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Wavelet-based feature extraction for automatic defect
classification in strands by ultrasonic

structural monitoring
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Abstract. The structural monitoring of multi-wire strands is of importance to prestressed concrete structures
and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided
waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like
defects in the strands is based on the reflections of guided waves that are excited and detected by
magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive
features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage
Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size
of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the
network, it was determined that five damage-sensitive features provided the best defect classification
performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multi-
dimensional analysis can provide excellent classification performance for notch-type defects in strands. 

Keywords: multi-wire strands; guided ultrasonic waves; damage index; feature extraction; discrete wave-
let transform; artificial neural networks.

1. Introduction

High-strength, multi-wire strands are widely used in civil engineering such as in prestressed concrete

structures and in cable-stayed and suspension bridges. Material degradation of the strands, usually

consisting of indentations, corrosion or even fractured wires, may result in a reduced load-carrying capacity

of the structure that can lead to collapse. In a survey involving the study of more than one hundred stay-

cable bridges Watson and Stafford (1988) pessimistically reported that most of them were in danger

mainly because of cable defects. Strand failures that caused bridge collapses were documented in Wales

(Woodward 1988), Palau (Parker 1996a, b), and North Carolina (Chase 2001). Hence the need for developing

monitoring systems for strands that can detect, and possibly quantify, structural defects. 

One monitoring technique under investigation by several researchers uses Guided Ultrasonic Waves

(GUWs) that exploit the natural waveguide geometry of the strands. Structural monitoring methods

based on GUWs have the potential for both defect detection and stress monitoring. GUWs were used
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for the detection of defects in multi-wire strands (Kwun and Teller 1994, 1995, Pavlakovic, et al. 1999,

2001, Beard, et al. 2003) and for the evaluation of stress levels in post-tensioning rods and multi-wire

strands (Kwun, et al. 1998, Chen and Wissawapaisal 2001, 2002, Washer, et al. 2002). The authors

have used GUWs for defect detection and stress monitoring in seven-wire steel and composite strands

(Rizzo and Lanza di Scalea 2001, 2004a, 2004b, 2005a, Lanza di Scalea, et al. 2003). GUW monitoring

of embedded, rather than free bars and strands has been a special focus of the NDE group at the

Imperial College in London (Pavlakovic, et al. 1999, 2001, Beard, et al. 2003). GUW monitoring of the

interface between steel rebars and surrounding concrete has been examined by the University of

Arizona (Na and Kundu 2002, Na, et al. 2003).

In addition to the theoretical models and the experimental validations of GUW propagation in

strands, improvements are also needed in signal processing, particularly for the extraction of the defect-

related features to be used as damage indicators. The goal of the feature extraction is to enhance the monitoring

performance in terms of defect detection, sizing and location. Statistical features of vibrational or

ultrasonic signals, among which the root mean square, the variance and the kurtosis, have been used

successfully for damage detection by Sohn, et al. (2001) and Staszewski, et al. (2004). Traditionally

these features are extracted in the time domain or in the frequency domain. 

Features extracted in the joint time-frequency domain are also being considered. One effective joint

time-frequency analysis is the Discrete Wavelet Transform (DWT), that is particularly suitable for fast

data processing. Compared to the Continuous Wavelet Transform that is not computationally efficient,

the DWT can be performed in real-time owing to the existence of a fast orthogonal wavelet transform based

on a set of filter banks (Mallat 1999). A recent review of wavelet transforms for damage detection in

structures was given by Kim and Melhem (2004). The two outcomes of DWT processing are data de-

noising and data compression, which have made such processing attractive in various structural health

monitoring applications (Abbate, et al. 1997, Staszewski 1998, 2002, McNamara and Lanza di Scalea

2004, Rizzo and Lanza di Scalea 2005a). For GUW monitoring, the preferred application of DWT

analysis has been the decomposition of Lamb waves for detecting impact damage in fiber-reinforced

composite plates (Staszewski, et al. 1997, 2004, Paget, et al. 2003). 

The damage-sensitive features can be naturally coupled to an automatic classification algorithm able

to determine the size and the location of the defects. This type of quantitative information may result

from a classification based on supervised learning, such as that performed by the popular Artificial

Neural Networks (ANNs) that are able to learn from training samples through iterations. 

