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1. Introduction 
 

The process of assessing structural deteriorates is 

referred to as structural health monitoring (SHM). In past 

two decades, SHM has gained considerable attention due to 

the need of understanding and maintaining infrastructure 

systems (Brownjohn 2006). Numerous SHM methods have 

been developed and experimentally verified on laboratory- 

and full-scale structures, as well as various long-term 

monitoring systems have been deployed in structures 

(Farrar and James 1997, Beck et al. 1998, Peeters and De 

Roeck 2001, Park et al. 2005, Feng 2009, Xu et al. 2015, 

Xia and Ni 2016). In these SHM applications, sensors are 

assumed to be always well functioning. To our best 

knowledge, only a minority of studies have mentioned the 

significance of the sensor fault diagnosis in a SHM sensor 

network. 

In most SHM applications, the characterization of 

structures relies on the high-quality sensor measurements. A 

defective sensor would result in a false condition of 

structures and lead engineers to make incorrect decisions. 

Wang et al. (2015) mentioned that sensor errors and faulty 

signals may potentially lead structures in vibration to 

catastrophic failures. As indicated in Rice and Spencer 

(2009), the performance of sensors is evaluated by their  
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sensitivity, linearity, and drift. Due to the lifetime, a 

degrading sensor would lower its sensing capability on 

these performance factors. Moreover, sensors may also be 

subjected to man-made damage, natural wearing, aging, and 

careless maintenance, resulting in a failure of sensing 

capability. In SHM applications, sensors instrumented on a 

structure should be regularly checked to assure their 

functionality.  

Alternatively, a stochastic model, which estimates 

structural responses, can be used to locate faulty sensors 

instrumented on a structure. In time series analysis, the 

autoregressive (AR) model is one type of stochastic 

modeling techniques that estimates the current or one-step 

ahead responses of structures by a linear combination of 

delayed outputs (Liao et al. 2016, Nardi et al. 2016, Busca 

et al. 2015, Lynch et al. 2004). In the literature, Sohn et al. 

(2000) applied this modeling technique to an undamaged 

structure and used the derived coefficients to detect damage 

in the structure. Yah and Pakzad (2012) calculated the 

residuals between the AR model and the measured data with 

a combination of the Ljung-Box statistic technique as 

damage index. Park et al. (2016) focused on the system 

identification of reinforced concrete bridges using the 

vector autoregressive model technique. As a sensor in a 

sensor network becomes defective, the residuals between 

the estimated responses and measured signals will be 

significantly changed and then turn into a non- Gaussian 

process. These sudden changes can be employed as an 

indicator of faulty sensors based on the AR modeling 

technique.  

The Kalman filtering technique has a wide variety of 

applications in the SHM field. Lei et al. (2015) developed a 

two-stage damage detection method by integrating the 

Kalman estimator approach and least-squares estimation. 

Lei et al. (2016) improved the Kalman filter to identify the 
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unknown input and responses of structures. In this method, 

different types of measurements were employed to enhance 

the identification quality. Kim et al. (2016) implemented a 

two-stage Kalman estimator to compute dynamic 

displacements from acceleration measurements. Palanisamy 

et al. (2015) experimentally validated the strain estimation 

using the Kalman filtering technique when the structure is 

excited by a nonzero mean input. A Kalman estimator can 

be constructed from the system identification result (e.g., 

the result from the AR modeling technique) and can be 

further used in other applications.    

Moreover, another type of Kalman filtering applications 

is to derive a bank of Kalman estimators for fault detection 

(Pbrianti et al. 2016, Lim and Park 2014, Saravanakumar et 

al. 2014). A bank of Kalman filters were proposed to 

address the aircraft engine sensor failures by the NASA’s 

Advanced Detection, Isolation, and Accommodation 

Program in the 1980’s (Merrill et al. 1988). This program 

successfully exhibited the use of a bank of Kalamn filters 

for improving the control loop tolerance to sensor failures. 

Later, many studies were carried to further improve this 

method for the fault detection and isolation problems, in 

particular of aircraft engine sensing systems (Hanlon and 

Maybeck 2000, Kobayashi and Simon 2005). In addition, 

each Kalman filter in a bank is able to predict structural 

responses using full or partial sensor measurements so as 

the response at a specific sensor location can be estimated 

from different sets of sensor measurements. By comparing 

among the responses, a bank of Kalman filters recognize 

faulty sensors and fault types in a sensor network.  

