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Abstract. Recently, the Hilbert-Huang transform (HHT) has gained considerable attention as a novel technique 
of signal processing, which shows promise for the system identification and damage detection of structures. This 
study investigates the effectiveness and accuracy of the HHT method for the system identification and damage 
detection of structures through a series of experiments. A multi-degree-of-freedom (MDOF) structural model has 
been constructed with modular members, and the columns of the model can be replaced or removed to simulate 
damages at different locations with different severities. The measured response data of the structure due to an 
impulse loading is first decomposed into modal responses using the empirical mode decomposition (EMD) 
approach with a band-pass filter technique. Then, the Hilbert transform is subsequently applied to each modal 
response to obtain the instantaneous amplitude and phase angle time histories. A linear least-square fit procedure is 
used to identify the natural frequencies and damping ratios from the instantaneous amplitude and phase angle for 
each modal response. When the responses at all degrees of freedom are measured, the mode shape and the 
physical mass, damping and stiffness matrices of the structure can be determined. Based on a comparison of the 
stiffness of each story unit prior to and after the damage, the damage locations and severities can be identified. 
Experimental results demonstrate that the HHT method yields quite accurate results for engineering applications, 
providing a promising tool for structural health monitoring.

Keywords: Hilbert-Huang transform (HHT); system identification; damage detection; empirical mode decompo-
sition (EMD); experimental study.

1. Introduction

The need for a rapid assessment of the state of civil infrastructures, including bridges, buildings and 

others, has been demonstrated during many recent earthquakes and other natural disasters. Thus 

developing structural health monitoring system (SHMS) that can continuously monitor the structure 

and reliably respond to any structural anomalies presents new challenges for the civil engineering 

research community (e.g. Chang 1997, 1999, 2001, 2003, Housner,  et al. 1997). Different system identification

approaches for structural health monitoring and damage detection of civil engineering structures have 

been proposed in the past years (e.g. Doebling, et al. 1996, Dyke, et al. 2000, Feldman 1994, 1997, Gurley 

and Kareem 1999, Hou, et al. 2000, Ruzzene, et al. 1997, Staszewski 1997), however, to effectively extract 

damage features from measured data using signal processing techniques is still a challenging task.
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Recently, a method of decomposing a signal in the time-frequency domain using Hilbert transform 

has been proposed by Huang, et al. (1998, 1999). This method is to decompose the signal into intrinsic 

mode functions (IMFs) using empirical mode decomposition (EMD) method, where each IMF admits a 

well-behaved Hilbert transform. Then the Hilbert transform is applied to each intrinsic mode function 

to obtain a decomposition of the signal in the time-frequency domain. Such a process is referred to as 

the Hilbert-Huang transform (HHT). The HHT method has been widely applied to different research 

fields, such as speech, machine health monitoring, bio-medical data analysis, etc. In the preliminary 

studies, a method based on the EMD and Hilbert transform has been proposed and applied to identify the 

modal parameters of multi-degree-of-freedom (MDOF) linear structures, including natural frequencies and 

damping ratios (Yang and Lei 1999). This method was demonstrated to be capable of identifying modal 

parameters more accurately than the method of wavelet transform (WT), when the natural frequencies 

are close to each other (Ruzzene 1997). The method was extended later to identify not only the natural 

frequencies and damping ratios, but also the mode shapes, the mass, stiffness and damping matrices of 

linear structures in which the mode shapes may be real or complex, thus showing a great promise for 

structural health monitoring (Yang, et al. 2000, 2001, 2002, 2003a, 2003b).

For the method of system identification based on HHT proposed by Yang, et al. (2003a, 2003b), free 

vibration measurements polluted by noises are used. The measured signals of MDOF linear systems are 

first decomposed into the modal responses using the EMD approach and appropriate intermittency 

criteria. Depending on the frequencies of the system, a filtering technique may be used in conjunction 

with the EMD method. A modal response thus obtained is a special IMF that admits well-behaved Hilbert

transform. The Hilbert transform is then applied to each modal response to obtain the instantaneous 

phase angle and amplitude as functions of time t. Then, a linear least-square fit algorithm is proposed to 

fit the instantaneous phase angle and the log of instantaneous amplitude. From the slopes of these linear 

least-square lines, the natural frequency and damping ratio for each mode can be identified. Based on a 

single measurement of the free vibration time history at one appropriate location of the MDOF linear 

system, all natural frequencies and damping ratios can be identified. When the responses at all degrees 

of freedom are measured, the complete system dynamic characteristics can all be identified, including 

the mode shapes and physical mass, damping and stiffness matrices. Likewise, the HHT method has 

been applied to a benchmark problem for the determination of structural damages (Yang, et al. 2004).