The present paper builds on the basic technique for detecting damage in strands that uses magneto-

strictive ultrasonic transducers to excite and detect GUWs. Different features are extracted from GUW

signals that are reflected from a notch defect, cut at different depths. The features extracted after the

DWT processing prove more sensitive to damage size and more robust against noise than the more

conventional features extracted from the time domain or the frequency domain. A multi-dimensional

damage index vector is then built and used as the input to an artificial neural network based on the

backpropagation algorithm. The network provides automatic classification of the notch size and the

notch location. It is shown that appropriate combinations of the signal features and other network

parameters can produce excellent defect classification performances. 

2. The discrete wavelet transform

For the sake of completeness a brief overview of the DWT is given. A more detailed discussion of the
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DWT analysis applied to GUW signals of the type considered in this study was given by Rizzo and

Lanza di Scalea (2005a). The DWT may be intuitively considered as a decomposition of a function

following hierarchical steps (levels) of different resolutions. At the first step the function is decomposed into

wavelet coefficients; low-frequency components (low-pass filtering) and high-frequency components

(high-pass filtering) of the function are retained. The signal is therefore decomposed into separate

frequency bands (scales). The filtering outputs are then downsampled. The number of wavelet coefficients

for each branch is thus reduced by a factor of 2 such that the total number of points at a given level is

that of the original signal. Each level j corresponds to a dyadic scale 2
j
 at the resolution 2

−j
. It should be

mentioned that a perfect dyadic decomposition is only achieved when the Haar mother wavelet is

employed. This is due to the so-called “boundary problem.” Furthering the decomposition means

increasing the scale that corresponds to zooming into the low-frequency portions of the spectrum. 

De-nosing and compression of the original signal can be achieved if only a few wavelet coefficients

representative of the signal are retained and the remaining coefficients, related to noise, are discarded.

In the reconstruction process, the coefficients are upsampled to regain their original number of points

and then passed through a reconstruction lowpass filter and reconstruction highpass filter. The

reconstruction filters are closely related but not equal to those of the decomposition tree. In the pruning

process, the reconstruction by using the decomposition level k (scale 2k), for example, is achieved by

setting the wavelet coefficients from other levels equal to zero. 

It is important to emphasize that the success of a proper DWT decomposition is dependent on

choosing a mother wavelet that best matches the shape of the signal that is being analyzed. 

A thresholding step can be used after the pruning process to further increase the signal-to-noise ratio SNR

(Abbate, et al. 1994, 1997). In this case, the threshold is applied to the magnitude of the coefficients that are

retained. This step assumes that the smaller coefficients represent noise, and can be safely omitted. 

The thresholding process enhances the compressing ability of the DWT (Abbate, et al. 1994, 1997,

Rizzo and Lanza di Scalea 2004b). Signal compression eases data storage and transmission. Ultrasonic

signals can thus be represented by a small number of wavelet coefficients. Previous studies by the

authors on GUW defect detection in strands (Rizzo and Lanza di Scalea 2004b) demonstrated signal

compression performances on the order of 99.7% after wavelet thresholding. In that study the defect-

sensitive information of GUW signals, originally consisting of 9,000 points in the time domain, was

reduced down to only 27 wavelet coefficients. 

The DWT processing used in the present work adopted the Daubechies mother wavelet of order 40

(db40) due its similarity to the narrowband ultrasonic signals employed to probe the strands (Rizzo and

Lanza di Scalea 2004b). In previous works (Lanza di Scalea, et al. 2003, Rizzo and Lanza di Scalea

2004a, b and 2005a) the authors found that 320 kHz is a low-loss frequency for the fundamental GUW

mode propagating in typical loaded seven-wire strands (0.6 in diameter). The appropriate DWT level

for pruning was chosen as the one that most closely represented the frequency band of interest

following the known relation: 

(1)

relating the reconstructed frequency fj at DWT level  j, to the center frequency of the mother wavelet F,

the scale 2 j and the signal sampling frequency ∆. For ∆ = 33×106 Hz and F = 0.671 rad for the db40

wavelet, Eq. (1) yields f6 = 346 kHz that is close to the low-loss signal frequency of 320 kHz that was

used to excite the strands. Thus the sixth decomposition level was selected for all DWT-processed

signals that follow. 

 fj ∆ F× 2
j

⁄=
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3. Strand monitoring

3.1. Experimental setup

The experimental setup adopted was the same as in Rizzo and Lanza di Scalea (2005a), and it is described

here for the sake of completeness. The test component was a high-grade steel 270, seven-wire twisted

strand with a total diameter of 15.24 mm (0.6 in). This is a typical strand for stay cables and for prestressed

concrete structures. The nominal diameter of each of the wires was 5.08 mm (0.2 in). A notch was

machined in one of the six peripheral wires by saw-cutting with depths increasing by 0.5-mm steps to a

maximum depth of 3 mm. A final cut resulted in the complete fracture of the helical wire (broken wire,

b.w.), which was the largest defect examined. The notches were machined perpendicular to the strand

axis. Fig. 1(a) illustrates the eight defect sizes monitored. Fig. 1(b) shows the cross-sectional area reductions

corresponding to the various notch depths. 