The objective of this study is to develop a sensor fault 

detection method based on the output measurements of a 

structure. This method first exploits the autoregressive 

modeling technique to identify a stochastic representation 

of a structure in accordance with the sensor measurements. 

Subsequently, multiple Kalman estimators (or filters) are 

established based on this stochastic model. Because the 

conversion may result in unstable poles, all the estimators 

are refined by the deterministic discrete-time Kalman 

estimation method. This study assumes that the additive, 

multiplicative, and slowly drifting faults would occur in 

defective sensors (Qin and Li 1999, Abdelghani and Friswll 

2007, Heredia et al. 2008, 2011). The additive fault occurs 

when an unexpected bias is added to the sensor signal. 

Changed power to sensors can result in the multiplicative 

fault. The slowly drifting fault can be found in aging 

sensors. Note that sensor faults are not limited to these three 

types. A numerical simulation is conducted to assess 

performance of the proposed method, while the data 

collected from an experiment are used to validate the 

method by adding faulty signal artificially. Consequently, 

the proposed method is capable of diagnose the fault type 

and occurrence time of the defective sensors. 

 

 

2. Sensor fault detection 
 

Sensor fault detection can be accomplished by 

comparing estimated responses with measured responses of 

a structure. In this study, the estimated responses are 

derived from a bank of Kalman estimators of which each is 

converted from the AR modelling technique. Note that these 

Kalman estimators are established when all sensors are in a 

normally functioning condition. The faulty sensors are then 

identified by the variations of the residuals between the 

estimated and measured responses. The fault types and time 

of occurrence are eventually determined based on the 

residuals.  

Fig. 1 displays the flowchart of the proposed sensor 

fault detection method. This flowchart consists of an AR 

model, an AR-Kalman convertor, a bank of Kalman 

estimators, and fault recognition. Each component is 

introduced in details in the following sections. 

 

2.1 Autoregressive modeling (AR) 
 
The autoregressive modeling technique is employed to 

develop a stochastic model of a structure that estimates 

responses at the sensor locations. The stochastic model 

estimates the responses using the delayed measurements. 

The number of delays can be predetermined empirically or 

by some criteria, e.g., Akaike’s information criterion 

(Akaike 1974) or Bayesian information criterion (Akaike 

1977). Once the number of delays is appropriately 

determined, a stochastic representation of an instrumented 

structure can be obtained by the AR modeling technique.  

The autoregressive modelling is briefly reviewed. 

Assume that m-channel measurements of a structures have n 

samples. Thus, these data are used to derive an AR model 

that estimates the current responses by the previous 

measurements. The AR model is then written by 

     
1

p

i

i

k k i k


  y A y e  (1) 

Where 1×∈][ mky  is a vector of the sensor measurements 

at the time step k; Ai are the matrix coefficients with respect 

to  k iy ; p is the number of delays; e[k] is a vector of 

the measurement noise that can be also interpreted as the 

modeling errors. For a multiple output system, the matrix 

coefficients can be obtained by 

1 2, , , p
   Y A A A X  (2) 

 

 

 

Fig. 1 Flowchart of the proposed sensor fault detection 

method 
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where 

     = 1 , 2 , ,p p n   Y y y y  (3) 
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 (4) 

All matrix coefficients in this multiple output system are 

solved by the matrix pseudoinverse such as 

†

1 2, , , p
   A A A YX  (5) 

where 
†

 indicates the pseudo inverse operator. With these 

matrix coefficients, the AR model is ready to estimate the 

responses by the delayed measurements such as Eq. (1).  

 
2.2 Kalman estimator 
 
A Kalman estimator serves as an optimal observation of 

a system in which the one-step ahead response can be 

evolutionarily estimated by the current measurements. As 

compared to the AR model, Kalman estimators can exploit 

different numbers of responses as the inputs and outputs. 

With a specific input-output relationship, a bank of Kalman 

estimators are established to detect faulty sensors in a 

sensor network. 