This study investigates the effectiveness and accuracy of the HHT method for system identification 

and damage detection through a series of experiments. A MDOF structural model was constructed with 

modular members, and the columns can be replaced or removed to simulate damages at different 

locations with different severities. The physical mass, damping and stiffness matrices were successfully 

identified from the measured structural responses using the HHT method. By comparing the stiffness of 

each story unit before and after damages, the location and severity of the damage were accurately 

determined.

2. Theoretical foundation

2.1. Modal response of MDOF structures due to impulse loading

Generally speaking, all the eigenvalues and eigenvectors of linear structures are complex, hence, 

complex modes rather than normal modes are considered in this study (Yang, et al. 2003b). The 

equation of motion of a general n-DOF structure can be expressed as



HHT method for system identification and damage detection: an experimental study 143

             
(1)

in which X(t) = [x1, x2,..., xn]
T = n-displacement vector, F(t) = n-excitation vector, and M, C and K are 

(n×n) mass, damping and stiffness matrices, respectively. In the state-space, Eq. (1) can be expressed as

 or (2)

in which T is a 2n state vector and

(3)

Complex eigenvalues λj and eigenvectors Ψj can be obtained from the system matrix D as 

                                                                      (4)

 

in which eigenvalues and eigenvectors are all in complex conjugate pairs, and 

(5)

where Φj is an n complex vector.

The response of the state vector can be expressed as

(6)

in which q is the generalized modal coordinate vector with the j-th complex element q j (t). Using the    

orthogonal properties of complex mode shapes, and substituting Eq. (6) into Eq. (2), one obtains the 

decoupled equations from Eq. (2) as

(7)

in which

         ;  ;  ;                     (8)

The acceleration response of the structure can be expressed as

(9)
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When an impact loading F0δ (t) is applied to the k-th DOF, the responses qj(t) and  can be 

obtained from Eq. (7) and Eq. (8) as

;  (10)

where φkj is the k-th element of Φj and

(11)

Eigenvalues λj and eigenvectors Ψj as well as aj, bj, qj (t) and  are all n pairs of complex 

conjugates, e.g.,

                           (12)

where i  = , ωj = j-th modal frequency, ξj = j-th modal damping ratio, and ωdj = ωj(1−ξj
2)1/2.

The acceleration response  of the structure at p( p = 1,2,...n) DOF can be expressed as

(13)

where xpj(t) is the j-th modal response given by

(14)

(15)

In Eqs. (14) and (15), θ(φpj) and θ(Bkj) are phase angles of the complex quantities φpj and Bkj, 

respectively, and |φpj| and |Bkj| are their corresponding amplitudes.

2.2. Determination of modal response using EMD method

In real engineering application, the measured acceleration response vector 

is polluted by noise, i.e.,

(16)

where V(t) =  is a white noise vector in which each element, say vp(t), can be 

modeled as a band-limited Gaussian white noise process. The measured acceleration response  at 

the p-th DOF is given by

(17)

in which  is given by Eqs. (14) and (15).

Yang, et al. (2003b) presented a method to obtain the modal response  from measured response 
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 by using the empirical mode decomposition (EMD) method. The procedure of EMD is to 

construct upper and lower envelopes of the signal by spline fitting, and the average (mean) of both 

envelopes are computed. Then the signal is subtracted from the mean, referred to as the sifting process. 

By repeating the sifting process until the resulting signal becomes a monocomponent, i.e., one up-

crossing (or down-crossing) of zero will result in one local peak (or trough) indicating that the number 

of up-crossings (or down-crossings) of zero is equal to the number of peaks (or troughs). Such a 

monocomponent signal admits a well-behaved Hilbert transform and it is referred to as an IMF. The 

original signal is then subtracted from the IMF, and the repeated sifting process is applied to the 

remaining signal to obtain another IMF, until the residue is the mean trend (or a constant) of the signal. 

Such a process is referred as the EMD method (Huang, et al. 1998, 1999).

