
Smart Structures and Systems, Vol. 20, No. 4 (2017) 397-413 

DOI: https://doi.org/10.12989/sss.2017.20.4.397                                                                  397 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sss&subpage=7                                      ISSN: 1738-1584 (Print), 1738-1991 (Online) 

 
1. Introduction 

 

Construction affects many aspects of human life such as 

the environment, transportation, economy, and other social 

areas. It requires a huge budget and considerable amount of 

time. Accordingly, one of the most important issues in the 

construction industry is reducing construction time. In the 

past two decades, many studies (Yee and Chuan 2001, 

Pheng and Chuan 2001) were conducted to reduce 

construction period. Precast concrete (PC) and prefabricated 

construction methods have been widely used and are 

considered promising technologies to address this issue. For 

bridges, the average lifetime is approximately 50 to 100 

years, whereas PC members should be replaced after 10 to 

20 years because of live load (Caltrans 2004). Hence, PC 

members are replaced more than once during the lifetime of 

a bridge. The replacement of PC members is a burden to the 

economy and is time consuming. PC technology has led to  
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significant advancement in manufacturing processes. 

However, the assembly of PC members still should be 

improved. Currently, a crane carries a PC member to a 

particular position, and subsequently, a worker brings it to 

the required location. In this circumstance, serious accidents 

can occur. Hence, it is important to develop a method that 

locates PC members quickly and safely. 

In the field of civil engineering, numerous studies on 

vision sensor-based methods for estimating the 

displacement of infrastructures were conducted (Park et al. 

2010, Ji and Chang 2008, Lee and Shinozuka 2006, Wahbeh 

et al. 2003, Olaszek 1999, Marecos et al. 1969). These 

methods are attractive candidates for guiding PC members. 

However, they are limited to 1D or 2D displacement 

measurement and cannot measure the 6-DOF (degree of 

freedom) relative displacement. Recently, several vision or 

marker-based systems have been introduced to estimate the 

6-DOF relative displacement of infrastructures (Myung et 

al. 2011, Jeon et al. 2011, Jeon et al. 2012, Jeon et al. 2013, 

Jeon et al. 2014a, Jeon et al. 2014b, Jeon et al. 2017). Lee 

et al. (2012, 2014) estimated a 6-DOF relative displacement 

between a planar marker and a camera using the DLT 

algorithm. Myeong et al. (2014) applied this method to 

construction members, particularly for the rendezvous of 

the bridge members. Myeong et al. (2015) proposed a 

Monte Carlo localization (MCL)-based method for 

estimating the 6-DOF relative displacement of PC 

members. The DLT method for estimating 6-DOF relative 

displacement has several drawbacks. One of the problems is  
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captures an image of a marker and extracts its subpixel coordinates, and then the data are transferred to a main system via a 
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that when the marker is partially hidden, the DLT method 

cannot be employed for calculating the 6-DOF relative 

displacement because it cannot determine the minimum 

required number of corner point coordinates of the marker. 

Second, when the image is blurred, the DLT method cannot 

be used to determine the corner point coordinates of the 

marker easily because the image loses sharp shape at the 

corner of the marker. To overcome these problems, the 

MCL method is used for the cases where the marker is 

partially hidden and the image is blurred. However, this 

method shows some errors even if the image is not blurred 

because the method is based on the probabilistic 

localization method using particles. Hence, a hybrid 

method, which combines the advantages of the DLT method 

for homography estimation and MCL method, is proposed 

in this study. The hybrid method selects the 6-DOF relative 

displacement between the DLT and MCL methods based on 

which has a more accurate 6-DOF relative displacement. 

 

 

2. 6-DOF relative displacement estimation with multi-
markers 

 
2.1 Multi-marker system for the rendezvous of PC 

members  
 

The system proposed in this study is developed to 

estimate the 6-DOF relative displacement of two PC bridge 

construction members and visualize them with 3D graphics. 