The derivation of Kalman estimators are briefly 

introduced. First, a stochastic state-space model can be 

represented as 

     

     

1k k k

k k k

  

 

x Ax ω

y Cx υ
 (6) 

where A is the system matrix; C is the output matrix; x is 

the state vector; y is the output vector;  and  are the 

disturbance and measurement noise. In Eq. (6), the output 

vector can represent the measurements at sensor locations. 

Because Kalman estimators are an alternative type of 

stochastic representation of a structure, these estimators are 

then derived from the AR model and given by 

     
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where 
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(8) 

Eqs. (7) and (8) are the state-space representation of a 

Kalman estimator converted from an AR model. By 

merging the estimation errors to the system equation, Eq. 

(7) can be rewritten by 

       

   
d

ˆ ˆ1

ˆ ˆ1 1

k k k

k k

   

  

x A KC x Ky

y Cx
 (9) 

where ˆ[ 1]k y  indicates the one-step ahead estimation. 

Unfortunately, the derived Kalman estimator in Eq. (9) is 

only adequate for an m-input and m-output estimation.   
For different numbers of inputs and outputs, the Kalman 

gain, K, should be modified. The deterministic Kalman 

estimator can be used to derive a new Kalman gain using 

Eq. (7). For example, the system matrix used in the 

deterministic Kalman estimator is still Ad, while the 

measurement matrix can be a part of C (e.g., some rows in 

C) and defined as C . The disturbance and measurement 

noise covariance matrices, Q and R, are identical to the 

covariance of e[k] in Eq. (1). Thus, the refined Kalman 

estimator is written by 

       
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 (10) 

where  ky  is a part of  ky , and  kR  is the 

residual between the measured and estimated responses. 

Finally, the estimated output can be the partial 

measurements, ŷ , or the full measurements, ŷ . A bank 

of Kalman estimators are consequently established with 

various combinations. 

 

2.3 Fault detection  
 
Due to the lifetime and unexpected damage, sensors 

may return incorrect signals in measurements. In this study, 

three types of sensor faults are considered: the additive, 

multiplicative, and slowly drifting faults. Note that this 

study doesn’t take the short-time pulse-like fault in account. 

These faults can also be represented in a mathematical form 

and listed in the following.  

1. Additive fault: a constant offset is added to the correct 

sensor measurement(s) such as 

   f ,  j j j fy l y l l t    (11) 

Where 
f
jy  is the signal with an additive fault at the j-

th sensor; l is an arbitrary time step; j  is the constant 

offset at the j-th sensor; tf is the time of the fault occurrence. 

2. Multiplicative fault: the correct sensor measurement is 

amplified by a constant multiplier such as 
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   f ,  j j j fy l y l l t   (12) 

where 
f

jy  is the signal with a multiplicative fault at the j-

th sensor; l is an arbitrary time step; j  is the constant 

gain at the j-th sensor; tf is the time of the fault occurrence.  

3. Slowly drifting fault: the correct sensor measurement is 

drifted at a rate of change such as 

     f ,  j j j f fy l y l l t l t     (13) 

where 
f

jy  is the signal with a slowly drifting fault at the j-

th sensor; l is an arbitrary time step; j  is the rate of 

change at the j-th sensor; tf is the time of the fault 

occurrence. All types of faults are illustrated in Fig. 2.  

As illustrated in Fig. 1, the proposed fault detection 

method utilizes a bank of Kalman estimators to identify 

malfunctioning sensors. The AR model in Eq. (1) is first 

developed using the measurements in a sensor network 

when all sensors work normally. This model is then 

converted to a Kalman estimator in Eq. (7) which acquires 

full measurements and estimates one-step ahead 

measurements of all sensors. To generate an estimator, the 

deterministic Kalman estimator in Eq. (10) is used with 

different numbers of inputs and outputs. By differentiating 

the number of inputs and outputs, a bank of Kalman 

estimators are established to detect faulty sensors.  

For a structure, a specific bank of Kalman estimators are 

designed to inspect the condition of sensors in a sensor 

network. Assume that the total number of sensors is m. In 

the bank of Kalman estimators, each has m-1 inputs and m 

outputs of which the missing input is the sensor 

measurement to be identified as a defective sensor. When 

all sensors are in good condition, this bank of Kalman 

estimators can well estimate the one-step ahead outputs. 