To ensure the IMFs obtained from the sifting process are the modal response , an intermittency 

frequency should be imposed during the sifting process in EMD (Yang, et al. 2003a, Huang, et al. 1998, 

1999). However, the numerical computation based on this approach may be quite involved, thus an 

alternative approach based on a band-pass filter and EMD is proposed to simplify the computation 

efforts (Yang, et al. 2003a). First, from the Fourier spectrum, the approximate frequency range for each 

natural frequency, i.e.,  ( j = 1, 2,..., n), is determined, where ωjL, ωjH are the intermittency

frequencies. Then, the measured signal  can be processed through the band-pass filters each with a 

frequency band ωjL < ωj < ωjH. The time history obtained from the jth band-pass filter is then processed 

through EMD, and the resulting first IMF is quite close to the jth modal response. Repeating the same 

processes for ( j = 1, 2,..., n), one obtains n modal responses. Thus,  can be decomposed into n

modal response functions (that are also IMFs), m−n other IMFs and a residue signal as follows:

(18)

This is a simple approach that not only can extract the modal response  easily, but also can 

remove all the noises outside the frequency range. This approach will be used in the experimental study 

to obtain the modal responses. 

2.3. System identification of linear structure based on HHT method

As aforementioned, the IMF obtained by the EMD method admits a well-behaved Hilbert transform. 

By taking the Hilbert transform of  in Eq. (14) and forming the analytical signal 

(19)

where (t) is the Hilbert transform of , the instantaneous amplitude Apj(t) and phase angle θpj(t) 

of the signal can be obtained. The details of the theory of Hilbert transform and the Hilbert transform of 

modal responses are available in many references (Huang, et al. 1998, 1999, Yang, et al. 2003a, 2003b).

When the damping ratio ξj is very small, one obtains (Yang, et al. 2003a, 2003b).
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It follows from Eq. (21) that

ln ;  (22)

It can be seen from Eq. (22) that, for small damping ratio ξj, the damped natural frequency ωdj can be 

obtained from the slope of the phase angle θpj(t) vs. time t plot, whereas −ξjωj  can be estimated from 

the slope of the decaying amplitude ln Apj(t) vs. time t plot. The linear least square approach can be used 

to fit the two plots, and hence the natural frequencies and damping ratios can be identified by the slopes 

of the fitted straight lines. After identifying ωj and ξj for j = 1,2,...,n the complex eigenvalue λj can be 

computed from Eq. (12).

To identify the complex mode shapes of a structure, the responses at all DOF should be measured. 

From Eqs. (11), (13) and (22), the ration of the absolute value of modal elements φpj and φqj ( p, q = 1, 2,..., n)

of the j-th mode can be identified as

(23)

in which  and  are the magnitudes at time t = t0 of the least-square straight lines of 

ln Apj(t) and ln Aqj(t), respectively. And the difference between the phase angle of the modal element φpj

and that of φqj can be expressed as

(24)

in which  and  are the magnitudes of the least-square straight lines of the phase angles 

 and  at time t = t0, respectively. Thus, both the absolute values and phase angles of all 

modal elements relative to an arbitrary element in the complex modal vector Φj have been determined. 

Then, the complex eigenvectors Ψj can be computed from Eq. (5).

The amplitude of the complex value aj and phase angle of aj can be determined from Eqs. (11), (15) 

and (22) as

       ;  ;     j = 1,2,...,n (25)

in which  is the magnitude of the least-square straight line of the amplitude ln  at time 

t = 0, F0 is the level of impact loading, θpj(0) is the magnitude of the least-square straight line of the 

phase angle θpj(t) at time t = 0, θ(λj
2) is the phase angle of the complex value λj

2, and θ (φpj) and θ (φkj) 

are the phase angles of the complex modal elements θpj and θqj, respectively. Then, the complex value 

of bj can be obtained from Eq. (8) as

(26)

Thus, the mass, damping and stiffness matrices (M, C, K) can be determined using the orthogonal 

properties of the complex modes in Eqs. (3) and (8).

For damage detection, the assumption is that the damage may cause stiffness reduction while the 

damping matrices may not change. Therefore, when the system parameters such as mass, stiffness and 
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damping matrices before and after damages are identified, the damage location and severity can be 

determined by comparing the identified stiffness matrices.

3. Experimental study

3.1. Experimental set-up

To verify the system identification and damage detection methodology based on the HHT method 

presented above, a series of experiments were conducted in Structure and Strength Laboratory, Nanjing 

University of Aeronautics and Astronautics. 

