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1. Introduction 

 
Recently, distributed signal processing has received a 

An important problem in systems such as automobile 
passenger compartments, aerospace interiors, helicopters, 
marine vehicles, launch vehicles and other enclosed spaces 
and cavities is the control of low frequency interior noise. 
In many of these systems the elastic structure surrounding 
the cavity vibrates under the action of mechanical and/or 
acoustic disturbances. These vibrations couple with the 
enclosed medium leading to generation of interior noise. 

Active noise control technology has been gaining 
development in recent years and can be divided into three 
categories. The first one involves active noise cancellation 
(ANC), which uses interior acoustic sources such as 
loudspeakers to cancel the noise based on the error signal 
from acoustic sensors like microphones. The second method 
employs, active vibration control (AVC), vibration sources 
such as shakers or surface mounted piezoelectric actuators 
and acoustic sensor for error signal in the radiated acoustic 
field. The third method, which is known as active 
structural-acoustic control (ASAC), employs both structural  
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actuators and structural error sensors. The objective of 
ASAC strategy is to modify or reconstruct the vibration of 
the flexible panels and reduce sound radiation or 
transmission into the cavity (Fuller and Flotow 1995, Li and 
Cheng 2010, Fahy and Gardonio 1987, Morand and Ohayon 
2014). 

Feedforward and feedback control are the two main 
control strategies that have been used for interior noise 
control. The feedforward technique has been used mainly to 
control interior noise due to harmonic and periodic 
disturbances (Fuller and Flotow 1995). Such disturbances 
arise from the operation of an IC engine in case of 
automotive vehicles and from a jet engine in case of 
aerospace vehicles. However, feedforward control requires 
measurement of a reference signal corresponding to the 
disturbance, which may not be always possible. The 
feedforward control also requires error sensors to be 
mounted at the points where the control is desired. It is also 
difficult to achieve global control using this technique. The 
random and broadband disturbances may also act on 
cavities like disturbances due to rough road, disturbances 
due to aerodynamic effects/turbulent boundary layer, 
acoustic load disturbance on a satellite during launching and 
broadband disturbances in a helicopter. These disturbances 
cannot be dealt effectively using feedforward techniques.  

Feedback control is expected to be an effective strategy 
in cases where disturbances are random or broadband as 
well as in cases where it is difficult to measure reference 
signals corresponding to the disturbances. In view of this, in 
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Abstract.  This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-
acoustic cavity. These are a) control strategy based on direct output feedback (DOFB)  b) control strategy based on linear 
quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on 
structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is 
achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy 
is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the 
coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-
LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other 
five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used 
for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of 
structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-
DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control 
effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more 
intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise. 
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this paper the control of interior noise in vibro-acoustic 

cavities is carried out using feedback control strategies. 

Feedback control strategies are used as: active damping and 

model based feedback. The objective of active damping is 

to reduce the effect of the resonant peaks on the response of 

the structure and, as a result, the steady state response to 

wide disturbances. Active damping can generally be 

achieved with direct output feedback (DOFB) (Fahy and 

Gardonio 1987). Optimal feedback control strategies 

involve applying a control input that minimizes a certain 

cost function taken as a combination of quantity to be 

controlled and the control effort. Such an optimal control 

strategy is referred as linear quadratic regulator (LQR) 

control. For noise control, the cost function provides a 

method of weighting heavily the modes of the structure that 

are known to be efficient acoustic radiators and similarly 

allows diminished weighting of the inefficiently radiating 

modes. For the structural-acoustic cavity systems, coupling 

between the structural modes and the cavity acoustic modes 

play a crucial role in the sound produced. Not all the 

structural modes couple strongly with an acoustic mode. 

Different structural and acoustic modes have different 

degrees of coupling. If a coupled finite element model of 

the structural-acoustic system is available then the coupling 

matrix can be computed in the modal domain to study the 

degree of coupling between various structural and acoustic 

modes. Structural vibration control instead of ASAC has 

been attempted by Song et al. (2003) to reduce the interior 

noise in a 3-D vehicle cabin model. Through contribution 

analysis, plate modes to be controlled are selected. The 

structural and acoustic modes can be classified into 

different clusters (Tanaka and Kobayashi 2006). The 

minimization of potential energy can be achieved through 

minimization of contribution from each cluster. Ray et al. 

(2009) calculated the structural-acoustic coupling 

coefficients to predict the structural mode that is more 

contributing towards the acoustic behavior inside the vibro-

acoustic cavity. 

In this paper, comparison of three feedback control 

strategies has been carried out. The three feedback control 

strategies are AVC-DOFB, AVC-LQR and ASAC-LQR. The 

first of these two strategies are indirect noise control 

strategies in which noise reduction is attempted through 

active vibration control (AVC). The objective is to reduce 

the vibrations with the hope of reducing the noise radiated 

into the cavity. The third strategy is active structural-

acoustic control strategy. In which an LQR controller is 

designed by exploiting the knowledge of the structural-

acoustic coupling of various structural and acoustic modes. 