However, if the j-th sensor becomes defective, the estimator 

without this j-th sensor in the input still yields a good 

estimation of all measurements. The other estimators will 

have incorrectly estimated responses due to the defective j-

th sensor. The comparison on the measured and estimated 

responses identifies the faulty sensor in a sensor network, 

and the proposed method observes the residuals, i.e., ˆ y y  

in Eq. (10), to detect this faulty sensor. 

When the additive fault occurs in a sensor, the Kalman 

estimator, which is capable of detecting this faulty sensor, 

will render a pulse and then generate a constant offset in the 

residual time history. This pulse is because the Kalman 

estimator is unable to correctly estimate the response, while 

the constant offset is consistent with j  in Eq. (11) after 

tf. The pulse and constant offset are used to diagnose the 

time of fault occurrence and type in the proposed method.  

When the multiplicative fault is introduced in a sensor, 

the Kalman estimator, which is capable of detecting this 

faulty sensor, will induce a pulse in the beginning and then 

oscillate in the residual time history. These two types of 

phenomena determine the time of fault occurrence and type.  

 

 
(a) Additive fault 

 
(b) Multiplicative fault 

 
(c) Slowly drifting fault 

Fig. 2 Illustration of sensor faults 

 

 

When the slowly drifting fault is found in a sensor, the 

Kalman estimator will produce a drifting residual. For this 

fault type, the time of occurrence is hard to be determined 

because the drifting residual will be unobvious in the 

beginning. After a certain length of time, the constantly 

drifting residual indicates the fault type of the defective 

sensor. The correct time of fault occurrence can be then 

determined. 

The AR modeling method should have a sufficient 

length of measurements to identify the matrix coefficients 

in Eq. (1). The length of measurements must be greater than 

or equal to p+m-1 for an AR model which has m sensors 

and p delays. Nevertheless, the length of measurements is 

recommended to be 2~3 times of p+m-1 longer because the 

resolution can be improved and e[k] in Eq. (1) would be 

close to the sensor noise. An accurate AR model helps the 

derived Kalman estimators capable of detecting the faulty 

sensors.  

The deterministic Kalman estimator method used in this 

research not only changes the numbers of inputs and 

outputs in an estimator but also stabilizes the poles outside a 

unit circle in Ad in Eq. (7). The AR modeling method does 

not guarantee all poles to be stable. The deterministic 

Kalman estimator method stabilizes these unstable poles by 

d A LC  in Eq. (10). Therefore, each estimator produces 
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convergent responses.        

In this research, the faulty sensors are assumed to 

sequentially occur. In a sensor network, the faulty sensors, 

which concurrently occurs, is highly unlikely. Because the 

proposed method is able to identify the occurrence and type 

of a faulty sensor, signals measured from this faulty sensor 

can be temporarily corrected before this sensor has been 

fixed or replaced. If another sensor is found with a fault, the 

bank of Kalman estimators can still function to diagnose 

this defective sensor in a sensor network.     

One concern about the proposed sensor fault detection 

method is to mistake measurements of a damaged structure 

as sensor faults. Measurements of a structure with slight 

damage may still contain similar dynamic characteristics, 

while readings from a faulty sensor would have irrelevant 

signals from the dynamics of structures. Thus, the proposed 

method can still work for slightly damaged structure. If the 

structure has sufficient severity of damage, the fault 

detection may be distorted. The proposed method is limited 

to be implemented when the structure is under healthy 

conditions or slightly damaged.  

To sum up, the procedure of the proposed sensor fault 

detection method is listed in the following.  

1. Construct an AR model using Eqs. (1)-(5) and the 

measured data when all sensors work normally.  

2. Convert this AR model into a Kalman estimator with 

inputs and outputs identical to all sensors in Eqs. (7) 

and (8).  

3. Generate a bank of Kalman estimators using Eq. (10). 

In these Kalman estimators, the number of inputs and 

outputs are defined as m-1 and m where m is the total 

number of sensors.  

4. Implement the bank of Kalman estimators and calculate 

the residual between the estimated and measured 

responses. The location, time of occurrence, and fault 

type of faulty sensors are determined by the 

aforementioned approaches.  