The overall experimental configuration of this study is shown in Fig. 1. A three-story test structure was 

constructed and fixed to the ground. The structure is 90 cm tall and has a total mass of 64.6 kg which is 

distributed uniformly between the floors. The three-story structural model is constructed with modular 

members, and the columns can be replaced or removed to study the variations in structural parameters. Each 

floor is supported by 6 steel columns, and the columns are made of the same material, A3 steel, as the 

distributed mass. The dimension of the column is 16 mm×4 mm×320 mm, and the mass of the columns can 

be ignored relative to the distributed mass. The stiffness of each story can be computed by using the 

dimensions of columns and the elastic module of A3 steel, i.e., 216 GPa. This experimental structural model 

can be considered as a three-story shear-beam type building model and the mass, stiffness of each story unit 

are identical with mj = 21.53 kg, and kj = 47619 N/m, respectively, for j = 1, 2, 3, which is numbered form 

bottom to top. However, the damping ratio of each story unit can not be determined at this stage. To 

experimentally verify the HHT method for system identification and damage detection, columns were 

removed from the structure to simulate the damage at different location with different severity.

Three PCB20885 accelerometers, whose sensitivity is 100 mV/g, were fixed at the center of each 

floor to measure the acceleration responses of the structure subject to impulse loadings. Impulse 

loadings were produced by a PCB086B02 impact hammer. In the experiments, the impulse loading was 

applied at the middle of the top floor in the x-direction, and only the acceleration responses in the 

Fig. 1 A MDOF structure for system identification and damage detection
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x-direction were measured. The reference coordinate frame in this study is illustrated in Fig. 1(a). A 

dynamic signal analyzer (HP35670A) was used to acquire the impact loading time history and 

acceleration responses. The un-damaged structure shown in Fig. 1(a) is referred to as the baseline 

structure. In this study, two damage patterns were considered. For damage pattern I, two middle 

columns in the highest story unit were are removed to simulate the damage in the top story as shown in 

Fig. 1(b). For damage pattern II, two middle columns in both the second and the third story units were 

are removed to simulate the damage in both stories as shown in Fig. 1(c).

Further, the finite element method (FEM) has been used to obtain the numerical results of modal 

parameters for the test structure before and after damage. These finite element results will serve as 

baselines for comparison with the predictions based on the experimental data.

3.2. Experimental results

As mentioned previously, two damage patterns were considered in this study. To verify the accuracy 

and effectiveness of the HHT method and to provide the baseline information for identifying the 

location and severity of damages, the baseline structure, namely, the un-damaged structure, was tested 

and studied first.

Fig. 2 shows the impact force applied to the top floor and the measured acceleration responses of the 

baseline structure. In this figure,  denotes the measured acceleration response of the jth floor ( j = 1, 

2, 3). The Fourier transform of the measured signals was performed using the dynamic signal analyzer. 

Fig. 3 shows the Fourier transform of . From the figure, it can be observed that there are three 

dominant frequencies around 3, 9, and 13 Hz, respectively. These acceleration responses were then 

decomposed into modal responses using the EMD and band-pass filter approaches described in the 

theoretical part. According to the frequency range obtained from the Fourier transform, the frequency 

bands of the band-pass filters were taken to be: , and 5Hz = ω2L

< ω2 < ω2H = 11Hz, and 2Hz = ω1L < ω1 < ω1H = 5Hz, respectively. The filtered time history was then 

processed through the EMD procedure, and the resulting first IMF was considered as the corresponding 

jth modal response. Fig. 4 shows the three modal acceleration responses extracted from , donated by 

x··j

x··3

11Hz ω3L ω3 ω3H< < 15Hz= =

x··3

Fig. 2 Time histories of impact force and accelerations of the baseline structure
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, ( j = 1, 2, 3). It should be noted that the band-pass filter used should have as small a phase shift as 

possible. The same modal responses with slight difference at a small segment near t = 0 could be extract 

from other two acceleration responses  and .