For the assembly work of the PC members, the basic 

dimensions of the PC members range from 3 m to 20 m; 

hence, measuring the displacement of only one spot is 

insufficient for estimating the overall displacement of the 

member. Fig. 1 shows the subsystems, main system, and 

tablet PC of the proposed system. The multi-markers are 

installed on the static member, which is previously 

assembled, and the dynamic member, which is carried by 

the crane. Each subsystem consists of a camera, a single  

board computer (SBC), and a Bluetooth device. The camera  

 

 

captures the two markers, and the image processing and 

estimation of the 6-DOF relative displacement are 

conducted using the SBC. Generally, the worker of the 

crane is located approximately 20–30 m from the site of the 

assembly of the PC members, which is quite far. Hence, the 

6-DOF relative displacement is transferred by using 

wireless technology such as Bluetooth. The main system 

receives the 6-DOF relative displacement information from 

the subsystems, and it processes the data for 3D 

visualization. The tablet PC shows the real-time movement 

of the PC members based on the 6-DOF relative 

displacement data for the crane worker. Fig. 2 shows the 

detailed configuration of the system. Fig. 2(a) represents the 

subsystems, main system, and tablet PC. The subsystems 

and main system have modular characteristics, which allow 

for easy installation at construction sites. The frames of the 

subsystems are made of a transparent material so that they 

are less affected by sunshine. Fig. 2(b) shows the markers. 

The markers have four IDs; IDs 1 and 3 are installed on the 

static member; IDs 2 and 4 are located on the dynamic 

member. They have 12 corner points (Q1, …, Q12), and the 

proposed method measures the more accurate 6-DOF 

relative displacement than the commonly used four marker 

corner points based 6-DOF relative displacement estimation 

such as the April tag (Edwin 2011). 

 

2.2 Visual guidance system 
 

The estimated 6-DOF relative displacement is only a 

numerical value, and providing real-time guidance 

information is difficult. Hence, the displacement will be 

represented using visualization tools, such as 2D or 3D 

computer graphics, to provide the crane worker with visual 

aid. As shown in Fig. 3, the visual guidance system is 

constructed by using a commercial robot simulator called V-

REP from Coppelia robotics (2016) to verify the usability. 

In the program, a 3D-CAD model of the PC bridge 

members can be imported, and the real-time displacement 

data simulates the 3D movement. 

 

Fig. 1 Multi-marker system and the specifications of its components 
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3. Vision sensor and planar marker-based 
displacement measurement method 

 
3.1 Image processing and marker detection 
 
As shown in Fig. 4, the captured image from the camera 

is converted from an RGB image to a gray level image. By 

using a specific threshold value, the gray level image is 

converted to a binary image wherein a bunch of black and 

white pixels are connected and grouped through a labeling 

process. Finally, the square of the marker and the positions 

of the edge points are extracted with the given geometry of 

the marker. To increase the accuracy of the position of the 

corner and displacement measurement results, the extracted 

corner coordinates with an integer value are refined to a 

floating value using the subpixel detection algorithm by 

considering the orthogonal gradient of the intersecting 

edges (Intel Co. 2015a). For example, at the stage of the  

 

 

 

 

 

 

corner point extraction, seen in Fig. 4, the corner point 

coordinate  (i = 1, …, QN) of the first marker is 

expressed by an integer type. QN is the number of corner 

points of the marker. However, at the stage of the subpixel 

extraction, the corner point coordinate is more accurately 

expressed by a floating type. These image-processing 

procedures are conducted with an open-source computer 

vision library such as OpenCV library (Intel Co. 2015a). 

Traditional camera pose estimation algorithms, such as the 

DLT direct linear transformation method (Abdel and Karara 

1971) and PnP perspective-n-point (Vincent et al. 2008), 

have been used to determine the optimal solution for an 

extrinsic parameter or homography. This parameter 

contains information regarding rotational and translational 

transformations with known intrinsic parameters, the 

geometry of a landmark, and projected point coordinate 

parameters. 