 

 

3. Numerical example 
 

A five-story lumped-mass building is selected as the 

numerical example to examine the proposed sensor fault 

detection method. Fig. 3 illustrates the building with 

accelerometers installed on each floor. In the simulation, 

only the lateral responses are considered. For this building, 

the natural frequencies are 1.01 Hz, 2.93 Hz, 4.63 Hz, 5.94 

Hz, 6.78 Hz, while the damping is assumed to be 2%. The 

excitation to this building is band-limited white noise with a 

variance of 1 m/sec
2
, and the sampling rate is set to be 200 

Hz. The measured accelerations are added with white noise 

of which the variance is 2.2×10
-3

 m/sec
2
, resulting in 20 dB 

roughly in the signal-to-noise ratio. The simulation duration 

is 60 seconds. The simulation results without any faulty 

signals are demonstrated in Fig. 4.   

The proposed sensor fault detection is implemented 

using the procedure in Section 2.3. In the 60-second 

measurements, the data in the first 15 seconds are used to 

develop the AR model in Eq. (1). This AR model is 

subsequently converted into a Kalman estimator by Eq. (7).  

The number of delays used in this AR model is 7. A 

bank of Kalman estimators are then derived using the 

criteria described in Section 2.3. The inputs to these 

Kalman estimators are listed in Table 1, and the outputs of 

these estimators are all floor accelerations. All types of 

faults are manually added to the 5
th
 floor acceleration 

response at 16 seconds, and each fault is separately 

examined.     
Fig. 5(a) demonstrates the comparison between the 

measured and estimated accelerations at the 5
th

 floor. The 

estimated acceleration is derived from the Kalman estimator 

5, which has the 1
st
-4

th
 floor acceleration as inputs. As seen 

in this figure, the small errors indicate the performance of 

the Kalman estimator generated from the proposed 

procedure. Therefore, the bank of Kalman estimators can 

well estimate the one-step ahead acceleration responses if 

all sensors work normally. 

 

Table 1 Configuration of a bank of Kalman estimators 

Kalmnan estimaor  Acceleration Inputs 

Kalman estimator 1  Floors 2, 3, 4, 5  

Kalman estimator 2 Floors 1, 3, 4, 5 

Kalman estimator 3 Floors 1, 2, 4, 5 

Kalman estimator 4 Floors 1, 2, 3, 5 

Kalman estimator 5 Floors 1, 2, 3, 4 

 

 

Fig. 3 Illustration of the building used in the numerical 

study 

 

 

Fig. 4 Simulation results from top to bottom: ground 

excitation, acceleration response at the 5th floor, and sensor 

noise of the 5th floor accelerometer 
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(a) Measured and estimated signal 

 
(b) Residuals between the measured and estimated signal 

Fig. 5 Comparison of the 5
th

-floor acceleration to the 

estimated response from the Kalman estimator 5 

 

 

In the evaluation of sensor fault detection, Figs. 6-8 

show the performance of the proposed method. Note that 

the residual responses shown in these figures are 

normalized to the maximum 5
th

-floor acceleration that allow 

increased resolutions in the plots. Fig. 6 exhibits the 

residual time history when the additive fault occurs in the 

5
th

-floor accelerometer. The artificially constant offset 5  

(see Eq. (11)) is set to be 80% of the maximum acceleration 

response in the 5
th

-floor accelerometer. As seen in this 

figure, the pulse is almost aligned at 16 seconds, indicating 

the fault occurrence. The later constant offset in the residual 

time history is identical to 5 . In this example, the 

proposed method is verified to be capable of detecting the 

faulty sensor in terms of type and time of occurrence. 

Fig. 7 demonstrates the sensor fault detection to the 

multiplicative fault in the 5
th

-floor accelerometer. The 
5  

(see Eq. (12)) is set to be 1.5 that amplified the original 

measurements starting at 16 seconds. The pulse-like 

response occurs in the residual time history almost at 16 

seconds, and the later residual response oscillates around 

zero, indicating the multiplicative fault. Therefore, the 

proposed method can identify the sensor with the 

multiplicative fault in a sensor network.  

Fig. 8 displays the proposed fault detection method 

applied to the slowly drifting fault in the 5
th

-floor 

accelerometer. The 5  (see Eq. (13)) is set to be 2.5×10
-3

. 