Numerical study is carried out on a 3-D rectangular box 

cavity with a flexible plate (glued with a single pair of 

collocated piezoelectric patches) that is coupled to the 

acoustic domain. 

 

 

2. Numerical model of the piezo-structural-acoustic 
system 

 

A numerical model of a rectangular box cavity with a 

flexible plate with piezoelectric patches that is coupled to 

the acoustic domain of the cavity is developed using finite 

element (FE) method. Electromechanical interaction 

between the piezoelectric patches and the plate of the cavity 

is modeled through a coupled piezoelectric-structural 

model. 

The finite element formulation of piezoelectric patches 

glued to the plate is dealt by laminated plate theory (Lim et 

al. 1999, Piefort 2001, Preumount 2002, and Abreu et al. 

2004). The finite element formulation of the coupled 

structural and acoustic system has been studied extensively 

and is available in literature (Filippi 1983, Fahy and 

Gardonio 1987, Ohayon and Soize 2014). The coupled 

piezo-structural equations and coupled structural-acoustic 

equations can be combined to obtain coupled piezo-

structural-acoustic model (Larbi et al. 2010, 2011). The 

structural and the acoustic domains of the cavity may have a 

strong or a weak coupling. However, for the cavities 

encountered in aerospace and automotive applications the 

coupling is rather weak and hence a one way structural-

acoustic coupling is assumed in this paper. A typical flexible 

plate with two collocated piezoelectric patches, used as a 

sensor and actuator pair, glued to it is shown in Fig. 1. 

The combined finite element equation that couples the 

piezoelectric, structural and acoustic domains can be written 

as 
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Fig. 1 Flexible plate with two collocated piezoelectric 

patches (piezo-structural system) 

274



 

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity 

In the above equation w  represents a vector of the 

structural degrees of freedom (which includes one 

transverse displacement and two rotations at each node of 

the structural FE mesh), a and 
s  represent vectors of 

voltages on the piezoelectric patches used as the actuators 

and the sensors respectively and p represents a vector of the 

nodal acoustic pressures. Similarly, g represents a vector of 

the random disturbances acting on the cavity. aq  and sq  

are vectors of the electric charges at the actuator and the 

sensor electrodes respectively. TM and TK are the 

combined structural and piezoelectric mass/inertia and 

stiffness matrices respectively, AM  and AK  are the 

acoustic mass/inertia and stiffness matrices respectively, S 

is the structure-acoustic coupling matrix, SC  and AC  are 

the structural and acoustic viscous damping matrices 

respectively, 
a

wK   and 
s

wK   are the electro-mechanical 

coupling matrices between the structure and the actuators 

and between the structure and the sensors respectively and 
a

K  and 
s

K  are the electric capacitance matrices of 

the actuators and the sensors respectively.    

The various sub-matrices appearing in Eq. (1) are explained 

below. The flexible plate with piezoelectric patches consists of 

two distinct portions. One is laminated which consist of layers of 

piezoelectric material and the plate. The other is non-laminated 

portion which consist of only the flexible plate. The structural 

matrices for the laminated portion are developed using laminated 

plate theory taking into account piezoelectric constitutive 

relations. The structural matrices for the non-laminated portion 

are developed using Kirchhoff’s thin plate bending theory (Petyt 

2003 and Abreu et al. 2004). The structural matrices for the 

combined piezo-structural system are obtained by assembling 

the structural matrices for the laminated and the non-laminated 

portions of the system. Therefore, the mass matrix of the 

combined piezo-structural domain (
TM ),laminated portion  

(
LM ),the piezoelectric actuator ( actM ),the flexible plate  

(
strM ),the piezoelectric sensor (

senM ) and of the non-

laminated portion ( N-LM ) is written as,  

T L N-L M M M  (2) 

 

L act str sen  M M M M  (3) 

 
T

act act act actM N N dV  (4) 

 
T

str str str strM N N dV  (5) 

 
T

sen sen sen senM N N dV  (6) 

 
T

N-L N L N L N L  M N N dV  (7) 

Where act , str and sen are the densities of the 

actuator, structure and piezoelectric sensor respectively. 

N L  represents the density of the non-laminated portion 

of the piezo-structural system. actN , strN , 
senN and 

N LN  are the shape function matrices for the piezoelectric 

actuator, structure, sensor and non-laminated portion of the 

piezo-structural system respectively. 