Fig. 1 (a) The different notch depths examined; (b) reduction of the cross-sectional area of the strand as a
function of notch depth
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The strand was subjected to a 120 kN tensile load, corresponding to 45% of the material’s ultimate

tensile strength, that is a typical operating load for stay cables. The load was applied in the laboratory

by a hydraulic jack. 

Magnetostrictive sensors (MsS), resonant at 320 kHz, were used to excite and detect GUWs. This

frequency was chosen since it is known to propagate with little losses in loaded strands as discussed

above. The distance between the transmitting and the receiving transducers, d1 in Fig. 2(a), was fixed at

203 mm (8 in) in all tests. By sliding the transmitter/receiver pair along the strand, tests were conducted

at the five different notch-receiver distances, d in Fig. 2(a), of 203 mm (8 in), 406 mm (16 in), 812 mm

(32 in), 1016 mm (40 in), and 1118 mm (44 in). The latter was the largest distance allowed by the rigid

frame of the hydraulic loading. 

A National Instruments PXI
©
 unit running under LabVIEW

©
 was employed for signal excitation, detection

and acquisition, Fig. 2(b). Five-cycle tonebursts centered at 320 kHz, modulated with a triangular window,

were used as generation signals. Signals were acquired at sampling rate equal to 33 MHz and stored

after different number of digital averages, namely 500, 50, 10, 5, 2 and 1 (single generation). Table 1

summarizes the various testing configurations. 

3.2. Damage index

An efficient damage index must be robust against noise and must allow for the detection, the sizing

and the location of the defect. These performances were achieved by the appropriate selection of the signal

features used for the damage index computation. 

The Damage Index (D.I.) proposed in this study uses the ratio between certain features of the reflection

from the defect, Freflection, and the same features of the signal traveling directly from the transmitter to

the receiver, Fdirect

Fig. 2 (a) Experimental setup for the detection of notch defects in the strand (dimensions in mm); (b) overall
schematic of the monitoring system
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D.I. = (2)

Normalizing the defect reflection by the direct signal eliminates any dependence of the monitoring

result on the generation signal power or on the transducer/strand electro-mechanical coupling efficiency. The

concept is analogous to considering reflection coefficients for detecting defects in ultrasonic NDE. If a

defect is a perfect reflector of the ultrasonic energy, the D.I. is 1. For the notch defects examined in this

study, the D.I. will be smaller than one since only a small portion of the incoming signal will be

reflected.

The same expression for the D.I. was adopted by Rizzo and Lanza di Scalea (2005b), although that

study used only a subset of the features examined in the present work and it did not consider any pattern

recognition analysis. 

The selection of the signal features for the computation of the D.I. is the most critical task. Optimum

features are those allowing for quantitative defect detection with the smallest possible number of signal

averages. Initially, features were extracted in the time domain (peak-to-peak and variance), in the

frequency domain (peak of Fast-Fourier Transform - FFT amplitude spectrum at propagating frequency),

and in the joint time-frequency domain (variance of reconstruction after DWT pruning). The variance is

a known features for structural monitoring (Staszewski, et al. 2004), and is defined by the well known

relations: 

variance =
 

where  represents the mean value of the collection of N data points. The variance can be interpreted as

the variability of the signal from the mean.