As seen in the result, a constant slope is found in the 

residual response, indicating the slowly drift fault. The time 

of fault occurrence is approximated by this slope as the red 

line in this figure. The approximated occurrence time is 

slightly off to 16 seconds. For this type of faults, the 

proposed method can recognize the faulty sensor and fault 

type, while the time of fault occurrence can be only 

estimated.  

 

 

Fig. 6 5
th

-floor residual time history with the additive fault 

 

 

Fig. 7 5
th

-floor residual time history with the multiplicative 

fault 

 

 

Fig. 8 5
th

-floor residual time history with the slowly drifting 

fault 

 

 

4. Experimental validation of sensor fault detection 

 
An experimental test of a three-story steel-frame model 

building (see Fig. 9(a)) is carried out using shaking table 

testing to collect the structural responses. This model 

building is 3.5 m high and 2.94 ton in total. All columns are 

made in A36 steel with a strength of 250 MPa. Each column 

has the same size with a dimension of 0.15 m × 0.025 m × 

1.06 m. In this shaking table testing, the ground excitation 

is applied to the weak direction of the building. The natural 

frequencies of this building are 2.597 Hz, 7.465 Hz, 10.02 

Hz, 11.17 Hz, and 24.07 Hz. To examine the proposed 

method, only the acceleration responses along the weak axis 

are used. More details about the building geometry and 

instrumentation plan are available in Loh et al. (2016). In 

this study, the objective is to apply the proposed sensor fault 

detection method to the measured floor accelerations with 

artificially added faults.  

Each floor is equipped with two uniaxial accelerometers 

at both sides as shown in Fig. 9(b). The accelerometers used 

in this experiment are Setra model 141B. The 

measurements are sampled at 200 Hz. Both earthquake and 

band-limited white noise (BLWN) excitations are 

considered as the ground input to this building. The band-

limited white noise excitation is 180 seconds long. 

 

48



 

A sensor fault detection strategy for structural health monitoring systems 

 

Table 2 Configuration of a bank of Kalman estimators 

Kalmnan estimaor  Acceleration Inputs 

Kalman estimator 1  Sensors 2, 3, 4, 5, 6  

Kalman estimator 2 Sensors 1, 3, 4, 5, 6 

Kalman estimator 3 Sensors 1, 2, 4, 5, 6 

Kalman estimator 4 Sensors 1, 2, 3, 5, 6 

Kalman estimator 5 Sensors 1, 2, 3, 4, 6 

Kalman estimator 6 Sensors 1, 2, 3, 4, 5 

 

 

 
(a) Experimental building 

 
(b) Model building and accelerometer instrumentation 

Fig. 9 Illustration of the three-story experimental 

building and model building 

 

 

Because the input excitation in the first 20 seconds is 

insignificant, only portion of measurements in 20-180 

seconds are employed to evaluate the proposed method. All 

acceleration measurements generated from the BLWN are 

used to develop an AR model that subsequently renders as a 

bank of Kalman estimators. Note that all analyses offset the 

time histories to be 0-160 seconds. The artificial faults are 

separately added to the sensor measurements in order to 

assess the performance of the proposed method.    

The bank of Kalman estimators are developed to be 

similar with the case in the numerical example. All Kalman 

estimators used are listed in Table 2. Each estimator has 5 

inputs and 6 outputs to identify the fault of the missing one 

in the inputs. Fig. 10 compares the estimated acceleration at 

the east 1
st
 floor (i.e., the #1 sensor in Fig. 9) to the 

measured one, and the Kalman estimator consists of the #1-

4 and #6 sensor measurements as inputs and all floor 

accelerations as outputs. Because a slight DC offset exists 

in some sensor measurements, the minor errors between the 

measured and estimated floor accelerations occur at the 

positive side. The proposed method is validated to derive a 

bank of Kalman estimators that effectively estimate sensor 

measurements.   

Figs. 11-13 exhibit the performance of the proposed 

method applied to the experimental data. In these figures, 

the red vertical lines denote the identified time of fault 

occurrence, while the green vertical lines represent the true 

occurrence time of the fault in the #5 sensor. As shown in 

Fig. 11, the proposed method is capable of detecting the 

additive fault in the #5 sensor. The artificially additive 

offset 5  is set to be 500% of the maximum acceleration 

response in the #5 sensor. Moreover, a good agreement 

between the red and green lines indicates the capability of 

identifying the fault occurrence time.  