 

  
(a) (b) 

Fig. 2 Detailed configuration of the system. (a) subsystems, main system, and tablet PC and (b) markers 

 

Fig. 3 3D visualization of the PC members 
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3.2 Basic camera model and its pose estimation 
principle 

 

In the optical model of the camera, the following three 

coordinate systems exist: camera coordinate, image 

coordinate, and world coordinate. As shown in Fig. 5, they 

are related to each other by intrinsic and extrinsic 

parameters. The intrinsic parameters are the characteristics 

of the camera, such as focal length, pixel size, and 

distortion, which can be acquired by using camera 

calibration algorithms such as Matlab camera calibration 

app (The Mathworks, Inc. 2015) or GML camera 

calibration toolbox (Graphics and media lab. 2013).  

The extrinsic parameters include rotation and translation 

transformations between the camera and world coordinates. 

From the projected image of a specific object with known 

geometry in the world coordinates, the transformation or  

 

 

 

 

 

displacement between the camera and object can be 

calculated by using the following relationship 

 (1) 

where Pm indicates the coordinate point of the pixel in the 

image plane, Min is the matrix containing intrinsic 

parameters, Mex is the matrix containing extrinsic 

parameters, and Pw is the world coordinate points. The 

relationship between the marker geometry in the world 

coordinate and the coordinate in the image plane is 

employed for evaluating the weight of the MCL in the 2D 

and 3D image spaces. The following is the expression for 

the relationship 

 
(2) 

 

 
  
         

           
             

          

Fig. 4 Procedure of corner point extraction using image processing 

 

Fig. 5 Camera model and its parameters 
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Here, (sx, sy) indicates the effective size of the pixels in 

the horizontal and vertical directions, respectively, (fx, fy) 

are the focal lengths in the horizontal and vertical 

directions, respectively, and (ox, oy) are the principal points 

in the horizontal and vertical directions, respectively. Rij is 

the i-th row and j-th column element of the rotation matrix, 

Rk = (Rk1, Rk2, Rk3) (k = 1, 2, 3), Tr is the translation vector, 

(Xm, Ym, Zm) are the coordinates of the marker in the image 

plane, and (XW, YW, ZW) are the coordinate points of the 

marker in the world coordinate. Using this equation, the 

camera pose information with respect to the marker can be 

estimated. As shown in Fig. 6, to calculate the 6-DOF 

relative displacement between the two PC members, the 

following equation is used 

 (3) 

 

 

 

 

 

Here,  is the 6-DOF relative displacement of camera C 

relative to marker M1,  is the 6-DOF relative 

displacement of camera C relative to marker M2,  is 

the 6-DOF relative displacement of marker M1 relative to 

marker M2. 

 

 

4. Monte Carlo localization (MCL)-based 
displacement estimation algorithm 

 
4.1 Monte Carlo localization (MCL) 

 
The MCL algorithm is widely used for the localization 

of a robot in a known environment represented by a map or 

landmarks (Thrun et al. 2001). Using various sensors, a  

 

 
Fig. 6 Relationship between a camera and two markers 

 

Fig. 7 MCL process 
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robot detects the surrounding environment and estimates its 

relative pose with respect to the environment. A robot 

installed with sensors is analogous to the PC member 

installed with a camera, and the known environment is 

analogous to the PC member, which is previously 

assembled and installed with the planar marker. Hence, it is 

easy to understand the application of the MCL algorithm for 

estimating the relative displacement between the two 

members.  

The DLT method for homography estimation has two 

major problems. One of the problems is that when the 

marker is partially hidden, the DLT method cannot be 

employed for calculating the 6-DOF relative displacement 

because it cannot determine the pixel coordinates of the 

corner points of the marker, which are hidden. The other 

problem is that when the image is blurred, the corner points 

of the marker are not accurately detected. Hence, the more 

the images are blurred, the more inefficient is the DLT 

method. The MCL can compensate for these problems. The 

MCL is based on the probability of particles; hence, it can 

overcome the problems for the case where the pixel 

coordinates of the corner points of the marker are not 

exactly extracted. 