After removing a small segment near t = 0, the Hilbert transform was applied to modal acceleration 

responses as illustrated in Fig. 4 to obtain the corresponding instantaneous amplitudes in the natural 

logarithm scale and phase angles. Linear least-square fit procedures were used to fit the ln amplitudes 

and phase angles. The ln amplitude and phase angle of the first modal response as functions of time t

are shown in Fig. 5 as dotted curves. Also presented in Fig. 5 as solid straight lines are the linear least-

square fits. From the slopes of these straight lines, the first mode frequency and damping ratio have 

been estimated. Repeating the same procedures for other two modal responses, as shown in Fig. 6 and 

Fig. 7, all the natural frequencies and damping ratios can be obtained from one measurement . Table 1

x··3j

x··1 x··2

x··3

Fig. 3 Fourier transform of acceleration response  of the baseline structurex··3

Fig. 4 Modal responses obtained by EMD of the baseline structure
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presents the identified values of the natural frequencies and damping ratios of the un-damaged 

(baseline) structure based on a single measurement. Also presented in the table are the FEM results. By 

comparison, it can be observed that the identified natural frequencies and damping ratios using the 

HHT method are quite consistent with the FEM results. Similar results have been obtained using other 

two measured acceleration responses  and . Table 2 presents the natural frequencies and damping 

ratios of the baseline structure identified from different responses by HHT. It can be seen that the 

identified results from different measurements are almost the same.

After repeating the above procedures for the responses at all the three DOFs, the complex mode shapes can 

be identified by using Eqs. (23)~(26). Further, the physical mass, stiffness and damping matrices were 

all identified. Table 3 presents the identified modal vectors of the baseline structure by the HHT method.

Table 4 shows the identified values for mass, stiffness and damping matrices. The FEM results are also 

presented in these tables for comparison.

For the two damage patterns considered, the identification procedures are the same as that for the 

x··1 x··2

Fig. 5 Plots of ln amplitude and phase angle for the first mode of the baseline structure

Fig. 6 Plots of ln amplitude and phase angle for the second mode of the baseline structure
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baseline structure. Table 5 to Table 7 present the identified results for damage pattern I, and Table 8 to 

Table 10 present the identified results for damage pattern II. From these tables, it is observed that, similar to 

the results presented in Table 1, Table 3 and Table 4, the identified results for damaged structures are 

quite reasonable compared with the FEM results.

Fig. 7 Plots of ln amplitude and phase angle for the third mode of the baseline structure

Table 1 Comparison of natural frequencies and damping ratios of the baseline structure by FEM and HHT

Mode
FEM Identified (HHT)

Natural Frequency (Hz) Damping Ratio (%) Natural Frequency (Hz) Damping Ratio (%)

1st 3.256 NA 3.295 0.15

2nd 9.101 NA 9.216 0.11

3rd 13.123 NA 12.997 0.10

Table 2 Natural frequencies and damping ratios of the baseline structure identified from different responses by HHT

Mode Natural 
Frequency (Hz)

Damping
Ratio (%)

Natural
Frequency (Hz)

Damping 
Ratio (%)

Natural
Frequency (Hz)

Damping 
Ratio (%)

1st 3.295 0.15 3.295 0.15 3.295 0.15

2nd 9.216 0.10 9.216 0.11 9.216 0.11

3rd 12.995 0.10 12.999 0.10 12.997 0.10

x··1 t( ) x··2 t( ) x··3 t( )

Table 3 Comparison of modal vectors of the baseline structure by FEM and HHT

Amplitude of modal vector Phase angle of modal vector (rad)

FEM

1.00 1.00 1.00

NA1.81 0.45 1.25

2.26 0.80 0.55

Identified
(HHT)

1.00 1.00 1.00 0.00 0.00 0.00

1.93 0.51 1.06 0.00 0.01 -3.14

2.51 0.79 0.49 0.00 -3.13 -0.01
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From the identified stiffness matrices, the stiffness of each story unit can be identified. Then the damage 

location and severity can be determined by comparing the stiffness of each story unit before and after the 

damage. Table 11 presents the identified and FEM results for the stiffness of each story unit for the un-

damaged structure and damage patterns I and II. In Table 11, Kj represents the stiffness of jth story unit, 

which is numbered from the bottom to the top. From the identified results, it is observed that, in 

comparison with the baseline structure, damage pattern I results in about 1/3 of the stiffness loss in the 

third story unit, and damage pattern II results in about 1/3 of the stiffness loss in both the second and third 

story units. The identified results correlate quite well with the actual stiffness loss in the experimental 

structures. Thus the damage location and damage severity are identified, and the results are quite satisfactory.