For the multiplicative fault, the 5  is specified to be 

2 and the detection results is shown in Fig. 12. The pulse-

like response occurs in the residual time history almost at 

16 seconds, and the later residual response oscillates around 

zero. This pattern indicates the multiplicative fault in the 

sensor. 

Fig. 13 presents the results of the proposed fault 

detection method in the case of the slowly drifting fault in 

the #5 sensor measurement. The 5  is set to be 2.5. As 

seen in the result, a constant slope is found in the residual 

response, indicating the slowly drift fault. This slope is 

identical to 5 . The approximated occurrence time is 

slightly off to 16 seconds. For this type of faults, the 

proposed method can recognize the faulty sensor and fault 

type, while the time of fault occurrence can be only 

estimated.  

 

 

 
(a) Measured and estimated signal 

 
(b) Residuals between the measured and estimated   

signal 

Fig. 10 Comparison of the 1th-floor acceleration to the 

estimated response from a Kalman estimator 5 
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Fig. 11 5th-sensor residual time history with the additive 

fault 

 

 

Fig. 12 5th-sensor residual time history with the 

multiplicative fault 

 

 

Fig. 13 5th-sensor residual time history with the slowly 

drifting fault 

 

All faults are detected by the calculated residuals 

between the estimated and measured responses. The 

occurrences of faults are determined with a decent accuracy. 

Moreover, the proposed method also diagnoses fault types 

by observing the trend of residual responses after a fault 

occurrence.  

Sensors may have re-occurring faults that the proposed 

method is also capable of detecting. Fig. 14 shows the 

sensor fault detection method for identifying multiple 

sensor faults. For example, the proposed method detects the 

additive sensor fault at the #5 sensor. The biased sensor 

signal at this sensor is corrected after the fault is 

successfully detected (i.e., at 21 seconds). The fault 

correction method can be carried out by a curve-fitting 

algorithm. Thus, the original estimator can be still used with 

the corrected signal as the #5 sensor measurement. 

Consequently, the second fault at the #6 sensor can be 

detected. 

Fig. 15 demonstrates the proposed method to detect an 

additive fault which is added at 16 second on the fifth 

sensor and a slowly drifting fault which is added at 32 

second on the sixth sensor. The 5  is set to be 500% of 

the maximum acceleration response in the #5 sensor 

measurement, and the 𝛽6 is set to be 2. The result indicates 

that the proposed fault detection method is capable of 

detecting re-occurring faults. 

 

 

Fig. 14 Time histories of sensors with re-occurring faults 

 

 
(a) 5th-sensor residual time history with the additive 

fault 

 
(b) 6th-sensor residual time history with the slowly 

drifting fault 

Fig. 15 Residual time history with re-occurring faults 

 

 

5. Conclusions 
 

This study proposed a sensor fault detection method 

using a bank of Kalman estimators. Three types of sensor 

faults were considered including the additive, multiplicative, 

and slowly drifting faults. The bank of Kalman estimators 

were converted from the autoregressive modelling to the  

structure using the sensor measurements. The fault 

detection was then realized by recognizing specific patterns 

in residuals, which were calculated by differentiating the 

measured and estimated signals. The additive fault resulted 

in residuals with an offset. The multiplicative fault 

introduced oscillating residuals around zero. The slowly 

drifting fault deviated residuals from zero by a linear curve. 

As seen in the results, the proposed method was capable of 

determining the fault types among these three faults. 

Meanwhile, this method can accurately the time of 

50



 

A sensor fault detection strategy for structural health monitoring systems 

occurrence for the additive and multiplicative fault. For the 

slowly drifting fault, the time of fault occurrence can be still 

estimated with a decent accuracy. Moreover, the sensor fault 

detection method was capable of detecting re-occurring 

faults in sensors as illustrated in the experimental example. 

Therefore, faulty sensors in a sensor network can be 

identified using the proposed sensor fault detection method, 

while the fault occurrences and types are concurrently 

determined. 
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