3.3. Feature selection 

Two time windows were selected for the direct signal and the defect reflection. The direct signal

window was fixed between 35 µsec and 97 µsec for the given constant transmitter-receiver distance and

it consisted of 2048 points, Figs. 3(a) and (b). The defect reflection window varied for the different

notch-receiver distances. Such window consisted of 4096 points, Figs. 3(c) and (d), and covered the

expected arrival of the reflection considering a wave velocity for the lowest-order longitudinal

Freflection

Fdirect

---------------------

1

N 1–
------------- xi x–( )

2

i 1=

N

∑

x

Table 1 The different testing configurations considered

Defect size (mm) 
Strand cross-sectional area 

reduction (%) 
Notch-receiver distance 

d(mm) 
Number of averages on 

GUW signals 

0
0.5
1
1.5
2
2.5
3

Broken wire

110.00
110.71
111.98
113.50
115.18
116.97
10.0
15.6

1203
1406
1812
1016
1118

11
12
15
10
50

5001
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dominant mode at 320 kHz. The signals shown in Fig. 3 refer to the case of the 3 mm notch depth, after 500

signal averaging. Particularly, Figs. 3(a) and (c) are relative to the notch-receiver distance d = 203 mm,

while Figs. 3(b) and (d) are relative to the case of d = 1016 mm. Notice the poorer SNR of the defect

reflection for the larger distance of Fig. 3(d) compared to Fig. 3(c).

The performance of the four initial features used to compute the D.I. is illustrated in Fig. 4. For

clarity, this figure shows only the results for notch depths at 1-mm increments (four damage scenarios),

for all six different numbers of averages (1 i.e. single-generation, 2, 5, 10, 50 and 500). The zero notch

depth is the “no defect” case. The notch-receiver distance was 1,016 mm. The values of the D.I. are plotted in

a logarithmic scale. The desirable properties of the D.I. are stability against number of averages and

linear, monotonic increase with increasing notch depth for ease of defect sizing. The rate of change of

the D.I. with notch depth (slope of connected points in Fig. 4) can be viewed as the sensitivity to

damage size. 

The D.I. computed with the time-domain peak-to-peak ratio, Fig. 4(a), shows a large dependence on

the number of averages. This implies that the peak-to-peak feature is not robust against noise. At least

50 averages are needed in this case to obtain a D.I. that is monotonically increasing with defect size.

The time-domain variance, Fig. 4(b), shows the same drawbacks of unstable results. The only improvement

over the peak-to-peak feature is an increase in defect sizing sensitivity (slope of the connected points) but,

again, only once at least 50 averages are used to obtain a monotonic trend. The variance performs

Fig. 3 Probing the 3 mm-deep notch. Direct signal with (a) notch-receiver distance d=203 mm and (b) d=1016 mm.
Defect reflection with (c) d = 203 mm and (d) d = 1016 mm. Signals stored after 500 averages
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Fig. 4 Damage index computed for varying notch depths and varying number of averages considering (a) the
time-domain peak-to-peak, (b) the time-domain variance, (c) the FFT peak amplitude, and (d) the variance of
the reconstruction after DWT pruning and thresholding
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slightly better than the peak-to-peak because it accounts for the entire signal waveform, rather than just

its extreme values. 

When the frequency-domain feature of FFT amplitude is used, Fig. 4(c), substantial improvements

are found. The D.I. is now extremely stable against number of averages for notches deeper than 2 mm.

For very small notches, below 2 mm, as few as 5 averages are needed to obtain a stable result. In the

frequency domain noise is partially filtered out, hence the better result than the previous two cases. 

Further improvements are obtained if the variance feature is extracted after DWT processing, Fig. 4(d).

In terms of number of averages, the DWT-processed variance is as stable as the FFT peak. However, a

large increase in defect sizing sensitivity can be seen by an increased slope of the D.I. data in Fig. 4(d).

In fact, the sensitivity of the DWT-processed variance is doubled compared to that of the FFT peak.

This result proves that the DWT processing performs a better de-noising than the conventional

frequency-domain filtering and it thus detects better the defect signatures. The reason is that broadband

noise always affects the features extracted in the frequency domain. The unmatched de-noising

performance of the DWT is also such that as few as 5 averages are needed to yield the same D.I. as 500

averages for notches as shallow as 1 mm. This represents a large gain in computational efforts and

speed of the inspection. Also, de-noising allows for a reduced power to the transmitting sensors that

would be a desirable feature in any field implementation of the technique. 