Similarly, the stiffness matrix of the combined piezo-

structural domain ( TK ), laminated portion ( LK ), the 

piezoelectric actuator ( actK ), the flexible plate ( strK ), the 

piezoelectric sensor ( senK ) and of the non-laminated portion  

( N-LK ) is written as 

T L N-L K K K  (8) 

 

L act str sen  K K K K  (9) 

 
2 T E

act act act actzK B C B dV  (10) 

 
2 T E

str str str strzK B C B dV  (11) 

 
2 T E

sen sen sen senzK B C B dV  (12) 

 
2 T E

N-L N L N L N Lz   K B C B dV  (13) 

Where B and C
E
 are the strain-displacement and the 

material property matrices respectively. 

The electro-mechanical coupling matrix between the 

plate and the piezoelectric actuator and sensor is written as 

act

a T T
str actz  K B e Bw dV  (14) 

 

sen

s T T
str senz  K B e Bw dV  (15) 

The electric capacitance matrix for the piezoelectric 

actuator and sensor is written as 

act act

a T S
actz   K B ζ B dV  (16) 

 

sen sen

s T S
senz   K B ζ B dV  (17) 

Where  acte  , sene  , 
S
actζ  , 

S
senζ   are the 

piezoelectric strain coefficient and dielectric matrices at 

constant strain for actuator and sensor respectively.  The 

 sign in the above equations represents assembly over 

the finite elements of the laminated and non-laminated 

portions of the piezo-structural system. 

The acoustic mass, stiffness and structural-acoustic 

coupling matrices (Filippi 1983) are written as follows 
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T
A A A2

1
M N N dV

c
 (18) 

 

T
A A A  K N N dV  (19) 

 

T
S AS N N dA  (20) 

Here AM , AK  and S  are the mass, stiffness and 

structural-acoustic coupling matrices respectively. The 

summation signs in Eqs. (18) and (19) represent the 

assembly over the acoustic finite elements of the model, 

while the summation sign in Eq. (20) represents the 

assembly over those acoustic finite elements that have a 

face common with piezo-structural part. Here AN  is the 

shape function matrix for the acoustic finite element. SN is 

the combined piezo-structural shape function matrix. 

The structural and acoustic viscous damping matrices 

are computed from the corresponding modal data as follows 

  1

S

 C
T

S Si Si S     (21) 

 

  1

A

 C
T

A Ai Ai A     (22) 

Where  SC  and AC   are the structural and acoustic 

viscous damping matrices respectively.  S  and A  

are the mass normalized mode shape matrices of the 

structural and acoustic domains respectively. S  and A

are the damping coefficients of the structural and acoustic 

domains respectively while S and A are the eigenvalues 

of the structural and acoustic domains respectively. 

 
 
3. State space model of the structural domain of the 
cavity 
 

The combination of the structural model with the 

piezoelectric model is referred here as the plant model.  

Following equations can be extracted from Eq. (1). 

a s

T S T w a w s    M w C w K w K K g    (23) 

 
a T a

w a a  K w K  q  (24) 

 
s T s

w s s  K w K  q  (25) 

 

3.1 State space model of the plant in physical domain 
 
After imposing the short circuit electric boundary conditions 

(
s 0  but 

s 0q ) on the piezoelectric patches, Eq. (23) can be 

written as 

   M w C w K w K g
a

T S T w a  (26) 

The charge generated on the sensor electrodes is calculated 

as 

 K w
s T

s wq   (27) 

If a charge amplifier is used, the output voltage is 

proportional to the electric charge in the sensor electrode. 

  s
s

q

C
  (28) 

The sensor output voltage from the charge amplifier can be 

written as 

 K w
s T

s ca wS   (29) 

Where C is the capacitance and Sca is the gain of the charge 

amplifier in mV/pC. 

Eq. (26) can also be written as 

   M w C w K w g K
a

T S T w a  (30) 

 

  M w g K -C w K w
a

T w a S T  (31) 

The structural acceleration is obtained as 

1 1 1 1     w M g M K - M C w M K w
a

T T w a T S T T  (32) 

Choosing structural physical displacement w  and 

structural physical velocity w  as state variables  1w  and 

2w respectively 

1( ) ( )w wt t  and 2( ) ( )w wt t  (33) 

 

1 2( ) ( ) ( ) w w wt t t  (34) 

 

2( ) ( )w wt t  (35) 

Using Eqs. (32) and (35) 

1 1 1 1

2( )        w w M g M K M C w M K w
a

T T w a T S T Tt   (36) 

The state space model of the plant in physical domain is 

given by 

1 1
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(37) 

The output equation with displacement, velocity, 

acceleration, sensor output voltage and charge accumulated on 

piezoelectric electrodes as outputs can be written as 
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3.2 State space model of the plant in modal domain 
 

The state space model of the plant in modal domain is 

developed in this section. Transformation to modal coordinates 

is done using the mass normalized in-vacuo eigenvectors S  

of the structure-piezo system 

S Sw   ; w S S  ; w S S   (39) 

Substituting Eq. (39) into (30), pre-multiplying by 
T

S and 

making use of the orthogonality properties M I
T

S T S  , 

2K
T

S T S S    and    C
T

S S S S S S    , we 

get the equation of motion of the plant in modal domain as 

 2 T a

S S S S S S w a   I g K        (40) 

Choosing the structural modal displacements S and the 

modal velocities S  as state variables and representing them 

by 1β  and 2β respectively, we get following state equation in 

the modal coordinates 

11

T T a2
S S wS S a22
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Where 
2

S  is the matrix of eigenvalues of the structure-

piezo system and S is a diagonal matrix such that 

S S S ii i i  , with S i  representing the viscous modal 

damping factors of the structure. 