As shown in Fig. 7, the MCL process has several steps. 

The first step is particle initialization, where the particles 

are generated randomly. Second, the sampling step 

calculates the particles using a motion model. Thereafter, 

the importance weight step assigns weights to the particles 

depending on which one is more reliable. In the  

normalization step, the weights of the particles are adjusted  

 

 

 

with the common scale such that the sum of the weights of 

the particles is equal to 1. In the resampling stage, the 

particles with low weights are replaced by the new particles, 

and the new particles are generated nearby particles which 

have high weights. 

 
4.2 MCL process 
 

In the particle initialization step, particles , n=(1, 

…, N) (N: total number of particles) are randomly generated 

with normal distribution from the 6-DOF relative 

displacement, which is calculated by using the DLT method 

h
(0)

, shown in Algorithm 1. In the sampling step, particles 

 are reflected with motion model △h
(t)

, which is the 

difference between h
(t)

 and h
(t-1)

.  

In the importance weight step, the generated particles 

cannot be considered as actual measurement, but only as a 

candidate for the measurement; an evaluation process is 

necessary to determine whether each particle can be 

retained. As shown in Fig. 8, when the image is blurred, the 

pixel coordinate of the corner points of the marker is not 

accurately detected; hence, it is not directly used for 

calculating the importance weight in the MCL process. 

Instead of this pixel coordinate, as shown in Fig. 9 and 

Algorithm 1, the score value is measured, which is the 

average distance between the pixel points (represented by 

blue dots) induced by the particles and other pixel points 

(represented by red dots) on the side of the marker (Yuko 

and Hideo 2007). , , s = (1, 2, 3) (s: the order of 

the corner points of the marker) are the pixel coordinates of 

the corner points of the marker reprojected from the  

 

 
(a) 

 
(b) 

Fig. 8 Marker images. (a) no blurred image, (b) blurred image 
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articles using the camera model. , z = (1, …, NC) (NC: 

the total number of points on visible lines which connect 

points  and  on a marker) are points which are 

located at the center of the line.  has the same 

distance of l/NL with an adjacent point on the line where l is 

the length of the line and NL is the number of the points 

located at the center part of the line.  (red dots) is 

the point from the foot of the perpendicular drawn from 

, and it is on the side of the marker. Finally, the score 

value is the average distance  between  

and . The smaller the average distance, the higher  

 

 

 

the weight of the particle. The next step is normalization. 

The weights of the particles are modified with the common 

scale such that the sum of the weights of the particles is 

equal to 1. The particles are resampled when the effective 

number of particles, Neff, is less than or equal to a threshold 

ηeff. In the resampling step, the particles with low weights 

are replaced by the new particles, and the new particles are 

generated as from the particles having high weights by 

using systematic resampling. 

 

 

 
Fig. 9 Calculating score value 
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5. Hybrid method 

 
The hybrid method is employed for combining the 

advantages of the DLT and MCL methods. As shown in Fig. 

10(a), when the marker is partially hidden, some corner 

points of the marker are not detected. Thus, the DLT 

method cannot calculate 6-DOF relative displacement 

between one and the other marker. However, the MCL 

method can estimate 6-DOF relative displacement even 

with partial occlusion. If particles have 6-DOF relative  

 

 

 

 

 

 

 

displacement information, though the marker is partially 

hidden, the MCL can determine importance weight from the  

visible side of the marker (yellow boxes in Fig. 10(b)). 

Hence, the MCL can calculate the 6-DOF relative 

displacement even when the marker is partially hidden. The 

overall procedure for the hybrid algorithm is shown in 

Algorithm 2. As shown in Algorithm 2, 6-DOF relative 

displacement induced by MCL  is chosen for the final 

6-DOF relative displacement . 