3.4. Wavelet coefficient analysis 

It was shown that the analysis of the signals reconstructed after DWT pruning offers a reliable tool for

damage sizing. Damage-related features can be also computed directly on the wavelet coefficients

before signal reconstruction takes place. This method eliminates half of the DWT processing task. The

statistical features of the root mean square (RMS), the variance, the kurtosis, the peak amplitude, and

the peak-to-peak value of the wavelet coefficients were examined as features for the D.I. in this portion

of the study. The RMS and the kurtosis are defined by the classical expressions: 

RMS = (4)

Kurtosis = (5)

The decomposition of a typical ultrasonic time waveform into wavelet coefficients is illustrated in

Fig. 5, showing the direct signal (Fig. 5a) and the defect reflection (Fig. 5b) for the 2 mm-deep notch, at

a notch-receiver distance of 203 mm. These results were taken after 50 averages. Notice that the scale

amplitude of the reflection is set to one order of magnitude smaller than that of the direct signal. The

vectors of the wavelet coefficients at level 6, cD6, are shown in Figs. 5(c) and 5(d), respectively. Since

the number of points of the original signals differs (2048 for the direct signal and 4096 for the defect

reflection), the size of the two wavelet coefficient vectors differs as well (109 versus 141). 

It should be noted that most of the wavelet coefficients in Figs. 5(c) and 5(d) have very low amplitude

and thus do not carry any information on the signal of interest. These can be eliminated by setting a

threshold equal to 20% of the maximum coefficient amplitude. The thresholded coefficient vectors are

xi

2

i 1=

N

∑

N
-------------

xi x–( )
4

i 1=

N

∑

RMS
4

---------------------------
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shown in Figs. 5(e) and (f) for the direct signal and the defect reflection, respectively. Finally, the

signals reconstructed from these vectors are shown in Figs. 5(g) and (h) and they demonstrate that the

Fig. 5 (a) Direct signal; (b) reflection from 2 mm-deep notch 203 mm away from receiver; (c) wavelet coefficient
vector cD6 for direct signal; (d) wavelet coefficient vector cD6 for defect reflection; (e) wavelet coefficient
vector cD6 for direct signal after 20% thresholding; (f) wavelet coefficient vector cD6 for defect reflection
after 20% thresholding; (g) reconstructed direct signal; (h) reconstructed defect reflection
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few thresholded wavelet coefficients indeed represent the information of interest. By considering only

the relevant wavelet coefficients, the D.I. is very robust against noise. 

The D.I. results are shown in Fig. 6 in terms of variance and RMS of the 20% thresholded wavelet

coefficients of cD6. These results are for notch-receiver distance of 1,016 mm. It can be seen that the

variance results computed directly on the wavelet coefficients match those in Fig. 4(d) that were computed

on the signal reconstructions. The RMS results show the same trend, although their sensitivity to

damage size (slope of the connected points) is reduced when compared to the variance analysis. This is

a direct result of the square relationship between these two features. 

3.5. Effect of wavelet threshold level 

The threshold chosen to select the relevant wavelet coefficients for the D.I. computation is an

important variable that affects the sensitivity of the defect sizing. The 20% threshold used in the

previous section was chosen based on simple visual observation of the wavelet coefficient vector cD6.

In a recent study, Rizzo and Lanza di Scalea (2005b) carried out a parametric study to find an optimum

threshold combination for the direct signal and the defect reflection, respectively. The optimum

combination was defined as the one resulting into the largest sensitivity to defect size of the variance-

based D.I. It was found that the larger sensitivities are obtained when setting more severe thresholds to

the defect-reflected signals, with little effect of the threshold to the direct signal. Thus parametric

studies to determine optimum threshold values need only to be conducted on the defect reflections, that

are the most delicate element of the D.I. computation because of the poorer SNRs associated to the

small defects of interest in this study. Based on the findings in Rizzo and Lanza di Scalea (2005b),

optimum thresholds were identified at 20% for the direct signal and at 70% for the defect reflection.

These values were used for the analysis of the results that follow. 

3.6. Damage index vector 

DIs based on the variance, the RMS, the kurtosis, the peak amplitude and the peak-to-peak amplitude

of the thresholded wavelet coefficient vectors were evaluated. The direct signals and the defect

reflections were then reconstructed from the wavelet coefficient vectors. The following features were

Fig. 6 Damage index computed from the variance and the RMS of wavelet coefficient vectors cD6 for direct
signal and for defect reflection after 20% thresholding
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extracted from the reconstructed signals: the position and the magnitude of the Hilbert transform peak,

the area below the Hilbert transform, the peak amplitude of the FFT spectrum, and the area below the

FFT spectrum. All features considered except one were related to the size of the defect. The one

exception was the position of the Hilbert transform peak that made the D.I. dependent on the location of

the defect, in addition to the size. In fact, the Hilbert transform peak position corresponds to the arrival

time of the waves, in turn related to the defect location through the wave velocity. 