The output equation with modal displacement, modal 

velocity, modal acceleration, displacement, velocity, 

acceleration, and sensor output voltage as outputs is given by 

2
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(42) 

 

 

4. State space model of the acoustic domain of the 
cavity 
 

In this section, the state space model of the acoustic domain 

of the vibro-acoustic cavity is developed. From Eq. (1) we get 

the equation of the acoustic domain as, 

T

A A A  M p C p K p S w  (43) 

Introducing modal transformation, A Ap ψ η , with Aψ

representing the mass normalized rigid-wall acoustic modes and 

making use of the orthogonal properties  (
T

A A ψ M ψ IA
, 

T 2

A A Aψ K ψ λA
,  and 

T

A A Aψ C ψ ΛA
)  after pre-

multiplying by the transpose of Aψ ,  Eq. (43) can be written 

in the modal coordinates as 

2 T T

A A A A A A  Iη Λ η λ η ψ S w  (44) 

where 
2

A  is the matrix of the eigenvalues of the rigid-wall 

acoustic modes and A  is a diagonal matrix such that 

A A A ii i i  , with 
A i   representing the viscous modal 

damping factors of the acoustic domain. 

Choosing the acoustic modal pressure Aη  and its first 

derivative Aη  as state variables represented by A1η  and 

A2η  respectively, we get state equation in the modal 

coordinates as 

A1 A1

2 T T

A2 A A A2 A

       
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η 0 I η 0
w

η λ Λ η ψ S
 (45) 

Output equation for computing nodal acoustic pressure 

inside the cavity is written as 

  A1

A

A2

 
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 

η
p ψ 0

η
 (46) 

 

 
5. Feedback control strategies for active control of 
noise  
 

In this section, three feedback control strategies, namely, 

active vibration control using direct output feedback (AVC-

DOFB), active vibration control using an LQR controller (AVC-

LQR) and active structural-acoustic control using an LQR 

controller (ASAC-LQR) are presented. 
 
 

5.1 Active vibration control using direct output 
feedback (AVC-DOFB) 
 

 In this strategy the objective is to reduce the vibrations of 

the cavity structre with the hope of reducing the noise radiated 

into the cavity. Therefore, this is an indirect noise control 

strategy. In control using direct output feedback (DOFB), the 

output of the sensor, after suitable conditioning, is directly fed to 

a controller having certain constant gain. The output of the 

controller is then fed to the actuator. 
 

5.1.1 Open and closed loop system model 
The state space model of the plate-piezo system, through 

Eqs. (37) and (38) is given by 

 

1 1

1 11 1
T T wT T S2 2

( ) ( )

( ) ( )
  

       
                 

0 00 I gw w

M M KM K M Cw w
a

T a

t t

t t  

 
(47) 
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1 1 1 1 1
T T S T T w

2

( )

( )

   

    
    
        
           
       
    
         

1 0w 0 0

0 1w 0 0
gw

M K M Cw M M K
w

K 0 0 0

K 0 0 0

a
T

s T a

ca ws

s T

ws

t

t
S

q










 

(48) 

The direct output feedback control law is taken as 

a d s v sG G      (49) 

Where dG  and vG  are the feedback gains 

corresponding to the sensor output voltage and its derivative 

respectively. 

The short circuit sensor output voltage from Eq. (29) is 

 K w
s T

s ca wS   (50) 

Taking time derivative of above equation 

 K w
s T

s ca wS   (51) 

Second term on the R.H.S of the Eq. (47) can be 

expanded to obtain 

1 1

11 1 1
T wT T S2 2 T

( ) ( )

( ) ( )
  

       
                    

00 Iw w 0
g

M KM K M Cw w M
a a

T

t t

t t 


 
(52) 

By putting Eq. (49) into Eq. (52), the following equation 

is obtained 

 1 1

11 1 1
T wT T S2 2 T

( ) ( )

( ) ( )
  

       
                      

00 Iw w 0
g

M KM K M Cw w M
a d s v s

T

t t
G G

t t 

 
 
(53) 

The above equation can be further written as 

1 1

1 11 1 1
T w T wT T S2 2 T

( ) ( )

( ) ( )
   