In addition, the hybrid method is used when the marker 

image is blurred. When the marker image is blurred, the  

Table 1 Notation in Algorithm 1 

Symbol Meaning 

t Time 

NR Number of representative particles having high weights in resampling step 
 Weights of particles at time t 
 Normalized weights of particles at time t 

 Euclidean distance between  and  
 Sum of distances  

 Representative particles having high weights in resampling step 

 Resampled particles 

 6-DOF displacement from MCL 

 
 

(a) (b) 

Fig. 10 Comparison when the marker is partially hidden. (a) The DLT method for homography estimation and (b) 

MCL 

 

Fig. 11 Process for choosing the final 6-DOF relative displacement  
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DLT method has more error because it cannot accurately 

detect the corner points of the marker. However, the MCL 

can estimate 6-DOF relative displacement more accurately 

than the DLT method when the marker image is blurred. As 

shown in Fig. 11, to determine the more useful method for 

estimating the 6-DOF relative displacement, the average 

distances obtained from the MCL and the DLT methods are 

compared for determining the smaller value. avgDistM is the 

average distance which is induced from the particle having 

the highest weight.  is the average distance from 

the corner points 
)t(

xq , 
)t(

sq 1 , s = (1, 2, 3) (s: the order of 

the corner points of the marker) of the marker in the DLT 

method. Finally, as shown in Algorithm 2, if the marker is 

visible and detected (bDetected = true), the final 6-DOF 

relative displacement is decided from the process as 

illustrated in Fig. 11. If the marker is partially hidden, the 

MCL is chosen for the final 6-DOF relative displacement. 

 

 
 

 

 
 
 
 

6. Experimental tests 

 

6.1 6-DOF relative displacement estimation with no 
blurred image 
 

This experiment is conducted for verifying the 

performance of only the DLT method when the image is not 

blurred. Fig. 12 shows the configuration of the experimental 

system. The dynamic member is the PC member which is 

carried by the crane, and the static member is the PC 

member which is installed in advance. The camera jig is on 

the dynamic member and it is moved by the motorized 

motion-stage (Thorlabs, 2015) to measure the ground truth. 

The stage helps provide artificial translation and rotation 

movement to the dynamic member using the camera jig.  

The camera is HD pro webcam C920 from Logitech 

with a frame rate of 30 Hz and a resolution of 1920×1080 

pixels.  

 

Fig. 11 Process for choosing the final 6-DOF relative displacement 
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The SBC is NUC5i3RYK from Intel, which has a core 

i3 processor (Intel Co. 2015b). The main system receives 

the 6-DOF relative displacement information from the 

subsystems. The distance between the cameras and markers  

is 70 cm. The Bluetooth device is parani-UD100 from  

SENA and has a maximum transfer rate of 3 Mbps, capable  

of obtaining data from a maximum distance of 300 m from  

 

 

 

 

 

 

a transmission spot (SENA CO. 2015). The dynamic 

member is installed on the motion-stage and moves linearly 

for 25 mm, 15 mm, 5 mm, and 0 mm along the X-axis, and 

rotates 0°, 1°, 2°, and 3° about the Z-axis. The experiment 

is repeated thrice. 

 

 

Table 2 Notation in Algorithm 2 

Symbol Meaning 

bDetected If a marker is detected, bDetected = true, otherwise bDetected = false 

eH [z]
 

The points located at the center of the line which connects  and  

rH [z]
 The point from the foot of the perpendicular drawn from  

 

Euclidean distance between  and  

 

Sum of distances  

 

6-DOF displacement from the DLT method 

 
Fig. 12 Overall setup for experimental tests 

 

Fig. 13 Graph obtained from experimental result for translation movement along the X-axis 

100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time(sec)

X
(m

m
)

 

 

Measurement

Ground truth

406



 

Vision-based hybrid 6-DOF displacement estimation for precast concrete member assembly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Graph obtained from experimental result for rotation movement about the Z-axis 

 

Fig. 15 Experimental average of linear RMSE graph of translation movement at 0 mm along the X-axis 

 

Fig. 16 Experimental average of linear RMSE graph of rotation movement at 3° about the Z-axis 
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As shown in Figs. 13 and 14, the blue dashed line 

indicates the DLT method and the red solid line indicates 

the ground truth. The target error of 3 mm is the maximum 

error of the assembly of the two PC members, which is 

determined through discussions with bridge engineers. Figs. 