Table 4 Comparison of mass, stiffness and damping matrices of the baseline structure by FEM and HHT

Mass (kg) Stiffness (N/m) Damping (Ns/m)

FEM

21.53 0.00 0.00 95238 -47619 0

NA0.00 21.53 0.00 -47619 95238 -47619

0.00 0.00 21.53 0 -47619 47619

Identified
(HHT)

19.26 -0.46 -0.67 86161 -40744 -72 4.06 -2.08 -1.73

-0.46 20.29 -1.48 -40744 85015 -43320 -2.08 2.71 0.72

-0.67 1.48 18.62 -72 -43320 40810 -1.73 0.72 1.44

Table 5 Comparison of natural frequencies and damping ratios of damage pattern I by FEM and HHT

Mode
FEM Identified (HHT)

Natural Frequency (Hz) Damping Ratio (%) Natural Frequency (Hz) Damping Ratio (%)

1st 3.180 NA 3.206 0.15

2nd 8.055 NA 8.065 0.14

3rd 12.485 NA 12.461 0.10

Table 6 Comparison of modal vectors of damage pattern I by FEM and HHT

Amplitude of modal vector Phase angle of modal vector (rad)

FEM

1.00 1.00 1.00

NA1.81 0.79 0.94

2.52 0.96 0.27

Identified
(HHT)

1.00 1.00 1.00 0.00 0.00 0.00

1.94 0.89 0.79 0.00 0.02 3.14

2.87 0.98 0.23 0.08 -3.14 0.01

Table 7 Comparison of mass, stiffness and damping matrices of damage pattern I by FEM and HHT

Mass (kg) Stiffness (N/m) Damping (Ns/m)

FEM

21.53 0.00 0.00 95238 -47619 0

NA0.00 21.53 0.00 -47619 79365 -31746

0.00 0.00 21.53 0 -31746 31756

Identified
(HHT)

21.07 -0.52 -0.26 91826 -43227 -288 4.29 -6.58 -5.83

-0.52 22.41 -1.47 -43227 70480 -26583 -6.58 14.72 12.46

-0.26 -1.47 19.73 -288 -26583 28961 -5.83 12.46 44.8
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4. Conclusions

This paper presents an experimental study for the system identification and damage detection based 

on the HHT method. A MDOF structural model has been constructed with modular members to simulate

damages at different locations with different severities. Two damage patterns have been considered in 

the experimental study. Our experimental study demonstrates that the HHT method is capable of 

accurately identifying the system parameters as well as the location and severity damages. As the result, 

the HHT method is a promising technique for structural health monitoring.

Table 8 Comparison of natural frequencies and damping ratios of damage pattern II by FEM and HHT

Mode
FEM Identified (HHT)

Natural Frequency (Hz) Damping Ratio (%) Natural Frequency (Hz) Damping Ratio (%)

1st 2.946 NA 2.911 0.16

2nd 8.038 NA 8.055 0.12

3rd 11.102 NA 10.988 0.11 

Table 9 Comparison of modal vectors of damage pattern II by FEM and HHT

Amplitude of modal vector Phase angle of modal vector (rad)

FEM

1.00 1.00 1.00

NA2.26 0.69 0.96

2.97 0.86 0.39

Identified
(HHT)

1.00 1.00 1.00 0.00 0.00 0.00

2.56 0.84 0.77 0.00 0.01 3.14

3.53 0.93 0.31 0.12 -3.14 0.01

Table 10 Comparison of mass, stiffness and damping matrices of damage pattern II by FEM and HHT

Mass (kg) Stiffness (N/m) Damping (Ns/m)

FEM

21.53 0.00 0.00 79365 -31746 0

NA0.00 21.53 0.00 -31746 63593 -31847

0.00 0.00 21.53 0 -31847 31847

Identified
(HHT)

19.9 -0.44 -0.01 72993 -40744 -677 4.97 15.54 -10.11

-0.44 21.37 0.86 -25802 51100 -26538 15.54 80.12 19.05

-0.01 0.86 22.64 -677 -26538 28781 -10.11 19.05 -79.85

Table 11 Comparison of stiffness of each story unit for baseline structure, damage pattern I and damage pattern II 
by FEM and HHT

Stiffness
(N/m)

FEM Identified (HHT)

Baseline
Structure

Damage
Pattern I

Damage
Pattern II

Baseline
Structure

Damage
Pattern I

Damage
Pattern II

K1 47619 47619 47619 43211 49118 49553

K2 47619 47619 31746 42950 42708 23440

K3 47619 31746 31746 42065 28772 27660
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