       
                    

00 Iw w 0
g

M K M KM K M Cw w M
a a

d s v sT

t t

G Gt t   

 
(54) 

By substituting Eqs. (50) and (51) into above equation, 

we get 

   
1 1

1 1

T w T S w2 2

1

T

( ) ( )

( ) ( ) 



    
     

        

 
  
 

0 Iw w

M K K K M C K Kw w

0
g

M

a s T a s T

T d ca w v ca w

t t

G S G St t   

 

(55) 

Eq. (55) can be written in compact form as 

1 1

1 1 1

T T new2 2 T

( ) ( )

( ) ( )  

      
       

       

0 Iw w 0
g

M K M Cw w Mnew

t t

t t
 (56) 

Where w K K K K
a s T

new T d ca wG S  and 

new S w C C K K
a s T

v ca wG S  are the stiffness and 

damping matrices of the plate-piezo system with control. 

After substituting Eq. (49) into Eq. (48), the output equation 

for the closed loop system is obtained as 

1

11 1
2 TT T

( )

( )  

       
       

       

w 0K K
g

w Mw M K M C

s T s T

a d ca w v ca w

new new

tG S G S

t

 


 (57) 

 

 

 

 

Fig. 2 AVC system using an LQR control strategy 

 

 

5.2 Active vibration control using an LQR controller 
(AVC-LQR) 

 
In this section an optimal control strategy in the form of 

a linear quadratic regulator (LQR) is used for active 

vibration control as shown through a block diagram in Fig. 

2. The modal outputs (the modal displacements and the 

modal velocities) of the structure are fed to the LQR 

controller. It is assumed that all the modal states are 

available for feedback. 

The state space equation in modal coordinates for the 

flexible plate with piezos (Eq. (41)) is given by 

11

T T a2
S S wS S a22

       
                 

0 00 I gββ

Kββ     
 (58) 

Second term on the R.H.S of the above equation can be 

expanded to obtain, 

11

2

22

       
                    

00 I 0ββ
g

Kββ
T a aT
S wS S S 


  

 (59) 

Eq. (59) can be written in compact form as 

  β Aβ B g Bd c a  (60) 

Where A, Bd , Bc are the state space matrices of the 

plant.  
T

1 2β β β is the state vector of the modal 

displacements and velocities.   

The LQR controller is an optimal controller that is based on 

minimization of an objective function. The objective function or 

the performance index denoted by J is written as 

 T T

0



  β Qβ Ra aJ dt   (61) 

Where Q  and R are the weighting matrices in the LQR 

objective function. The matrix Q  is a diagonal matrix and 

represents weight on the state vector. The r
th 

diagonal element 

represents weight on the r
th
 state variable. Similarly, the matrix 

R represents weighting for the control effort. The objective 

function for the LQR controller consists of two terms. In the 

method used here, the first term is dependent on the modal 

displacements and the modal velocities and therefore it 
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quantifies structural vibrations. The second term is dependent on 

the voltage control signal and therefore quantifies the control 

effort. 

The algebraic Riccati equation needs to be solved to obtain 

the full state feedback gain matrix K . The algebraic Riccati 

equation is given by 

T 1 T
c c 0   A P PA PB R B P Q  (62) 

Solution of the above equation gives matrix P which then 

gives 
1K R B P

T

c
. The control law for the LQR controller 

is given by 

 Kβa  (63) 

Substituting control signal a from Eq. (63) into Eq. (60), 

the state equation for the closed loop system is obtained as 

  β Aβ B Kβ B gc d
 (64) 

Above equation can be written as 

 β A β B gCL d
 Where  A A B KCL c  (65) 

Where ACL  is the closed loop state matrix for the 

LQR controller. 

The output equation for the closed loop system is given by 

 2

    
              

K 0
β g

K Kw

a

T a T

S S S S S S w S S



       

 
(66) 

 

5.3 Active structural-acoustic control using an LQR 
controller (ASAC-LQR) 

 
In this section, an LQR controller is designed by exploiting 

the knowledge of the structural-acoustic coupling of various 

structural and acoustic modes. This strategy is named as an 

active structural-acoustic control strategy because in this strategy, 

as explained below, the information about the coupling between 

the structural and the acoustic modes is utilized in the design of 

the LQR controller. This is distinct from the active vibration 

control strategies described in previous sections where no 

information about the acoustic domain is used in designing the 

controllers. 

In this method, the weighting matrix Q in the LQR objective 

function is chosen based on the coupling coefficients between 

the structural and the acoustic modes of the cavity. The strategy 

aims to provide a higher relative weighting to those modes of the 

structure that have a higher level of coupling with the acoustic 

modes. The weighting matrix is computed as follows. 