15 and 16 are the average of linear Root Mean Square Error 

(RMSE) graph at 0 mm along the X-axis and at 3° about Z-

axis. The more important RMSE is the closest case (0 mm, 

3°) when the two PC members are just before the match.  

Tables 3 and 4 give the RMSE related to the linear 

translation and rotation, respectively. In the translation case, 

the maximum linear RMSE is 1.075 m at 0 mm along the X-

axis. For the rotation case, the maximum linear RMSE is 

0.895 m at 3° about the Z-axis below the target error of 3 

mm. 

 
6.2 6-DOF relative displacement estimation with 

blurred image 
 
To assume that blurring occurred for the situation where 

the assembly of the member is almost complete, the image  

 

 

 

 

 

 

 

 

was blurred at 5 mm in the X-axis direction. The blurring 

provided is a Gaussian blur and when blurring occurs 

andomly from standard deviation of 0 to 5 pixels, the DLT 

and MCL methods are combined. The DLT, MCL, and 

hybrid methods are then compared with the ground truth. 

The constants are set to N = 200, NR = 20, and NL = 9. Fig. 

17 shows the results. The blue dashed line, black dash-

dotted line, green dotted line, and red solid line indicate the 

results from the DLT method, MCL method, hybrid method, 

and the ground truth, respectively. The hybrid method 

employs the 6-DOF relative displacement from the DLT or 

MCL depending on which has the lower average distance, 

as shown in Algorithm 2. When blurring increases, error in 

the DLT method generally increases, but the MCL method 

is somewhat steady. However, in the small blurred image, 

the DLT method more accurately estimates the 6-DOF 

relative displacement than the MCL. Hence, the 

displacement is more accurately measured by using the 

hybrid method compared to the DLT method or MCL 

method alone, as shown in Table 5. 

 

 

Table 3 RMSE with translation movement along X-axis. Linear avg. is average RMSE in X, Y, and Z axes.

Angular avg. is the average RMSE of roll, pitch, and yaw 

Iteration 
Distance 

(mm) 
X(mm) Y(mm) Z(mm) 

Linear avg.

(mm) 
Roll(°) 

Pitch 

(°) 
Yaw(°) 

Angular 

avg.(°) 

1 

25 0.301 0.518 0.400 0.721 0.036 0.028 0.023 0.029 

15 0.345 0.424 0.183 0.576 0.013 0.028 0.047 0.029 

5 0.755 0.354 0.123 0.844 0.016 0.053 0.067 0.045 

0 0.865 0.300 0.106 0.922 0.062 0.065 0.123 0.083 

2 

25 0.180 0.303 0.211 0.410 0.019 0.017 0.008 0.015 

15 0.468 0.500 0.086 0.690 0.048 0.035 0.020 0.034 

5 0.507 0.672 0.113 0.849 0.081 0.035 0.051 0.056 

0 0.704 0.494 0.144 0.872 0.102 0.044 0.095 0.080 

3 

25 0.330 0.301 0.210 0.494 0.022 0.255 0.009 0.019 

15 0.163 0.795 0.320 0.872 0.081 0.010 0.047 0.046 

5 0.599 0.662 0.609 1.086 0.085 0.045 0.075 0.069 

0 0.675 0.521 0.658 1.075 0.113 0.048 0.130 0.097 

Table 4 RMSE with rotation movement about Z-axis. Linear avg. is average RMSE in X, Y, and Z axes. A

ngular avg. is the average RMSE of roll, pitch, and yaw 

Iteration 
Angle 

(°) 
X(mm) Y(mm) Z(mm) 

Linear avg.

