further simplifying assumptions to the existing HSDTs, with 

the incorporation of an undetermined integral term. The 

number of variables and equations of motion of the 

proposed quasi-3D hybrid type HSDT are reduced by one, 

and hence, make this theory simple and efficient to use. The 
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11

12

13

14

15

16

Gradient index (p)

 Al/Al

 Al/Al2O3

 Al/ZrO2

(c)

 

0 20 40 60 80 100

11

12

13

14

15

16

Gradient index (p)

 Al/Al

 Al/Al2O3

 ZrO2

 

Fig. 7  Variation of non-dimensional fundamental frequency mm Eha /)/ (~ 2   of different functionally 

graded square plates versus the gradient index ( / 10a h  , 1p  ): (a) 0w sk k  , (b) 100,  0w sk k  , (c) 

0,  100w sk k  and (d) 100,  100w sk k   
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equations of motion are obtained through the Hamilton‘s 

principle. These equations are solved by utilizing Navier‘s 

procedure, subsequently the fundamental frequencies are 

found by solving the corresponding after eigenvalue 

problem. The results were compared with the solutions of 

several theories. The results determined by the proposed 

theory can be summarized as follows: 

 It has been noticed that the proposed formulation 

can accurately predict fundamental frequencies of 

FG plates resting on two-layer elastic foundations.  

 The fundamental frequencies of FG plate decrease 

with the increase of gradient index. 

 In the presence of elastic foundation, increasing 

value of Winkler and Pasternak coefficients causes 

to increase in the fundamental frequency of FG 

plate. 

 The Pasternak modulus coefficient of foundation 

has more significant effect on increasing natural 

frequency of FG plate than the Winkler modulus 

coefficient.  

 Increasing value of gradient index increases the 

effect of elastic foundation on natural frequency.  
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