Figs. 7(a) and (b) show the raw signals stored after 10 averages for the 1.5 mm-deep notch, with a

notch-receiver distance d = 1018 mm. The corresponding reconstructed signals (20%-70% threshold combination)

are shown in Figs. 7(c) and (d) together with the curve-envelope from the Hilbert transform. The FFT

amplitude spectra of the reconstructed signals are presented in Figs. 7(e) and (f). 

Fig. 7 Raw time waveforms of (a) the direct signal, and (b) the reflection from a 1.5 mm-deep notch located
1,018 mm from the receiver; reconstructed waveforms and Hilbert transform envelopes of (c) the direct
signal, and (d) the defect reflection; (e) FFT amplitude of (c); (f) FFT amplitude of (d)
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The unidimensional D.I.s computed using some of the individual features are shown in Fig. 8 as a

function of the notch depth and notch-receiver distance. The results were computed after 10 averages.

Fig. 8 Unidimensional damage indices for varying notch depths and notch-receiver distances considering (a)
the variance of the wavelet coefficients, (b) the peak amplitude of the wavelet coefficients, (c) the area
of the Hilbert Transform of the reconstructions, and (d) the FFT peak amplitude of the reconstructions
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The D.I.s shown are based on the variance and the peak amplitude of the wavelet coefficients (Figs. 8a

and b), on the area below the Hilbert transform (Fig. 8c), and on the peak amplitude of the FFT

spectrum (Fig. 8d). All D.I.s show a quite linear dependence in logarithmic scale on the notch depth,

and a relatively negligible dependence on the defect position for notches between 1.5 mm and 3 mm in

depth. The results for very small notches, below 1 mm in depth, are less stable against varying distances

due to the poorer SNRs of the defect reflections. The results for the broken wire case (5mm-deep notch)

Fig. 9 Flowchart of the proposed strategy for classifying the size and the location of defects in strands by
guided ultrasonic waves
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also show an increased dependence on the notch-receiver distance, with D.I.s generally increasing for

defects located further away from the receiver. This trend is opposite to what would be expected

considering wave attenuation effects, and its origins are still under investigation. One possibility is the

interference of multiple propagating modes that is distance dependent. One of the most clear results in

Fig. 8 is that the D.I. based on the variance of the wavelet coefficient vector, Fig. 8(a), has the largest

sensitivity on notch depth compared to the other features presented. 

Of the total ten DWT-processed features discussed above, eight were used to assemble a multi-

dimensional D.I. vector for the ANN classification. The two discarded features were the kurtosis of the

wavelet coefficients and the Hilbert transform area of the reconstructions. The choice of features to

consider for the ANN was based on the behavior of the unidimensional D.I.s of the type shown in Fig. 8. The

general defect classification strategy is illustrated in the flowchart of Fig. 9. The next section presents

the last step of this strategy that is the pattern recognition. 

4. Automatic defect classification

Table 2 summarizes the definition of the classes considered in the pattern recognition algorithm. The

defect sizes were subdivided into four classes (Classes 1, 2, 3 and 4), corresponding to strand’s area

reductions in the ranges 0% - 1%, 2% - 5%, 7% - 10%, and 16%. Class 1 can be considered the “no

defect” case. Similarly, the notch-receiver distances were subdivided into four classes (Classes A, B, C

Table 2(a) Defect classification problem definition

Class 
Defect size

(mm)
Strand area

reduction (%) 
Binary
code

Notch-receiver
distance (mm) 

Binary
code

1 0 – 0.5 0 – 1 0 0 

2 1 – 2 2 – 5 0 1 

3 2.5 – 3 7 – 10 1 0 

4 Broken wire 16 1 1 

A 203 0 0 

B 406 0 1 

C 812 1 0 

D 1018-1116 1 1 

Table 2(b) Coding for the classification problem

Combination Binary code Combination Binary code

1A 0 0 0 0 3A 1 0 0 0 

1B 0 0 0 1 3B 1 0 0 1 

1C 0 0 1 0 3C 1 0 1 0 

1D 0 0 1 1 3D 1 0 1 1 

2A 0 1 0 0 4A 1 1 0 0 

2B 0 1 0 1 4B 1 1 0 1 

2C 0 1 1 0 4C 1 1 1 0 

2D 0 1 1 1 4D 1 1 1 1 
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and D) corresponding to the values d = 203 mm, 406 mm, 812 mm and 1016-1118 mm. Each class of

defect size and notch-receiver distance was coded with a 2-digit binary number. In total, the

classification problem consisted of 42 = 16 combinations of defect sizes and notch-receiver distances,

represented by the four digit codes shown in Table 2(b).