(mm) 

Roll 

(°) 
Pitch 

(°) 
Yaw 

(°) 
Angular 

avg.(°) 

1 

0 0.154 0.435 0.132 0.479 0.034 0.012 0.002 0.016 

1 0.287 0.651 0.243 0.752 0.050 0.051 0.013 0.038 

2 0.269 0.528 0.299 0.644 0.045 0.065 0.014 0.041 

3 0.348 0.801 0.194 0.895 0.063 0.071 0.015 0.050 

2 

0 0.059 0.204 0.103 0.236 0.015 0.005 0.002 0.007 

1 0.142 0.164 0.337 0.401 0.014 0.042 0.011 0.022 

2 0.587 0.148 0.720 0.941 0.007 0.095 0.012 0.038 

3 0.471 0.087 0.40 0.628 0.006 0.083 0.005 0.031 

3 

0 0.427 0.283 0.208 0.553 0.025 0.0.38 0.004 0.022 

1 0.057 0.260 0.220 0.345 0.02 0.038 0.018 0.025 

2 0.122 0.085 0.623 0.640 0.006 0.071 0.022 0.033 

3 0.714 0.221 0.163 0.764 0.018 0.047 0.011 0.025 
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6.3 6-DOF relative displacement estimation with a 

partially hidden marker 

 
Initially, the marker was visible, and after approximately 

31 s, the marker is partially occluded, as shown in Fig. 10. 

As shown in Fig. 10(b), when the marker is partially hidden, 

the DLT method cannot calculate 6 -DOF relative 

displacement because it cannot determine the pixel 

coordinates of the corner points of the marker; hence, the 6-

DOF relative displacement is not estimated, which implies  

 

 

 

 

 

 

 

that the DLT method cannot calculate the displacement, as 

shown in Fig. 18. However, the MCL method can estimate 

the 6-DOF relative displacement because the particles have 

the 6-DOF relative displacement information and the 

importance weights can be determined from the visible side 

of the marker. Hence, the hybrid method employs the 6-

DOF relative displacement obtained from the MCL method 

when the marker is partially hidden. Fig. 18 shows the 

result. The blue dashed line, black dash-dotted line, green  

dotted line, and red solid line indicate the results from the  

 

 

Fig. 17 Result of DLT, MCL, hybrid methods, and ground truth according to blurring 

Table 5 RMSE with DLT, MCL, and hybrid method when the image is blurred. Linear avg. is average RM

SE in X, Y, and Z axes, Angular avg. is the average RMSE of roll, pitch, and yaw 

Method X(mm) Y(mm) Z(mm) 
Linear 

avg.(mm) 

Roll 

(°) 
Pitch 

(°) 
Yaw (°) 

Angular 

avg.(°) 

DLT 1.525 0.351 0.061 1.566 0.020 0.137 0.014 0.057 

MCL 0.729 0.197 0.085 0.760 0.022 0.119 0.013 0.051 

Hybrid 0.711 0.180 0.085 0.739 0.021 0.106 0.013 0.047 

Table 6 RMSE with DLT, MCL, and hybrid method when the marker is occluded. Linear avg. is average RMSE of X, 

Y, and Z axes. Angular avg. is the average RMSE of roll, pitch, and yaw 

Method X(mm) Y(mm) Z(mm) 
Linear 

avg.(mm) 

Roll 

(°) 
Pitch 

(°) 
Yaw  

(°) 
Angular 

avg.(°) 

DLT N/A 

MCL 0.447 0.269 0.092 0.531 0.024 0.027 0.010 0.020 

Hybrid 0.296 0.151 0.108 0.350 0.020 0.024 0.009 0.018 
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DLT, MCL, hybrid method, and the ground truth, 

respectively. In Table 6, RMSE of the DLT method is not 

available because the DLT method cannot estimate 6-DOF 

relative displacement when the marker is partially hidden. 