The structural-acoustic coupling matrix in the modal domain 

is given by 

T T

A SC ψ SAS   (67) 

Where 
Aψ  and S  are the matrices of the eigenvectors 

of the rigid-wall acoustic modes and in-vacuo structural modes 

and S  is the structural-acoustic coupling matrix in the physical 

domain. 

Let ijC  is the coupling between the i
th
 acoustic and the j

th
 

structural mode. Weight Qrr for the r
th
 structural mode is 

chosen by summing the values of its coupling coefficients with 

respect to all the acoustic modes in the frequency range of 

interest and then normalizing the sum. This is done using 

following equations. 

1





Q
Q

Q

rr
rr ns

ii

i

 
(68) 

 

1

Q C
na

rr i r

i

 (69) 

The weights can be computed for 1,2,.....,r ns , where 

ns represents the number of structural modes in the frequency 

range of interest. The weights for various structural modes can 

be applied to both the modal displacements and the modal 

velocities or to only the modal velocities with zero weights to the 

modal displacements. Once the weighting matrix Q is defined as 

per the above strategy, the gain matrix K for the LQR controller 

can be obtained as explained in the previous section. 

 

 

6. Numerical study 
 
This section presents a numerical study of a 3-D rectangular 

box cavity with a flexible plate.  
 
6.1 Details of the case study 
 
A 3-D rectangular box cavity of size 0.261 m× 

0.300 m×0.686 m backed by a flexible steel plate of size 

0.261m×0.300m and thickness 0.001 m is considered. Fig. 3 

shows the FE mesh of the piezo-structural-acoustic domain of 

the 3-D rectangular box vibro-acoustic cavity. The other five 

surfaces of the cavity are made of thick acrylic sheets and 

therefore are assumed to be rigid. The density, Young’s 

modulus and Poisson’s ratio for the plate material are taken as 

7800 Kg m
-3
, 2×10

11
 N m

-2
 and 0.3 respectively. The flexible 

plate is discretized using a mesh of 10×12 four-nodded 

Kirchhoff’s thin plate bending finite elements that have three 

degrees of freedom at each of their nodes. This includes one out 

of plane displacement and two rotations. A modal damping 

factor of 0.005 is taken for all the modes of the plate with piezos.  
A single pair of the collocated piezoelectric patches is 

considered in the study. The details of the piezoelectric patches 

are as follows. All the patches are P-876 A12 DuraAct 

piezoelectric patches. The dimensions are 0.0522×0.050 m
2
 

along x and y axes and the patches are 5×10
-4
 m thick. The 

Young’s modulus, density, and Poisson’s ratio are 23.3 GPa, 

7800 Kg m
-3
 and 0.34 respectively. The piezoelectric strain 

coefficients e31 and e32 are equal to -8.9678 C m
-2
. The dielectric 

constant ε33 is 6.6075×10
-9
 F m

-1
. The piezoelectric patches on 

the flexible plate are modeled with classical lamination theory 

using piezo-electric constitutive relations and discretized into 

2×2 four nodded rectangular bending elements with each 
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element having 12 mechanical DOFs and 2 electric DOFs 

(voltages). The details of coordinates of the corners of the 

rectangular piezoelectric patches in meters are as follows. Single 

piezoelectric patch: x1,y1=0.1566, 0.15, x2,y2=0.2088, 0.15, 

x3,y3=0.1566, 0.20, x4, y4=0.2088, 0.20. 

The acoustic cavity is discretized using 10×12×14 eight-

nodded solid hexahedral acoustic elements with acoustic 

pressure as a nodal degree of freedom. The total number of 

nodes is 2145. The density of the medium and the speed of 

sound are taken as 1.21 kg m
-3
 and 340 m s

-1
 respectively. A 

modal damping factor of 0.05 is taken for all the acoustic modes 

of the cavity. 

An impulse force of 10N magnitude is applied at the node 

103 (x = 0.0783 m and y = 0.225 m) on the flexible plate in this 

numerical study. Acoustic nodal pressure is predicted at node 

1941 (having x-y-z coordinates 0.1044 m, 0.1750 m and 0.6370 

m respectively) located at rear end of the cavity. 

 

6.2 Design of controllers 
 
6.2.1 Design of direct output feedback gain 
This section presents a methodology to find the optimal 

value of the controller gain (Gv). The feedback gain Gd 

affects the stiffness of the system. For the study presented 

in this work it is assumed to be zero. Since the system under 

control is a flexible structure it has large number of poles. 

The method used here to chose the value of gain Gv is to see 

the effect of gain on the closed loop poles and choose a 

suitable value for it. Fig. 4 shows an overlay of pole map of 

the open and closed loop systems with Gv = 0.08. It is seen 

that the closed loop poles (shown with red color crosses) 

move to the left indicating increase in level of damping. 