A feed-forward, backpropagation ANN with three layers was used as the algorithm. The input layer

receives as input data the multi-dimensional D.I. vectors along with the codifications of their classes

(targets). The hidden layer processes the data by multiplying the input vectors by weights and adding

biases. The results constitute the argument of a transfer function that squashes the output values into a

certain range. Since the target classes were coded with binary numbers, the following log-sigmoid

transfer function was employed

(6)

This function squashes the output values between zero and one for the binary representation. The

output layer provides the network outputs and compares the outputs with the targets. The error E is

calculated as 

(7)

where N is the number of training samples (40 D.I. vectors in the present case), m is the number of

output nodes (number of elements that code the classes, 4 in the present case), ykj is the desired target,

and ŷkj  is the network output. If the error is above a certain value, the training process is continued by

transmitting the errors backwards from the output layers, and adjusting the weight and biases. If the

error is below an established value, the learning process is stopped. The training process is also stopped

when a minimum on the error gradient is reached. Each individual weight change is in the direction of a

negative gradient and at the iteration step, n, the new weight vector is 

(8)

where 0 < η <1 is the learning rate. The learning rate determines the magnitudes of the weight change.

The smaller η, the smoother the convergence of the search at the price of a higher number of iteration

steps. For higher values of η, the algorithm may become unstable possibly leading to oscillations and

preventing the error to fall below a certain range. In order to control the network oscillations during the

training process, an additional coefficient ηm (momentum coefficient or additional momentum), comprised

between 0 and 1, was added to the definition in Eq. (8). The weight change now becomes:

(9)

The additional coefficient scales the influences of the previous step on the current one.

Eight (defect sizes) × five (notch-receiver distances) = 40 D.I. vectors used as training data in the present

analysis corresponded to all acquisitions after 500 averages. This was considered to be a representative

baseline configuration. The training data represented the 16.7% (1/6) of all the data measured. 

A few parameter analyses were conducted in order to find the design that provided the best network

performance, i.e., the largest percentage of testing data correctly classified. A summary of the parameters
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considered for this optimization is presented in Table 3. In order to ensure the same initial conditions,

the initial biases and weights of the network were constrained to be constant. 

The first analysis considered the values of the learning rate, η , and the additional momentum, ηm, as

parameters, columns 3 and 4 in Table 3. The network consisted of eight hidden neurons with eight-

dimensional input vectors. The input vector consisted of the D.I. based upon the eight features listed

and ordered in columns 1 and 2 of Table 3. The analysis demonstrated that for this application the two

parameters η and η m did not substantially affect the performance of the network. 

The second analysis considered fixed values for η (= 0.2) and η m (= 0.5). The goal now was to find the

best network configuration by selecting the parameters resulting in the best classification performance

in terms of (a) the number of features (dimension) of the input D.I. vector, (b) the type of these features,

and (c) the number of hidden neurons. The first two features of the D.I. vector were kept constant in the

optimization process. These were the variance of the wavelet coefficients (providing the highest

sensitivity to the notch size) and the position of the Hilbert transform peak of the reconstructions

(providing the sensitivity to the notch location). The analysis then proceeded by adding the remaining

six features of Table 3 to the D.I. vector, one at a time and in all possible combinations. Thus D.I.

vectors were tested from a minimum of three dimensions to a maximum of eight dimensions. For each

input vector, the number of hidden neurons was changed from 6 to 20. This extensive set of trials

resulted in a network performance varying between 41.2% for the worst network (5-dimensional D.I.

input vector, features 1, 2, 3, 6, 8 in Table 3, with 6 hidden neurons) and 90.8% for the best network (5-

dimensional D.I. input vector, features 1, 2, 4, 5, 6 in Table 3, and 12 hidden neurons). 

The histograms in Fig. 10 summarize the performance of the best network design. The percentage of

correct classification is plotted as a function of various testing parameters. Fig. 10(a) shows the

classification performance for varying notch sizes. The best performance is obtained for the two largest

defects, above 7% of the strand area reduction. These notches were all properly identified as a result of

the large SNR of the reflections. The poorest performance is obtained for the “no defect” case, but still

with a success rate as high as 82%. Properly classifying the “no defect” case means avoiding false

positives. 