The hybrid method calculates the displacement more 

accurately than the DLT or MCL method alone, as shown in 

Table 6. 

 
6.4 Field test 
 

A field test was conducted at the MUNAM bridge, Muju, 

Jeollabuk-do, Republic of Korea. The length of the bridge is 36 

m. As shown in Fig. 19, the length of the PC member used for 

the bridge is 5 m, and the width is 1.6 m. Fig. 20 shows the 

process of construction of the bridge using the PC members. A 

PC member is moved by the crane on a girder and it is closely 

assembled next to another PC member to make the bridge  

 

 

 

 

 

strong and elaborate. 

As shown in Fig. 21, the camera jigs are installed on both 

sides of the dynamic member which is carried by the crane, 

and the markers are set on the static member which is 

previously assembled. Fig. 22 shows the 3D visualization of 

the PC members, looked at by the crane worker. The dynamic 

member moves with the 6-DOF relative displacement 

information of the PC members, which is calculated from 

multiple cameras and markers. The crane worker can assemble 

the two PC members quickly and accurately using the 3D 

visualization of the PC members. As shown in Fig. 23, the 

measurement error is calculated when the PC member is 

completely assembled. Subsystem1 and Subsystem2 have 

linear average errors of 1.71 mm and 1.85 mm, respectively as 

shown in Table 7. Hence, the proposed 6-DOF relative 

displacement method has error within a few millimeters. 

 

 

 

Fig. 18 Result of DLT, MCL, hybrid method, and ground truth when the marker is occluded 

Table 7 Comparing ground truth and measurement from subsystems 

Systems Items X(mm) Y(mm) Z(mm) Linear avg.(mm) 

Sub-system1 

Ground truth 640.88 30.87 6.12 

1.71 Measurement 639.21 31.20 6.29 

Error 1.67 −0.33 −0.17 

Sub-system2 

Ground truth 623.42 28.27 4.58 

1.85 Measurement 622.01 27.12 4.23 

Error 1.41 14.15 0.35 
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Fig. 19 Dimensions of the PC member 

 

Fig. 20 Assembly process of PC members 

 

Fig. 21 Setting camera jigs and markers 
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7. Conclusions 

 

To measure the 6-DOF relative displacement of large 

structures, multiple modules of a camera and a planar marker 

were suggested, and the hybrid algorithm was developed, 

which combined the DLT and MCL methods. When the image 

is not blurred, the experiment was conducted by using a 

motorized motion-stage to move the camera jig with 

translation movements of 25 mm, 15 mm, 5 mm, and 0 mm 

along the X-axis and rotation movements of 0°, 1°, 2°, and 3° 

about the Z-axis. The largest RMSE of the translation motion 

was 1.075 mm and that for the rotation about the Z-axis is 

0.895 mm. The second experiment showed that when the 

image is blurred, the RMSE for the hybrid method was 0.739 

mm, and the hybrid method was more accurate than the DLT 

method or MCL method. When the marker was partially 

hidden in the third experiment, the MCL algorithm could still  

 

 

 

 

estimate the 6-DOF relative displacement, while the DLT 

algorithm could not. The hybrid method calculated the 6-DOF 

relative displacement more accurately even when the marker 

was partially hidden. Finally, the field test showed that the 

proposed system had a linear error less than a few millimeters, 

proving our system can accurately estimate 6-DOF relative 

displacement. In the future work, more field tests and 

experiments will be conducted to analyze the performance of 

the proposed system in various weather conditions such as the 

change of the lighting condition. We will also analyze the 

performance of the proposed system by conducting various 

motions of PC members in various assembly conditions. Also, 

we will redesign camera jigs for the case when the lifting 

frame is used for assembly. In that case, camera jigs will be 

installed on the lifting frame because this strategy will 

eliminate the need for repeated installation of camera jigs every 

time the PC members are assembled.  

 

 

Fig. 22 3D visualization of PC members 

 

Fig. 23 Coordinate of the fiducial marker 
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