Table 1 shows the characteristics of the closed loop 

poles as gain Gv is varied over a certain range. The table 

shows the natural frequency, damping factor, settling time 

and peak overshoot of first eight poles. From this table it is 

seen that Gv = 0.08 gives a favorable damping, settling time 

and peak overshoot for most of the poles and hence this 

gain is chosen for the controller. 

 

 

 
Fig. 3 FE mesh of piezo-structural-acoustic domain of the 

3-D vibro-acoustic cavity 

 

 

 
Fig. 4 Pole-zero plots at Gd = 0 and Gv = 0.08 (blue: open 

loop poles; red: closed loop poles) 

 

 

6.2.2 Calculation of Q matrix for AVC-LQR and for 
ASAC-LQR 

In AVC-LQR strategy, the weighting matrix Q is chosen to 

give equal weighting to the structural modes lying in the 

frequency range 0-545 Hz. A constant weight of 10000 is given 

to the modal displacements and the modal velocities of the first 

eighth structural modes. The weights for the remaining modes 

are taken zero. Eq. (70) shows the weighting matrix taken with 

the objective of controlling structural vibrations. This gives 

d

v

 
 
 
 
 
 

q 0 0 0

0 0 0 0
Q

0 0 q 0

0 0 0 0

, 0.0001R     

 d 8 8
diag 10000 10000 10000 10000 10000 10000 10000 10000


q  

(70) 

v dq q  

Modal structural-acoustic coupling coefficients ijC  are 

first computed to frame the weighting matrix Q for the 

control strategy ASAC-LQR. Table 2 shows the modal 

coupling coefficients   showing coupling between the i
th

 

acoustic and the j
th

 structural mode. It is seen that the 

coefficients 
11C  , 

15C  , 
16C   , 

21C  , 
25C  , and 

26C   are relatively large, which means that the structural 

modes S1, S5 and S6 are strongly coupled with the first and 

second acoustic modes (A1 and A2) and therefore can 

radiate higher levels of noise. Eq. (71) shows the weighting 

matrix Q computed using the method described in section 

5.3 and Table 2. 
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d

v

 
 
 
 
 
 
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0 0 0 0
Q

0 0 q 0
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(71) 

 d 8 8
diag 38300 1900 2800 500 17300 17000 92 1900


q  

v dq q  

 

6.3 Closed loop performance by three feedback 
control strategies 

 
In this section the closed loop performance using the three 

feedback control strategies is compared. Fig. 5 shows the output 

of the piezoelectric sensor with and without control. Fig. 6 

shows the acoustic pressure at node 1941 (Fig. 3) inside the  

 

 

 

cavity with and without control. It is observed from these figures 

that the sensor ouput voltage as well as the acoustic pressure 

inside the cavity have reduced after control. This demonstrates 

that the active vibration control strategy using direct output 

feedback (AVC-DOFB) to indirectly achieve reduction in 

interior noise could be a useful strategy. 

Fig. 7 shows a comparison of modal velocities of the first 

and seventh structural modes with and without control using 

AVC-LQR and ASAC-LQR control strategies. It is observed 

that using ASAC-LQR control strategy, the first structural mode, 

(which has high coupling coefficients) damps more quickly as 

compared to control using AVC-LQR strategy. Similarly, the 

seventh structural mode (which has low coupling coefficients) is 

allowed to damp slowly by ASAC-LQR control strategy. 

However, the AVC-LQR strategy tends to give equal 

importance to this structural mode. 
 

Table 1 Characteristics of various closed loop poles as a function of Gv 

 

Pole 

No. 

Natural 

Frequency 

(Hz) 

 
Damping factor, 

settling time 

and peak 
overshoot 

 
Feedback gain Gv 

 