The histograms in Figs. 10(b) and (c) can be read in a similar way. They are plotted by clustering

the number of averages (Fig. 10b) and the notch-receiver distances (Fig. 10c). Fig. 10(b) shows the

Table 3 Network parameters considered

Feature
#

D.I. feature
η = learning

rate
η
m
 = additional
momentum

# of
features

# of hidden
neurons

1 Variance (WCV) 0.05 0.05 3 to 8 6 to 20 

2 Peak position (HT) 0.20 0.20 step 1 step 2 

3 Peak-to-peak (WCV) 0.35 0.35 

4 Peak amplitude (HT) 0.50 0.50 

5 Peak amplitude (FFT) 0.65 0.65 

6 RMS (WCV) 0.80 0.80 

7 Peak amplitude (WCV) 0.95 0.95 

8 Area (FFT) 

WCV: wavelet coefficient vector
HT: Hilbert Transform
FFT: Fast-Fourier Transform
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interesting result that the classification performance is rather independent of the number of averages.

This confirms what seen in Fig. 4, and remarks the fact that the DWT-based features chosen for the D.I.

vector computation are robust against noise. The classification success is naturally poorer (75%) for the

single-event case due to the degraded SNR. Similarly, the classification performance appears substantially

independent of the notch-receiver distance, Fig. 10(c). 

In the best network only 9.2% of the cases (22 testing data) were not properly classified. These

included false positives (2.9%), false negatives (3.7%), misclassifications (0.8%) and undetermined

outputs (1.7%). The 3.7% false negative indications, the most critical in structural monitoring, were

nine cases of Class 2 notch sizes incorrectly classified in the “no defect” Class 1. These “missed” defects

corresponded to a 2% reduction of the strand’s cross-sectional area, thus very small. 

Fig. 10 Best defect classification performance of the 16-combination problem as function
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The performance of the worst network design (features 1, 2, 3, 6, 8, and 6 hidden neurons) is reported

for comparison in the histograms of Fig. 11. It is clear that the classification rates of success are poorer

than those in Fig. 10. The only result that is comparable between the worst and the best networks is the

classification of the defect location, and only for the notches that are closer to the receiver. In the worst

network, even the training data used in the testing phase were properly classified in only 50% of the cases. 

5. Summary and conclusions

Improvements to the technique based on Guided Ultrasonic Waves for the structural monitoring of

strands were proposed in terms of defect-sensitive feature extraction and defect classification. The

Fig. 11 Worst defect classification performance of the 16-combination problem as function
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goal was to determine the size and the location of notch-like defects based on ultrasonic reflection

measurements. 

Notches were machined in one of the six helical wires of a seven-wire strand, loaded to 45% U.T.S.

The defects resulted in incremental reductions of the strand’s cross-sectional area up to a maximum

of 15.6% corresponding to a completely broken wire. The notches were probed by low-loss

ultrasonic signals at 320 kHz, that were excited and detected by a pair of magnetostrictive ultrasonic

transducers.

Based on eight features extracted after DWT processing, a multi-dimensional Damage Index vector

was fed into an Artificial Neural Network. A parametric study was conducted to optimize the architecture of

the network. The study identified the best combination of features for assembling the Damage Index

vector. The best vector contained five features, four of which related to the size of the defect and one,

the Hilbert transform peak position, to the location of the defect. The optimized network had an overall

success rate of classification (defect size and location) of 90.8% among 240 different acquisitions at

varying defect sizes, locations and number of averages. Within the incorrect classifications, the dangerous

false negatives (missed defects) accounted for only 3.7% of the total cases examined. These false

negatives were recorded for a small subset of data from notches as small as 2% of the strand’s cross-

sectional area, and thus constituted an acceptable margin of error.

The maximum notch-receiver distance examined in this study was 1,118 mm. Therefore the

effectiveness of the proposed technique remains localized to a limited portion of the strand. One portion of

stay-cable or post-tensioning strands that does not require large monitoring ranges is the anchored end,

that is particularly prone to corrosion and stress concentrations due to the restraining wedges. Arrays of

magnetostrictive transducers located at fixed intervals must be used if coverage of the entire cable is

required.

For defects located further away from the sensors, the thresholds imposed to the wavelet coefficients

will most likely have to change, and the best combination of the damage-sensitive features may also

change. The same defect classification strategy is being applied to grouted, rather than free strands. In

grouted strands the ultrasonic attenuation losses will be higher and the overall defect classification

performance of the method will be reassessed. 
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