0 0.001 0.01 0.08 0.1 1.0 1e+3 1e+5 

1 111.19 

ξ 0.005 0.0052 0.006 0.011 0.011 0.005 0.0049 0.0049 

Ts (sec) 1.14 1.10 0.85 0.49 0.50 0.95 1.14 1.14 

PO (%) 98.4 98.4 97.9 96.4 96.5 98.2 98.5 98.5 

2 213.24 

ξ 0.005 0.0052 0.007 0.007 0.006 0.005 0.0049 0.0049 

Ts (sec) 0.59 0.57 0.44 0.40 0.42 0.57 0.59 0.59 

PO (%) 98.4 98.4 97.9 97.7 97.8 98.4 98.4 98.4 

3 251.26 

ξ 0.005 0.006 0.014 0.016 0.015 0.006 0.0048 0.0048 

Ts (sec) 0.50 0.42 0.18 0.14 0.16 0.41 0.50 0.50 

PO (%) 98.4 98.1 95.7 94.8 95.4 98.1 98.5 98.5 

4 334.65 

ξ 0.005 0.0054 0.009 0.008 0.007 0.005 0.0049 0.0049 

Ts (sec) 0.38 0.35 0.21 0.23 0.24 0.36 0.38 0.38 

PO (%) 98.4 98.3 97.3 97.5 97.6 98.4 98.5 98.5 

5 369.45 

ξ 0.005 0.0053 0.008 0.008 0.007 0.005 0.0049 0.0049 

Ts (sec) 0.34 0.32 0.21 0.21 0.23 0.32 0.34 0.34 

PO (%) 98.4 98.3 97.5 97.6 97.7 98.4 98.5 98.5 

6 461.69 

ξ 0.005 0.0054 0.008 0.006 0.006 0.005 0.0049 0.0049 

Ts (sec) 0.275 0.251 0.16 0.23 0.23 0.272 0.275 0.275 

PO (%) 98.4 98.3 97.4 98.2 98.2 98.4 98.5 98.5 

7 477.34 

ξ 0.005 0.0057 0.011 0.009 0.008 0.005 0.0048 0.0048 

Ts (sec) 0.26 0.23 0.11 0.14 0.16 0.25 0.272 0.272 

PO (%) 98.4 98.2 96.4 97.2 97.5 98.4 98.5 98.5 

8 545.07 

ξ 0.005 0.0052 0.007 0.006 0.005 0.005 0.0049 0.0049 

Ts (sec) 0.23 0.22 0.16 0.20 0.20 0.23 0.23 0.23 

PO (%) 98.4 98.4 97.8 98.2 98.3 98.5 98.5 98.5 

Table 2 Modal structural-acoustic coupling coefficients ( ijC ) 

 

Structural Modes 

 

Frequency of piezo-structural modes (Hz) 

 

Modal structural- acoustic coupling coefficients 

Acoustic modes 

     A1(250.5 Hz)         A2(504.2 Hz) 

S1 111.19 142.33 -144.13 

S2 213.23 7.09 -7.18 

S3 251.25 10.43 -10.56 

S4 334.64 2.14 -2.17 

S5 369.45 -64.31 65.12 

S6 461.69 -63.15 63.95 

S7 477.34 -0.34 0.34 

S8 545.07 -7.12 7.21 
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Fig. 5 Open and closed loop sensor output voltage (Gd =0 

and Gv = 0.08) 

 

 
Fig. 6 Open and closed loop acoustic pressure at node 

number 1941 inside the cavity 

 

 
(a) First structural mode 

 
(b) Seventh structural mode 

Fig. 7 Structural modal velocity 

A comparison of freqeuncy response functions with and 

without control is further made using the three methods to study 

their performnace over the whole freqeuncy range of interest. 

The FRFs are computed with respect to a common sinusoidal 

force disturbance of unit amplitude acting on the plate. Figs. 8 

and 9 show respectively FRFs of the nodal acceleration of the 

structure at node number 103 and nodal acoustic pressure at 

node number 1941 inside the vibro-acoustic cavity. In Fig. 8, the 

structural resonances of the system are identified with symbols 

S1 to S7. The effect of the AVC-DOFB control strategy is seen 

to be distributed through the freqeuncy range. The AVC-LQR 

strategy tends to give equal importance to all the structural 

modes (Eq. (70)). The choice of weighting matrix Q has 

governed this kind of behavior of the controller. İt is observed 

that ASAC-LQR control strategy, damps modes S1, S5 and S6 

more as compared to control using AVC-DOFB and AVC-LQR 

strategy. This is because the LQR controller based on the 

structural-acoustic coupling coefficients gives more importance 

to damp those structural modes that matter more for its cost 

function. The choice of weighting matrix Q as explained in 

previous section governed this behavior of the controller (Table 

2 and Eq. (71)). A similiar behavior is seen in Fig. 9 the acosutic 

poressure due to the structural modes S1, S5 and S6 is 

significantly reduced. 
 
 

 
Fig. 8 Comparison of frequency response function of the 

acceleration of the structure in dB with and without 

control 

 

 
Fig. 9 Comparison of frequency response function 
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7. Conclusions 
 
This paper presents comparison of three feedback 

control strategies for active noise control. The first two 

strategies i.e., control using direct output feedback and 

using an LQR controller are indirect strategies in which 

noise reduction is achieved through active vibration control. 

The third strategy is an active structural-acoustic control 

strategy. It is an LQR based optimal control strategy in 

which the information about the coupling between the 

various structural and the acoustic modes is used to design 

the controller.  

Numerical studies on the 3-D rectangular box cavity are 

carried out and a comparison of structural vibration and 

acoustic pressure is carried out with and without the 

controllers. The control strategy based on direct output 

feedback is simple and easy to implement strategy but 

disregards the role of structural modes in generating the 

noise. The AVC-LQR control strategy tries to consume the 

control effort to damp all the structural modes. It is seen 

that the ASAC-LQR control strategy utilizes the control 
effort more intelligently by adding higher damping to those 

structural modes that matter more for reducing the interior noise. 
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